A Treatise on Spherical Astronomy - Forgotten Books [PDF]

I have aimed at providing for the student a book on Spherical. Astronomy whic h is ... of Plane and Spherical Trigonomet

0 downloads 14 Views 17MB Size

Recommend Stories


Nineteenth Edition - Forgotten Books [PDF]
EL HERALDO DE VERACRUZ DESDE. CARLOS PEREZ ...... HERALDO DEL OASIS. LUIS ISAAC ELIAS ...... HCGUS. LA v oz DE AZOGUES. CONCEJO ...

[PDF] Textbook on Spherical Astronomy By WM Smart AUDIOBOOK
Everything in the universe is within you. Ask all from yourself. Rumi

Untitled - Forgotten Books
Never wish them pain. That's not who you are. If they caused you pain, they must have pain inside. Wish

Untitled - Forgotten Books
Be who you needed when you were younger. Anonymous

Untitled - Forgotten Books
The greatest of richness is the richness of the soul. Prophet Muhammad (Peace be upon him)

Treatise on
Never wish them pain. That's not who you are. If they caused you pain, they must have pain inside. Wish

A History of the Arabs - Forgotten Books [PDF]
history Of a people naturally takes is to consult such native records as m ay ... Following this course in the case of the Sudan Arab one is sur prised to find that a ...

PDF Astronomy
You miss 100% of the shots you don’t take. Wayne Gretzky

Treatise on Tolerance
Nothing in nature is unbeautiful. Alfred, Lord Tennyson

Treatise on Conic Sections
In the end only three things matter: how much you loved, how gently you lived, and how gracefully you

Idea Transcript


I

I

I

WA RE H O USE

C A M B R D G E U N V E RS T Y P R E SS C

F

.

flo nhu n

CL A Y, M A N A G E R

.

:

m i n bu r g b :

F E TTE R

.

L ANE , E C .

1 00 , P R I N C ES S T R EET

.

.

L

A SO

1

0 11110 11 :

H K .

.

LEW I S, 136 , GO W E R ST REET,

l

B er i n

:

M imi g

:

A



mm g B u mba g

a n t:

ot

h:

.

F

G

(It a l ru tta :

[A l l

.

.

HER AN D CO

AS A

P

.

.

B ROC P

WC .

.

.

K H AU S

.

UT N A M S ’

SO N S

.

M AC M ILL AN A ND CO

r i g h t s r e se rv e d

]

LT D

.

,

T R E A T ISE O N

A

SPH E R I C A L A ST R O N O M Y

SI R R O BE RT B A L L , M A .

LO W N D E A N IN

PR O

F ESSO R

T HE

FO R M ER L Y

OF

A ST R O N O M

U N IVER SI T Y

R O YA L

OF

Y

.

,

A ND

CA M BR I D G E

AST R O N O M ER

OF

CA M B R I D G E at

t he

G E O M ET R Y

U n i v e r si t y P r e s s

IR EL AN D

HN L Y UN R Y R

pm m n n

BY JO

C

AT T HE

IV E

SI T

A

P

,

AL A

.

ESS

.

P RE F A C E herical A stro o my I m ea that par t f M t h m t i l s ro o my w hi ch lies b e t w ee t h t d m ai f D y a m ical A stro o y o d the m ul t itu d i ous d etails f t h e o e ha d P ractical A s t ro o m y o t he o t her I have ai m ed at provi di g f the stu d e t a book Spherical t he li m its thus i dicate d A s t ro o my w hich is ge erally w i t hi but I have t hesi t a t e d to tra sgress t hose lim its w d t he w he there see m e d to be goo d reaso f d oi g so For e am ple I have j ust crossed t he border f D y a mical A stro om y i d i t w o co cludi g cha pt ers I have so f C ha pt er V I I e t ere d P rac t ical A s t ro o m y as t give som e accou n t o f the fu da m e t l geo m etrical pri ci ples f astro m ical i s t ru m e ts I t has b ee assu m e d t hat t h rea der f this book is already acquai te d w ith t he m ai fac ts o f D escri ptive A s t ro o m y Th read er is also e pecte d t o be fa miliar w i t h t h ordi ary processes f P la e d S ph erical T rigo o m etry d he shoul d h ve at leas t ele m e tary k w le dge f A aly t ic G eo m etry n d C o ic S ectio s as well as f t he D iffere t ial d I t egral C alculus I t n ee d har dly be added t ha t t he stu de t f y bra ch o f M a t he m ati c al A stro my shoul d also k w the pri ci ples o f S t atics d D y a m ics A a guide to the stu d e t w h o is m aki g his first acquai ta ce w ith S pherical A stro omy I have a ffi ed a asterisk to t he t i t le f t hose articles w hich he m y o m i t o a first readi g ; the ar t icles so i d ica t ed bei g ra t her m ore adva ced tha t he articles w hich rece d e or f ollo w p S uch ar t icles as relate to the m ore i m por t a t subj ec t s are ge erally illustrated by e ercises I n m aki g a selectio fro m the large am ou t o f available m aterial I have e deavoure d t o choose e ercises which o t ly be a r directly t he te t but also ha e so m e special stro o m ical or m a t he m a t ical i terest It will be see t h a t t he T ri pos e a m in ation s at C a mbri dge d m a y C ollege e a m i atio s at C a mbridge n d elsewhere have provided a large f d f m ro ortio the e ercises I have also ob t ai e e ercises ro x p p m a y ther sources w hich are duly i dica t ed Y Sp A t n m ’

n

n

n

o

e va s

n

n

n

n

n

or

n

or

n

n

n

on

n

a

o

n

n

n

o

o

o

no

n

an

n

.

n

n

x

,

o

n

an

n

n

n

n

.

n

s

a

n

a

a

an

n

n o

an

n

n

e

.

n

e

an

.

o

e

n o

n

n

no

n

n

an

n

ar

x

n

x

.

o

n

o

n

n

n

n

n

,

an

n

o

n

on

n o

n

n

o

n

n

an

ca

n

n

n o

n

n o

a

n

n

,

e

.

n

.

o

an

n

n

a

s

n

n

n

n

n

n

n

.

n

n

x

n

n

x

a

on

on

n

n

n

n

.

x

n

n

v

,

.

x

an

n

.

x

n

n

n

n

o

o

a

n

.

n

.

