2.4 Work and Virtual Work - Applied Mechanics of Solids [PDF]

Problems for Chapter 2. Governing Equations. 2.4. Work and Energy, the Principle of Virtual Work. 2.4.1. A solid with vo

4 downloads 16 Views 138KB Size

Recommend Stories


PDF Download Virtual Teams That Work
Happiness doesn't result from what we get, but from what we give. Ben Carson

Work and Non-Work
Forget safety. Live where you fear to live. Destroy your reputation. Be notorious. Rumi

Engineering Mechanics of Solids
Almost everything will work again if you unplug it for a few minutes, including you. Anne Lamott

Work, work, work
Don't fear change. The surprise is the only way to new discoveries. Be playful! Gordana Biernat

(Honors) in Applied Sociology and Social Work
In the end only three things matter: how much you loved, how gently you lived, and how gracefully you

Life and Work Online PDF
If you want to go quickly, go alone. If you want to go far, go together. African proverb

Work simple Work digital
Don’t grieve. Anything you lose comes round in another form. Rumi

THE WORLD OF WORK [PDF]
Grammar: modals of prohibition, obligation and permission. Reading: Equality? ... PERMISSION. 5. Look at some of the examples from exercise 2. Do the sentences talk about prohibition, permission or obligation? a) A model has to be beautiful for the c

Introduction Work Calculating Work
And you? When will you begin that long journey into yourself? Rumi

[PDF] How Things Work
There are only two mistakes one can make along the road to truth; not going all the way, and not starting.

Idea Transcript


Home

Contents

Quick Navigation

Problems

FEA Codes



Problems for Chapter 2 Governing Equations

2.4. Work and Energy, the Principle of Virtual Work 2.4.1. A solid with volume V is subjected to a distribution of traction ti on its surface. Assume that the solid is in static equilibrium. By considering a virtual velocity of the form vi = A ijyj , where A ij is a constant symmetric tensor, use the principle of virtual work to show that the average stress in a solid can be computed from the shape of the solid and the tractions acting on its surface using the expression 1 1 1 V dV = S t y + tjy i dA V ò ij Vò 2 i j 2.4.2. The figure shows a cantilever beam that is subjected to surface loading q(x1) per unit length. The state of stress in the beam can be approximated by 11 = M(x 1)x2 / I, where

(

I=

)

ò Ax 22dA is the area moment of inertia of the beam’s cross section and M(x1) is an

arbitrary function (all other stress components are zero). By considering a virtual velocity field of the form v1 = −

w ( x1 ) dx 1

x2 v2 = w(x 1)

where w(x1) is an arbitrary function satisfying w = 0 at x 1 = 0, show that the beam is in static equilibrium if L

d 2w

L

0

1

0

ò M(x 1) dx2 dx 1 + ò q(x1)wdx 1 = 0 By integrating the first integral expression by parts twice, show that the equilibrium equation and boundary conditions for M(x1) are d 2M dx 21

+ q(x 1) = 0M(x1) =

dM (x 1 ) dx 1

= 0x 1 = L



2.4.3. The figure shows a plate with a clamped edge that is subjected to a pressure p(x1, x 2) on its surface. The state of stress in the plate can be approximated by = M (x 1, x 2)x3 / 3h 3 33 = 3 = 0 where the subscripts , can have values 1 or 2, and M (x1, x 2) is a tensor valued function. By considering a virtual velocity of the form v = −

∂w

x v ∂x 3 3

= w(x 1, x 2)

where w(x1, x 2) is an arbitrary function satisfying w = 0 on the edge of the plate, show that the beam is in static equilibrium if ∂ 2w ò M (x 1) ∂ x ∂ x dA + ò p(x 1, x 2)wdA = 0 A

A

By applying the divergence theorem appropriately, show that the governing equation for M(x 1, x 2) is ∂ 2M

∂x∂x

+p =0

2.4.4. The shell shown in the figure is subjected to a radial body force b = b(R)e R, and a radial pressure p a, p b acting on the surfaces at R = a and R = b. The loading induces a spherically symmetric state of stress in the shell, which can be expressed in terms of its components in a spherical-polar coordinate system as RRe R Ä e R + e Ä e + e Ä e . By considering a virtual velocity of the form v = w(R)e R, show that the stress state is in static equilibrium if b

ò a

{

dw RR

dR

+

( + )R } w

4R 2dR

b

− ò b(R)w(R)4R2dR a

− 4a 2p aw(a) + 4b 2p bw(b) = 0 for all w(R). Hence, show that the stress state must satisfy d RR dR

+

1 R

(2RR − − ) + b = 0RR = − p a(R = a)RR = − p b(R = b)

2.4.5. In this problem, we consider the internal forces in the polymer specimen described in Problem 2.1.29 and 2.3.5 (you will need to solve 2.1.29 and 2.3.5 before you can attempt this one). Suppose that the specimen is homogeneous, has mass density in the reference configuration, and may be idealized as a viscous fluid, in which the Kirchhoff stress is related to stretch rate by =µD+pI where p is an indeterminate hydrostatic pressure and µ is the viscosity. 2.4.5.1. Calculate the rate of external work done by the torque acting on the rotating exterior cyclinder 2.4.5.2. Calculate the rate of internal dissipation in the solid as a function of r. 2.4.5.3. Show that the total internal dissipation is equal to the external work done on the specimen.

Processing math: 91%

Smile Life

When life gives you a hundred reasons to cry, show life that you have a thousand reasons to smile

Get in touch

© Copyright 2015 - 2024 PDFFOX.COM - All rights reserved.