x

P

w ork w hile

R E FA C E

the subj ect to w hich I have most freque tly m B i i w t ur e re ari g this volu e is s h S l e r i c p p p E glish A t o my a m os t e xcelle t book w hich is available i i t s origi al Ger ma d Fre ch t ra slatio s as w ell as i e xte sive A m o g rece t au t hors I have co sul t e d V l t i e stu de t f as t ro o m y H dw te bu c h d er A s t n o mi e which a fford t overlook d I have lear ed m uch fro m the admirable wri t i g o f P r fessor N ewcom b I have t ack o w ledge w i t h m a y t ha ks t he as is t a ce which M A rthur B erry has f frie d s have ki dly re dere d t m e i h e d m e w i t h m a y solu t io s f e ercises m ore es pecially o f D J L E D reyer has rea d over t he chapt er T ri po questio s M W E H artley d m a d e use ful sugges t io A berratio has hel pe d i the c rrec t io f the proo fs as w ell as i t h e revisio f par t s o f the m a uscri pt M A R H i ks has gi e m hel p i correc t io f t h e proo fs d I m also i deb t ed t o hi m f th assis t a ce i t he c h apt er o the S olar P aralla D A A R a mb t has devote d m uch ti m e t o t he rea d i g f proo fs d has assisted i m a y other ways M F J M S tra t t o h revised so m e f t he pages especially those the rotatio f t he m oon D E T W hit t aker has give m e use ful sugges t io s es pecially i t he chapt er R e frac t io d he has al o hel ped i rea di g proo fs d my o M R S B all has d ra w m a y o f t he d iagra m s L astly I m u t ack owle dge my obliga t io to the S y d ics f the U iversity P ress w h have m e t all my w ishes i t he ki d es t m a er Th list f paralla e m ore e t e f stars ( p 3 2 8 ) is based sive lis t s give by N ewco m b i The St s d K pt y i the G ro i ge publica t io s N o 8 Th e resul t s state d f C e tauri S irius d a G ruis have bee n ob t ai e d by S i D G ill ; t ho e f P rocyo A l t air A l d ebara C a pella V ega A rcturus by D E lki t hat f C or doba Z o e 5 2 4 3 by D D e S i t ter ; t ha t f 1 8 30 G roo mbri dge by P ro fes or K pt e y ; t ha t f 2 1 1 8 5 L ala de by M H N R ussell ; t ha t f d t ha t fo P olaris by P ri t char d ; 61 C ygn i is a m ea resul t I ought to dd t ha t whe I use the word e phe m i s I re fer so f as works i the E glish la guage are c cer e d either to the B i ti sh N ti c l A l ma Ephe me i s c or to t he A me i c Th e n d

no

s r

n

on

r

n

n

a en

n o

ro

r

o

ca n

n

o

n

n

s

.

.

o

n

n

.

r

.

.

an

v

n

r

.

o

an

s

n

n

r

,

.

s

,

.

n

as

o

.

s

n

n

,

n

n

,

n

.

n

n

o

n

n

on

x

.

e

o

x

s o

.

n

n

n

n

n

n

n

,

or

,

au

a

r

,

n

or

n

n

or

r

an

er

n

on

n

n

na

r

n

V

A TO R Y ,

CA M B RI D G E, 1 8 t h Oc t o ber , 190 8

.

,

,

r

an

R O B E RT S O B SER

or

.

a

n

,

s

or

n

ar

a

n

.

,

n

n

n

r

,

.

r

r

,

s

e

or a

b

n

a

.

.

n

,

.

an

ar

an

r

n

o

,

.

an

.

n

n

nn

.

.

n

an

,

n

r

.

o

n

.

e

or

on

on

n

.

,

n

n

x

n

n

.

n

a

n

n

.

.

n

.

au

r

r

.

n

o

n

e

,

n o

o

n

u r

n s

n

n

s

x

an

n

on

r

.

n

r

.

o

n

n

n s

r s

o

n

n

n

n

n

.

n

o

.

n

o

s

n



n

an

,

n

n

n

n

n

or

a

n

n

n

n

an

nn o

n

,

an



.

.

B AL L

.

C O N TE N TS

I

C H A PT E R

PA GE .

F UN D A M E N TA L F O R M ULA E 1 b h er ic al T r i m t r y 2 D ela m re d N a i er a al i e l S g p p g § lvi g pherical t ia gle 3 A ccu racy atta i ab le i L gar ith m ic f 4 D i ffere ti al fo r m u lae i a S pher ical T ri a gle 5 Th C al cu lati E xer ci e C h apt r I A t f I te rp lati ono

.

or

n

so

on

r

o

r

s

.

.

.

s

.

s



an n

.

n

on

o

e

n

.

n



n

n

s s on

.

o

s

o

n

e

n

s

e

.

.

.

II

C H A PT E R

.

I

I

T H E U SE O F SPH E R CA L CO O R D NA T E S

25

f ap i t rad uat d great ci rcle th 7 C rd i at ph re t w p i t th x r i h c i e f t h b e t wee 8 E f t ph re p § f th term f th ei r c rd i ate 9 I t erpre ta ti ph ere i equati i ph er ical c rd i ate 10 T h i cl i ati f t w grad uated 11 le O th i t g r at ci r c le i t h t 1 80 j i i g th i r ti 12 T ra f r mati f c rd i ate f t w grad u at d gr at ci r cle 13 Adapta ti t l gar ith m

G

6

.

o n

e s

on

e

e

e

.

e ss o n

.

s

n

on

n

e

o

s

s

are

e

s

on

.

o

o

s

s

°

I

n

s

s

s

no

e

.

s

o

o

s

an

o

.

.

ns o

.

o n

on

on

n

n

o

n

.

o n

n

are

.

e

.

o n

e

o

es o

n

oo

.

.

n

.

e

o

e

os n

e

oo

n

e

o

e

o

oo

s

ons

s on

n

e

o

oo

on

e rs e c

n

s

n

.

.

I II

C H A PTE R

.

43 F I GURE O F T H E EA RT H A ND M A P M A K IN G 14 I t r duct ry h a titu e a i f cu rva tu re al t 1 5 L d 1 6 R d g § m er id i a th at a m p 18 C d iti g 1 7 T h th e ry f m p m aki g 20 hall b c f rm al cal i a c f rm al repr e tati 19 T h Merca t r pr j ecti 2 1 Th e l x dr me 2 2 S t r g raphic p 2 3 Th t re graphic pr j cti f th j ti ph re i y ci r cl al a ci rcle 2 4 Ge eral f rmulae f t re graphic pr j ecti 25 M p i w hich ach b ar a c ta t rati t t h c rre p di g area t h E xer ci e C h apt er I II ph ere

TH E

n

s

on

o



.

e

e

s

o

e

o e

s

on

or s e

ons

s s on

.

o

n

o

an

o

o

o

e

iu r al m ti a d a i m uth d

n

n

o

z

on

cele ti al

.

s

.

E

29

xerci

ro

eo

e

on

e

s

.

.

n

on

on

s

a

e

.

I

Th e

.

.

.

T H E C ELEST A L S P H ER E .

s

on

on

e

o

C H A P TE R I V

26

e

.

e

a

es n

.

o

on

on

.

on o

o

o

o

.

n

e

o

n

a re a

s

.

s e

n

a

e

.

.

.

n

o

on

us o

.

.

.

on

.

so

.

.

o

s

.

e

.

on

o

o

.

e

ec

o

n

.

.

h ere

sp

Th e

.

eridia d t h C hapter I V

Th e m

se s o n

27

.

n

an

.

e

69

.

c le tial h ri pri me vertical e

s

o

zo n .

28

.

30

.

A

.

Th e

l titude

C O N TE N TS

P A GE

C H A P TE R V

I

I

.

I

I

R G H T A S CE NS O N A N D D E C L N A T O N ; LA T T UD E A N D L O N G T U D E

I

I

C ELE S TIA L 82

3 2 Th fi r t p i t f A r i e i ht a c i d d ecl i a ti § 4 D e t r i a ti d 3 m f e ith h d d t h u r a le i er al T h 33 y 5 g § d dec l i ati 35 A ppl icati d a i muth fr m h ur a gle d i ta ce f a c le ti al 36 O t h ti m e f cu l m i ati f t h d i ff r ti al f r m l ae 38 C le ti al latitu d d etti g f a c ele ti al b d y 37 R i i g b dy C h a pt r V d l g itude E xerci

Rg

31

.

o

o

o

u

s n

.

.

on

an

e

o

e en

e

o

an

z

an

n

s

n

o

e

.

n

an

s e n s on

e

s

s

e

o n

on

n

s

o

.

on s

on

o

e

s

.

.

z n

.

n

o

o

on

.

o

s

se s o n

.

e

o

n

n

n

s

e

.

.

an

.

e

.

.

a

n

.

an

on

e

s

e

.

C H A P TE R

VI

.

M OS PH ERI C RE F RA C T I ON 11 6 m ical r fra cti law f ptical refracti 40 A tr 3 9 Th f m f 4 2 eral th r y a t h er ic re ra cti I t ra ti th e f 4 G 1 p g § t h refracti 43 C a i i f r m u la f at m f d i ffere ti al equati 44 O th er f r m lae f atm pheric r fracti ph er ic refr cti E ff ect f atm ph eric pre u re d t mperat re r fracti 45 46 O th de t rm i ati f a t m ph eric refracti fr m b ervati h u r a gle d decl i ati 4 8 Effect f § 4 7 E ff ct f refracti refracti th appare t d i ta ce f t w ei ghb u ri g cele ti al p i t 4 9 E ffect f refracti t h p iti a gl f a d ub l tar M i ella e u refracti que ti AT

e

.

on

a

s

.

n

.

e

on

on

on

e

on

on

ons on

s

on

o

e

o

os

on



s

e

u

on

n

on

o

n

o

e o

o

o

n

e

on

.

e

on

.

s

on

.

o

o n

s

e s

o

o

.

.

sc

.

.

o

or

on s

n

on

on

e

o

os

an

n

e

n

or

an

n

s

on

ss n

u

ono

.

os

o

n

o

.

on

.

.

ss

n

o

.

o

os

e

e

.

on

.

o

.

on

e

s

.

.

os

or

on

n

on

o

eo

en

.

o

o

s

n

s

.

s

o

.

C H A P TE R V I I

.

I

K EPLE R S A N D N E W T O N S L A W S A N D T H E R ’



I

I

A PPL CA T O N

law f K epl r d Newt f ell i ptic m ti g 5 2 Cal culati ti ex pre d b y quad rat r §

Su

n

mo

50

Th e

.

.

s o

e

on

.

on

on

an

o

o

s se

u

es

14 5

§

.

on

51

53

.

are t m ti f t h F rm ulae f ell i ptic

A pp

.

o

n

o

.

on

e

o

o

.

C H A P TE R V

III

.

I

I

PR E C ES S O N A N D N U TA T O N

17 1

l u i lar prece i i b erv d 5 5 Phy ical ex pla ati f lu i lar prece i utati d 56 P la etar y pre ce i 5 7 G eral f rm ulae f d R i g ht A c e i d uta ti i pr ce i D cl i ati 58 M veme t f t h fi r t p i t f A i th E c li ptic 59 Th i dep d t d y umb r f S tar 60 P p r m ti 61 V ar i ati i t rr trial latitude E xerci e C h apt r V III 54

o

n

Ho w

.

-

e

n

.

.

-

so

so

ss o n

ss o n

en

.

n

o

on e

.

or

on s

en n

a

es

o

n

e

s

on

ss o n

n

en e

n

e

o

.

n

an

s o

.

n

s

e

e

s

.

.

s

o n

.

s

n

on

r es

o

ro

s s on

e

on

ss o n

n

.

an

n

s

.

.

ons

e

an

e

on

o

n s on

.

.

s

o

.

.

P A GE

C H A P TE R

I

S DERE A L T

IM E

IX

.

M EA N T IM E tti g f t h a tr 65 E ti mati f

A ND

201

63 Th i ereal ti m mical cl ck b l i qui ty f t h e l i ptic 64 T h a curacy th b tai ab le i th d ter mi ati f R i g ht A c i i dereal 66 Th 67 Th year d t h t r pical year e e t r ic al r i ci le a ea m f m p p g m ti 68 69 Me ti me Th idereal ti me a t m a f m ea ti m e fr m i dereal ti me 7 0 D e term i ati t erre t r i al 1 T h 7 e s g da te l i e E xerci es n C h apte r I X 62

S d

.

e

.

o

o

n

e

e

o

on

.

c

n

on

s

.

n

o

e

s

e

o

o

e

.

s

o

n

s

e

s

.

c

e

n

e

o

on o

.

o

.

n

s

on

s ens on s

.

o

o

.

.

an

on o

se

.

.

n

n

e

e

.

.

e

.

.

o

n

an

o

e

.

n

n oo n

.

.

.

X

C H A PT E R

.

M O TI O N 2 26 t t h equa t r 7 3 T h eq u ati 72 Th r d ucti f t h ce tre f ti m e ected with t h equati 75 F rm u l e c 7 4 T h equati G raphical r pre e ta ti f ti m f th equati 76 f ti me f ta ti ary eq uati f ti me 7 7 G eral i ve ti ga ti 7 8 Th cau f t h e E xer ci e Chapt r X T H E S U N S A PPARE N T A N N UA L ’

e

e

.

e

.

e

o

e

on o

o

e

n

en

on

s

s

n

a

on n

on

o

on

e

n

.

e

on

e

o

e

on

s s on

e s as o n s.

se o

o

s

e

.

.

o

.

.

.

.

.

o

on

on

on

o

o

.

.

e

.

.

C H A PT E R X I

.

I

I

T H E AB E R RA T O N O F L G H T

I tr d uct ry

2 48

8 1 A ppl ica ti elati v V l city t th c rdi at f a cele tial A b errati f A b erra ti 8 2 E ff ct 84 Ab i er t ki d f A b erra ti rrati i R ight b dy 8 3 D ff e g i L g itu d d L atitu de A ce i 8 5 A b errati d D ec l i ati f th 8 6 Th 87 E ffect E ll i ptic G e me t ry f a u al A b rrati f th c M ti f t h E rth A b rrati ta t f 8 8 D eterm i ati A b rrati 90 P A b la e t ar y rrati 89 D iu r al A b rrati g F rmu lae f red ucti fr m ma t appare t place f S t r 91 E xer ci C hapter XI

79

n

.

on

o

on

an

e

a

e

on

e

e

on

on

o

on

.

on

o

e

es

on

.

e

o

e

ons

n

o

n

an

e

.

.

n

o

n

o

s

on

.

.

o

e

on

.

e

n

.

n

on

.

oo

.

on

.

.

.

e

on

n

se s o n

on

o

s

e

.

e o

on

nn

on

.

o

.

on

o

R

.

o

n

n

o

o

s

n

e

.

80

.

e

.

.

ns on

o

o

.

.

s

o

n

e

n

s

o

on

o

a

s

.

.

.

CH A P TE R

XI I

.

I

T H E G E OC EN T R C PAR A LLA X O F T H E

M OON

2 77

I t r duct ry f u dam e tal f g c t r ic 93 T h qua ti erie f t h expre i f t h parallax parallax § 94 D evel pm e t i 9 5 I ve ti gati fr m t h earth f t h d i ta ce f t h m 96 Parallax f th m i a i m uth l u ar parallax f th 97 N umer ical val ue E xer ci e C h apt r XII 92

n

.

.

n

.

o

e

o

o

s

oo n

s s on

on o

n

n

o

.

z

e

e

.

.

e

s

.

.

n

n

.

s

s

o

e

o

o

e

o

o

en

.

.

.

e

eo

e

or

ss o n s

e

oon

on s

e

n

n

n

.

C O NTE NT S

X

C H A PT ER

III

PAGE .

I

T H E G E O C E N T R C PA R AL L A X O F T H E S U N

2 97

I tr duct ry 99 T h Su h ri tal Parallax 100 Parallax 10 1 T h S lar Parallax exteri r Pla et b y t h D iur al Meth d f S lar Parallax b y J u pit r 10 2 Th ta t f ab errati fr m t h c f t h E arth at ll ite 10 4 T h 103 T h S lar P arallax fr m t h Ma S lar Parallax fr m t h parallactic i equal ity f t h M 98

s

on s

e

o

s

e

on

e

e

XI V

oon

.

.

I

on

.

on

.

ti

on of

3 12

I tr duct ry 106 Ta ge t c e t t h d pl a et b th f 10 7 E qu ati determ i i g t h ti m f i t r al ph er ic al l uti f t h ge eral equati f i t r al 10 8 A ppr x i m a te f t h t ra it f V e u t t h det rm i a 10 9 O t h appl icati C h apter XI V u d i ta ce E xerci e o

o

n

.

regarded c tact c tact

s

e

.

.

O N T H E T RANS T O F A P LA N E T A C R O S S T H E S U N 10 5



e

ss o

o

C H A P T ER

o

o

e

n

e

o

o

e

.

e

o

.

.

.

.

.

o

e

.

.

o

n

e

o

n

zo n

o

n s

e

.

.

n

o

an

o

o

o

n

.



as s

th e



s

n

s

n s

on

e

n

s

on

o

or

on

so

o

.

n

on

.

.

.

n

.

.

n n

o

o

e

e

an

ns

n

e

on

o

n

s

o

es o

n

s s on

.

su n

e

o

or

n

e

n

e n

n

e

e

n

.

C H A PTE R

XV

.

T H E A NN UA L PA R A LL A X O F S T A R S

32 6

I tr duct ry § 1 11 Eff ct f a ual Parallax t h appare t d D ec li ati f a fi xed tar 112 Eff e ct ara lax f P l R ight A ce i i g 1 13 Parall ax a tar S t h d i ta ce d p iti f adj ace t tar S latitude d l gitude f a tar 114 O t h det rmi ati f t h i E x r ci e C hapt r XV p rallax f a tar b y b ervati 1 10

n

.

s

e

on

an

n

o

s

on

s

on

s

on o

o

nn

o

o

os

on

s

o

a

e

.

n

s

an

n

.

an

ns on

on

s

o

o

n

s

e

.

e

ecl i p e

An

.

cli ptic l i m it 119 C al cu lati s

1 18

.

.

f th e mo o n

o

s

i t ec l i p e

Po

.

on of an

n

e

34 6

.

ra ecl i e c

u

wh e

mo o n

the

on

s

.

o

.

T h e pe n mb n t he ps

1 16

.

on

.

I

1 15

n

e

EC L PS E S O F T H E M O ON

g

e

e

s on

XV I

C H A PTE R

n

s

n

.

n

o

.

an

.

.

.

e

117

.

o

Th e

.

ce

mm e n

s

.

.

C H A P TE R X V

II

I

E C L PSES O F T H E

.

S UN

35 8

I tr d uct ry § 12 1 O t h a gle ub te d d at t h c tr f th eart h b y th ce tre f th a t t h c m me c m e t nd t h m lar ecl ip 5 12 2 Eleme t ry the ry f lar ecl i p e fa 12 3 C l e t d m appr ch f ear a d e 12 4 Cal culati f t h Be l ia leme t f a partial cli p e f t h l ia 1 2 5 A ppl ica ti f th B eleme t t t h cal culati f ecl ip e f a gi ve tati E xer ci e C h apt r XV II 12 0

n

.

e

o

e

so

se

oa

e

o

o

o

n

s

or

n

s

o

e

su n

.

n

s

.

.

e

su n

e

n o

s

on

o

o

s

e

o

n

oon

o

.

e su n

an

n

a

n a

oon n

e

e

o

.

an

n

.

s

so

s s on

o

n

s

en

n

.

.

o

on o

.

or

e

e

.

.

e

on

.

e

e

o

n

os s

e

ss e

n

e

e s se

n

s s

on

C O N TE NTS

III

C H A P TE R X V

I i ve ti gati

P A GE .

M O ON

O C C U LTA T O N S O F STA RS B Y T H E 126

Th e

.

n

s

of an

on

o

ccul tati o

n

.

XIX

C H A PTE R

.

M S I N V O LV IN G SUN O R M OO N a f ri i g d etti g g 128 T fi d t h

P R O B LE 12 7

ri i

of

s n

s

f de

o

he

or

g T

s

me n

no

etti

wi lig ht u urfac e t rm i i g t h

1 30 the

P

.

.

n

s

an

su n

n

Th e

.

e

n

o

s n

an

g

tti rd i at

d

Co o

.

mo o n

e

se a

s

ii

n

o

.

132

.

on

on o

R

.

s

o

.

.

12 9

.

u d ial 1 33 R t ati f th f a hi p at po s iti

.

n n

th e

13 1



e

s n

of

g

.

n s s

o

se

n

134

.

n

383

es

o

f

n

i t

po

e

u

ea time

t h e mo o n

of

g

S mn

.

m

e

n

m



r s

.

on

s

eth

od

.

XX

C H A PTE R

.

PL A NE TA R Y P H E N O M EN A

40 7

I t r d uct ry 136 A ppr x i mat determ i ati f t h rb it f 13 7 O t h m eth d f det er m i i g g ce t r ic a pla et fr m b ervati c rd i at fr m h l i ce tric c rdi at d i 138 G e c t ric 1 39 Th ph a e m ti f a pla et d b r i ght e f th m d th E x r ci C h apt r XX pla et 13 5

es

n

o

s

e

n

e

o

o

.

on

o

.

.

s

on o

n

o

o

o

n

oo

o

n

.

n

.

.

n

oo

n

e

se s o n

o

e

es an

s

e

.

.

on

n

e

o

v c e v er sa

s an

n

o

e

o

n n

eo

n

.

o

en

.

ss o

o

e

an

oo n

e

.

C H A PTER XX I

.

I

I NSTRU M E NT 431 140 Fu dam e tal pri ci ple f t h ge eral i ed i t ru m e t g 14 1 Th l i e i t h ge eral i ed i trum e t repre ted p i t th ph ere x re i h c r d i a t e f a c l ti al b d y i t r m h 1 4 2 E f t f t p § r ad i g f t h ge eral i ed i trume t whe d i rect d u p it 143 I ver e f t h ge eral i d i t ru m e t 14 4 C f rm f t h fu dame tal equati tra t b twe t h d i rect d t h i ver pr b lem f t h ge eral i d D et rm i ati f t h i dex err r f ci r cle II i i t r u me t 145 th 14 6 Th de t rm i ati f q d by b rvati ge eral i d i t r u m e t d left p iti f t h i trume t f tar i b th r i g ht 14 7 D e ter 14 8 D eterm i ati m i ati f A d 6 f t h i d ex err r f ci rc le I 14 9 O a i g le equati which c mpr i e t h the ry f t h fu dame tal 1 5 0 D i ffer ti al f rm ulae i t h th ry i t rum e t f t h b rvat ry f th 15 1 A ppl icati f th d i ffere ti al ge eral i ed i t ru m e t f r m ul e 15 2 Th ge eral i ed t ra it ci rcle T H E G EN E RA L Z E D

n

.

s

n

e

n

n

o

o

e

n

n

ze

s

s

n

on

n s

o

n

e

o

.

n

.

z

.

on s

n

n s e

o

o

se

o

.

n

n

e

o

on

n

o

e

on

s s

o

e

e

.

.

.

o

an

e

n

o

o

e

n

s

.

on

ze

e

se

o

.

ons

.

o

.

n

e

n

o

o

n

o

o

.

n

r

n

on

.

ns

o

s

o

ns

en

.

.

z

n

s

e

e

n

s

o

on

.

ns

e

.

.

n

on

ze

se

e

.

.

e

o

os

on

o

n

s

o

e

n

n

o n

e es

e

e

.

s n

s

on

n

as

n

e

an

an

n

a

e

o

n

an

o

n

.

o

ns

s

on s o

.

ns

z

se n

n

ns

e

.

n

oo

z

n

e

n

n

en

ns

e

o

n

s o

n s

z

n

e

s

o

e

s o

n

n

ss o n

.

e

n

.

e

n

e

eo

n

PA G E

XX

CH A PT ER T HE

II

.

F UNDA M E N T A L I NST RUM E N T S

O F TH E

O BSERV A T O RY

45 8

readi g f a g r duat d cir cle 15 4 Th err r f cce tricity f d i vi i Th err r 15 5 i t h gradu at ed i t h g rad uat d ci rc le ci rcle 15 6 Th t ra it i t rum e t d t h m ridia ci rcle 15 7 D 1 5 8 D e term i ati t rm i ati rr r f c ll im ati rr r f th f th f t h err r f a i m uth 15 9 D et rm i ati n d t h err r f f level f t h decl i ati 160 D et rm i ati f a t r b y t h m er i d i a t h cl ck ci rcl § 161 T h al ta i muth d t h eq at ri al tele p C cl ud i g xerc e Th e

15 3

.

n

e

a

o

e

.

.

o

-

o

e

n

'

n

e

e

e

o

.

o

e

e

e

on

n

o

e

.

.

.

.

is s

.

e

n s

e

.

e

n

o

.

e

n

on o

e

z

.

IND EX A ND

on

o

G LO SS A RY

an

s on

e

e

e

o

n

e

u

n

.

n

o

on o

on

an

z

o

e

n

.

.

e

o

o

s

an

n

ns

o

o

o

e

.

.

o

e

s a

sc o

.

e

e e

o

o

o

e

e

.

n

on

n

C H A PT E R I

F UN D A M EN T A L F O R M ULA E

m

h erical T rig

)

N

a

h

0

!

e

1

m



s an



1e

na

n

i

0 U $

e

r

o

o

n

o

a,

b

,

c,

o

an

s

on

u

a

n

s

o r so

s

n

n

n

on

o

m e tr y

.

be as usual the sides a d a gles f a I t is proved i w orks spherical trigo o

A, B

herical t ri gle etry t hat

p m

o

n

s

S ph e r i c a l T r i g o n

.

Le t s

on o

c

e

0 3

.

et ry D elamb re lv ing pher ical tria gle d N ap r a al g i e f A cu racy atta i bl i L g r ith mi c Cal c l ati D i ffere ti al f rm ulae i a S pherical T ria gle Th A t f I terp lati Sp

I

7.

.

'

C

,

n

cos

c

cos a cos b

s i n a si n

si n c c o s

A =

c o s a si n

b — si n

si n 0 s i n

A

si n a si n

0

n

a co s

b co s C '

b co s C

For m ula ( 2 ) m y be co ve ie t ly ob t ai n e d fro m follows P roduce A C ( Fig 1 ) to H so tha t a

n

n

o

on

n

.

n

n

( 1)

as

.

.

CH

90

°

b

,

the tri gle B A H we have by ( 1 ) i cos EH si 0 cos A an

,

n

,

m



a n?

F U N D AM E NTAL F O RMU L AE an

rom t ria gle B OB

d f

n

cos

cos b cos C E H we have for m ula E qua t i g t hese values f t hus be wri tt e do w T h variou for m ulae f t he t y pe ( 2 ) as occasio m y require w ith but li tt le t x t he m e mory equa t io s be Th ( 3) are the si mplest which c d b d the i lu d e d a gle 0 are e mploy e d whe t wo sides d c f t he s pherical give d i t is require d to fi d t he parts A trian gle I t my at fir t be a m atter f sur prise that th e e equa t io s should be require d fo t h e d e t er mi a t i f o ly tw qua t i t ies B t a d efi i t e solu tio ca ot be ob t ai ed i f the equatio s f fi di g A nd c be fewer t ha t hree e a m ple tha t o ly t he pair o f equa t io s ( 1) d S u ppose f n d t ha t values f d 0 h d bee fou d A ( 2 ) h a d bee give which sa t isfie d t h se equati It is plai t hat t he sam e equa t io s would be equally well ati fi ed by t hree other ets o f values am ely EH

cos

o

s

e

.

can

a

a

n

on

.

an

n

an

an

a

n c

n

an

a

.

r

n

n

o

n

.

n

,

or

on s

s

n

an

n

a

o

o

n

n

a

x

or

,

on

n n

n

n

n

or

n

n

n

u

o

o

s

r

.

n

an

n

n

n

n

n

e

n

sin a

co s

o

n

b

a sin

an

a

n

n

n

.

s

s

,

n

18 0

°

A

,

3 60

°

0

360

;

°

A,

0

18 0

;

°

A

360

,

°

c

.

ho w ever we require t ha t the values t o be ad opted shall also satis fy t he equa t io ( 3) t he t he last t w pairs o f values woul d be e clu d e d We t hus see that whe ( 2 ) d ( 3) are all satisfie d by A c t he o ly o ther solu t io i 1 8 0 A 360 0 t o t his re m ai i g a m bigui t y i t m ust be re m e m bere d tha t A d B t he le gth f t he grea t circle j oi i g t w o poi ts A a sphere is ge erally a m biguous I t m y be ei t her A B or er i f t he a gle be t wee tw o great ircles I like m a 3 60 — A B i eve n d efi e d as the betwee two particular poles there will s t ill be a mbigui ty as t o whi h f t he tw o arc be tw ee these poles i t he m easure f the a gle T h e ircu m s ta ces f each particular proble m will ge erally m ake i t quite lear to which f t h e t wo olu t io s A c or 1 8 0 + A 360 —c i tha t require d If o si de d t he t wo ad jace t a gles are give t he w e require two w for m ulae ( 4 ) d ( 5 ) t o be associa t e d with ( 3) 0 A i B cos c c A cos B si i 0 A i B i A B cos c I f,

,

n

x

n

o

n

.

n

n

,

an

°

s

°

.

,

n n

s

n

o

n

n

n

an

o n

.

n

°

a re

n

s

n

nn

n

.

a

.

n

c

n

an

o

c

s

n

o

s

c

.

n

s

ne

n

an

n

The

co s

co s a

0 si n

orm ulae

f

s

.

n

n

n

an

os

si n

,

,

n e

s n

°

°

o

as

c

n

o

n

cos

si n

a

(4)

an

s n

A

d

n

s n

s n

co s

si n c

(5)

are ob t ai e d fro m n

( 1)

an

d

( 2)

F U N D A M E NTAL F O RMU L A E

1 5 ]

respec t ively by the gen eral pri i ple f the P olar tria gle that y form ula true f all spherical tria gles re m ai s true i s t ead o f b c A B 0 we w rite nc

an

n

or

n

a

180

o

°

A

,

,

18 0

,

,

,

°

B

n

n

if

,

,

,

1 80

,

v 1z

,

0

°

°

18 0

,

a

18 0

,

°

b

18 0

,

°

c

.

w e are give n two si des a n d t he an gle be t wee n or two a n gles a n d t he si d e bet w ee n t he t ria n gle m a y also be solve d by for m ulae easily de duced from ( 2 ) a n d ( 3) a n d o f t he type If

t A i 0 cot a i b cos b cos 0 If b d 0 are give this will de t er m i e cot A d t hus A is k ow f t here will alway be e value f A be t wee 0 d 1 8 0 which w ill corres po d t o f value to t A fro m + y O f course 1 8 0 + A is al o a olu t i I like m a er i f A C b were give t his for m ula woul d d e t er m i e co t It m y be ote d t hat for m ula ( 6) shows t he co ectio betwee four c on e c ti ve parts f the tria gle A we m y as writte n r u d a circle ( Fig co mm e ce with y e f the ele m e ts t here are i for mulae f this ty pe " bee give fo T h e follo w i g rule h re m e m beri g t he for m ulae f t he ty pe d i d es e n t eri g i to O f t he a gles f these f or m ulae e t he a gles f e y F 2 is co t ai ed by t he t wo si des d m y b f the si d es lies betwee calle d t he i n e a gle d the two a gle d m y be called t h e i si d e T h form ula m y e the be s t ated thus cosi e f i er si d e co i e of i er a gle ) ( ) ( f d i e i er si e ta ge t other side f ) ( ) ( f si e i er a gle co t a ge t o t her a gle ) f )( ( For e a mple i wri ti g d ow the for m ula i volvi n g t h four d a ts we have 0 as t he i er a gle as the i er C B a r b p side whe ce we ob t ai ( 6) cos a c 0 i cot b i C t B I f t wo sides a c d the a gle A o pposi t e t o are give the fro m ( 3) we obt i i 0 I f in 0 1 t he proble m is i mpossible s n

a

n

co

an

,

n

n

or

n

s n

s

on

,

an

o

°

n

an

°

n

00

an

°

nn

n

a

,

n

o

u

n

on

an

s

nn

n

0

n

.

as

n

n

r

o

n



n

s

an

n

o

on

,

an

n

r

n

an

,

on e

a

M

e

.

.

o

n

nn

a

an

n

n

o

n

s

,

a

o

o

n

n

.

n

.

s x

n

n

,

00



s

n

on

on

n

o

co

.

a

an

s

s

.

n

o

r

e

.

a

n

n

n n

s n

o

nn

n

o

n n

x

a

,

s n

o

co

n

n

,

n

n

o

.

n

e

an

n

nn

,

nn

n

n

os

,

a n

I n L e a th e m

o

n

'

,

n

n

n

n

n

,

nn



s ed

iti

s n a

an

s n

on

n

f To d

oo

.

a

n

n

,

s

.

o

s n

'

hu t n

.



er s

Sp h e r i c a l T r i g o n o me tr y

p 27 .

1— 2

.

F UN D A M E N TAL F O RMUL A E

[

OH

.

I

t here is s till n o t hi n g to sho w w hich o f two su pple m e n tary values is t o be give n to C a n d u n less so m e a dditio n al in for m ati o n is ob t ain able showin g w hether 0 is acu t e or obtuse t he proble m is am biguous I f t w o a n g les a n d a side o ppo site to o n e o f the m are give n then fro m for m ula ( 3) t he si d e opposi t e t he o t her an gle w ill be d eter m i n e d s ubject a s be fore to a n a m bigui t y bet w ee n t he arc If

si n

'

O< 1

,

,

,

.

,

,

,

its su pple m e t Whe t he am biguity i ei t her case is re m oved the pr ble m re d uced to t hat i w hich tw o si des d the a gles o pposite t o both are k o w Fro m equatio ( 1 ) d ( 2 ) t he follo w i g for mula is easily de duced t a cos 0 + t 0 cos A an

d

n

.

n

n

o

an

n

n

n

n s

.

n

an

n

an

an

— ta n a co s

l

C ta n

A

c co s



will show w hether b or l 8 o + b is to be calculation m y be si m plifie d by taki g

an

°

( 2)

d

n

a

ta n 0 = ta n

whe ce we fi B y m ea s

n

n

n

d b o

a co s

C ; tan ¢ = tan

A,

0

the polar t ria gle we obtai t A cos c t C

f

c co s

n

n

an

an

co s a

rom which B m y be deter m i e d f ( 5 ) re m oves the a m biguity bet w ee B a d 1 8 0 + B A lso i f we take A cos c d t t t 9 t 0 cos a we fi d B 1 80 0 gb Whe t he three si d es are give a s pherical t ia gle m y be olve d as follows L e t 2 b c the f

a

n

°

n

n

an

or

.



an

an

an

'

°

n

an

,



.

n

n

s

s

.

tan

a

A 5

r

,

n

n

,

s i n 3 si n

(3

a

)

by which A is fou d d by si m ilar for m ulae we ob t i B I f t he three a gles A B 0 w ere give t he m aki g n

n

w e have

by which

ta n

a

is fou

n

a n

an

,

,

n

,

n

,

%a d,

an

d

si m ilarly f

or

a

b

an

d

c

.

n

an

d C

.

F UN D A M E N TA L F O RMU L AE T h e rela t io here i m plie d be t wee t h e right a gled t ria gle d h w by Fig 4 I f A B d t he qua d ra tal t ria gle i N apier s t he 4 C B C i pro d uce d t C so t ha t B 0 rules applie d t t h right a gle d t ria gle A C C give t h for m ulae belo gi g t t he quad ra t al t ria gle n

n

s s

n

n

an

o

s

n

o

.



'



-

n

n

an

.



'

n

'

e

o

,

n

o

n

n

n

n

-

e

,

n

FIG

4

.

.

RIT HM S — Th u ual ot t io e m ployed i writi g log i t h m s f the trigo o m etrical fu ctio s m y be illustrate d by e am ple Th a t ural cosi e f 2 5 is 0 90 630 78 d log cos 2 5 log log 10 0 0 42 7 2 4 To obvia t e the i co ve ie ce f egative l ogarith m s this is so m e t i m es writ t e w hich s t a d s f LO G A

ar

a

n

x

n

n

n

n

o

an

s

e

:

n

n

a

.

e n

°

o

n

an

°

.

n

n

n

n

o

n

n

n

or

0 9 5 72 76

1

.

We shal l however ge erally f ll w t he m ore usual practice f t he table d dd 1 0 to the logarith m f every trigo o m etrical fu ctio Whe this ha ge is m ade w e use L i stead f l i w i t i g t h e w ord l g T hus i the prece di g case the L g w oul d be w ri tt e 99 5 7 2 7 6 d m ore ge erally L g cos 9 log cos 9 10 I f i t is ece sary t s t a t e t ha t the t rigo o m e t rical fu c t io f which t he log arith m is used is a egative u m ber i t is usual to wri t e ( ) a ft er the logari t hm F e ample i f 1 5 5 occurre d as a fac t or i e pres i 2 7 6 ( ) as its L o g arith m w here t h figu es w e shoul d wri t e de ote L g cos n

s

n

n

an

c

o

n

n

n

.

o

.

o

n

n

n

n

o

n

.

x

,

co s

°

n

n

n

n

n

n

or

o

n

o

s

n

n

an

n

o

o

n

r

o

a

n

.

o

o

,

an

x

e

s on

r

F U ND A M EN TA L F O RMU L AE

I t freque t ly ha ppe s t ha t a ft er a gle 9 has bee n d e t er m i ed i the firs t par t f a co m pu t ati we have t e m ploy cer t ai trigo o m e t rical fu t i s f 9 i t h seco d part f t h sam e co mpu t a tio I t hi se o d par t we have fte a choice as to whe t her we shall e mpl y o for m ula de pe di g L g si e L g or a o t her d e pe di g I t is ge erally i m m aterial s 9 whic h for mula t he calcula t or e m ploys bu t i f 0 be early ero or early 90 n o f t he for m u l ae w ill be u cer t ai d the other shoul d be use d It is there f re proper t o co si der t he which t he choice shoul d be e ercise d i so f as pri ci ples d ge eral ri ci les be lai dow n y p p W e m y assu m e t hat pr per care havi g bee t ake the w ork is free fro m u m erical err r so f as the eces ary li mita t io s f the tables w ill per m i t B t the e very li mi t a t io s i mply that the value f 9 w e have ob t ai e d is o ly appro i m ate value Th e c lculator m a y ge erally pro t ect t h latter par t o f t h w ork fro m beco m i g appreciably wro g otwiths t a di g that it is base d a qua ti ty w hich is o m e w hat erro eous Th e practical rule t T h e t wo q a n t ities L o g i 9 follo w is a very si mple e d d the for m ula co t i i g the t ge e lly equal L g cos 0 are grea t er should be use d i t he re m ai der f t he calcula t io tha t i f 9 be T his follows fro m t he c sidera t io 45 a s m all error i (9 w ill have le s e ffect i 0 ( cos 9) tha cos 6 ( i n

n

n

an

n

n

o

n

n

n

nc

on

s

c

n

.

on

o

n

n

n

e

n

n

o

ne

on

n

o

o

n

co

o

o

n

n

n

o

n

e

n

ca n

a

n

o

,

n

ar

a

n

,

x

.

on

o

.

u

.

ra

s n

an

n

n

n

on

a n

.

S

.

h wh o

n

t he

s

i de

on

c o t a si n

i f we

a re

g

ma y b e d

a

b=

tA

oo

si n

s n

n

etermi

ne

r ula

d b y t h e fo m

0 + co s b

co s

0

i ve

n

A = 1l 7

C = 15 4

°

' = b 1 0 8 30 30

°

°

9 6 38 2 2 30, 9 34 88 4 7 4

(n ), A

sin

0

co s

0

co s

b

t

a

si n

b

Lo g c o t

a

si n

b

Lo g

si n

b

(N a t ) c o t .

co

Lo g

co t a

.

°

s

ow

n

o

s n

Ex 1

an

n

n

o

n

n

n

n

n

e

n

on

,

s

an

s

n o

n

e

n

o

n

n

,

n

n

n

n

n

o

ar

.

s

u

.

n

n

o

an

n

x

n

z

n

o

on

an

n

n

.

.

n

o

on

,

°

e

a

= 8 6 13’ °

on

F U N D A M EN T AL F O RMUL AE Ex 2

Be

.

.

a n d B b y th e

D

raw GP

= 5 7 4 2 39 19 b i ve g g meth d f r ig ht a g l d t ri a gl A B t r ; th e ) p p p

i

°

n

n

o

o

e

-

9 9 2 70 4 3 2

A

9 9 3660 7 7

si n

0

°

18

:

es

n

e

n

°



12 0 12

'

.

n

o

.

Lo g si n b si n

'

= 46 5 5 ’ 5 8 p °

p

t a n b 10 19934 5 4 cos

—A 1 8 0 ) (

cos

tan m

9 9 0 10 608

co s

p

9 8 34 32 91

(c + m)

9 7 2 62 68 4

m

a

co s a

c o ec ( s

c

°



3 8 31 45

68 40 4 8

+ m)

D e l amb r e



s

an

d N a pi e r



f

n

of

n

n

l

an a o

s

ollo w i g equatio s are a stro o my Th e

FIG 5

’ = B 5 1 38 5 5 °

t a n B 10 10 1 7 105

.



a t. p 10 0 2 932 18

-

2

°

gi e s

.

g eat utili ty

s pherical

in

r

°

si n

g

e

cos “ A

si n

co s

— b)

flA

c si n

B)

$0

si n

4(a

si n

b) —b )

} (A

c si n

g

1

hese equatio s are o ft en described as G auss a alogies but t heir discovery is really d e to D elam bre A D ela m bre s a alogies are m ore co ve ie t fo logarith m i f calculatio tha they are o te d 3 ( ) f d f re er e t he solutio f pherical tria gles whe n a b d C p are give or w he A B d c are give I t is freque tly t roubleso m e to re m e m ber these for mulae without such assista ce as is give by R mb t s u l e l W e w ri t e the t w o rows f qua t ities T



n

n

,

u



s

n

r

n

n

n

n

n

c

r

n

an

or

n

n

n

s

o

n

an

,

n

an

,



.

n



n

n

o

a

Fo r

thi t t m t s s a e

en

b e ma de t o M r L e a t h e m

as ’

b)

.

we

s ed

ll

iti

as on

,

we

Ma

b)

,

a

r

fo r t h e p o f To d

o o fs o f

hu t r n

e



s

th

e se

r ula r f r c

fo m

e,

Se e D r A A Ra mb a u t , A s tr o n o mi s c h e N a c hr i c h t e n , N o 41 35 .

e e

en

Sp h e r i c a l T r i g o n o me tr y

.

.

.

.

p 36 .

'

n

—B i ) sc

w

r

au

'

.

.

e

ma y

F U ND AME NTA L F O RMUL A E

1 —2 ]

where

C = 1 80 ’

(

T

he

i r i n d e n c e e ) ( fi

Ra m b a u t

n

'

Su m c o si n e

°

si n e

o the r

th e

) in

is

r ow

on e

r ow



a

rule is as follo w s

s

lw a ys t o be

a sso ci a t e d

w i th

.

For e xam ple to obta i t he D elam bre a alogy w hich co tai s t rule i 4( A — B ) we co clu d e fro m R m b d B e ter ( 1 ) that 40 m ust e n t er wi t h a si n e because A as a diffe e ce ; that n d b m ust e ter as a dif e e ce because 4 ( A B ) 2) e ters w i t h a si n e ; — b m us t e ter w ith a si e because A a d B that a 3 ) ( ) 4( e ter as a diffe e ce ; ust e ter with a si e because d e ter m n 6 4 that 0 4 ( ) as a diffe e c e H e ce the a alogy ma y be writte d ow i 4c i 4 ( A — B ) = si 4C i 4 ( — b) cos 4C s i 4 ( b) e xa mple f the use f D ela mbre s an alogies we ma y A e m ploy the s pherical tria gle i w hi h n

n

n

s n

a

n

n



au

s

:

an

n

r n

a

n

a

r

n

n

n

r

n

n

n

n

a

a

n

a

°

62 4 8

c

'

6 = 5 7 4 2 39

,

'

°

A

93 4 6 36

B

2 9 30

.

,

We shall su ppose t ha t b C are give u m erical values here set d ow Th correspo di g trigo o m etrical fu c t io s ,

,

n

0 4

4(

a

si n

+ b) = 60

°



14

°

35

15 46 5 ; ‘

b)

8 6 4 8 62 8 6

cos 40

99 8 5 7 5 7 8

4 (a

8 634 38 64 si n

4(

a

s in

b)

9 9 38 67 5 2

0 4

9 4 0 1 330 1 93 4 00 0 5 3

cos 4 ( b) cos 40 a

n

an

n

d fin d A B ,

are t he

L



4(a

b)

2

°

33



si n

40 s i n 4( A

B)

si n

40 cos 4( A

B)

99 99 5 690 99 8 5 7 5 7 8 99 8 5 32 68

cos 4c si

n

4( A

an

ogs

n

n

n

n

,

1 1 13

46 6 a

.



n

n

=

s n

o

o

a



n

s n

an

n

n

n

n

n

s n

e

a

.

n

s

n

n



r

n

B)

o

d f

c

.

the

F UN D A M ENT AL F O RMUL AE

cos 4 (

si n

'

9 6 9 5 4 9 99

0 4

9 4 0 1 330 1

cos 40 cos 4 ( A

cos 4o i 4( A + B ) cos 4c c s 4 ( A + B ) s n

9 98 5 32 68

o

9 09 68 300

4 (A

B)

0 8 8 8 49 68

4 4c c o s 4 ( A t a n 4 (A

B)

8 634 38 64

tan si n si n

*

b)

a

si n

0 si n

4

c co s co s

0 si n

4

si n

4( A

—B

9 2 94 38 1 1

—B A ) 4(

93 4 0 00 5 3

— B) A 4( si n 40

9 9 91 7 3 5 2 9 3 48 2 7 0 1

4(A + B )

99 8 5 32 68

4 (A

B)

99 9640 1 2

cos 4c

99 8 8 9 2 5 6

4 4c 40

9 3 48 2 7 0 1

co s

ta n

H e n ce

82

—B )

11

38



3

8 33

+ B) —B

3 11

)

8 33

B = 7 1 2 9 30

99 8 8 9 2 5 6

40

9 3 5 9 344 5

A = 9 S 4 6 36 °

4 (A 4(A

9 34 000 5 3

0

+ B)

°

A = 93 4 6 3 6

) B)

si n

4( A A 4(

B)

B = 71





°

2 9 30

c

12

°

'

53 3

= 2o

Fro m D ela mbre s a alogies w e ily obtai the follo w i g fou r for m ulae k o w as N a pier s a alogies ’

e

n

as

n

n



n

n

n

4( A

cos

A B + ) 4(

si n

4(A

4 (A cos 4 ( a cos 4( a si n 4 ( a si n 4( a si n

e xa mple f the solu t io an a logies w e m y t ake As

an



co s

o

n



B) B)

+ B)

b) b) b) b) o

f

ta n

4c

t an

4c

cot 4C cot 4C

a tria gle by n

a ier s

N p



a

A = 2S

W e u se > si n 4 A — B ( ) 1 We u se c o s 4 (A + B )

h th lr dy xpl i t hi t h r th t

hi

B =7

°

as

.

s

rat

a

ea

s

ra

er

e

e

an

si n

a n ed on an

co s

°

c

—B A 4( ),

c si n

4

p

4c

.

7

= 74

°

be

cu

be

cu

a

se

co s

4 (A

si n

4 (A + B ) i s

-

B)

is

.

a

se

F UN D A M E NT A L F O RMUL A E an

d

fo r

use four fig l gari t h m s w hich are quite accurate e ough m a y purpo es cos 4 ( A B ) 9 9 95 6 i 4( A B ) 9 148 9 u re

-

n

s

o

n

.

s n

4(A

se c

46 b)

ta n

4( a

ta n

98 8 09

= 60

a

4(

—b

fi di g

fo r

is



0

n

n

an

d

ta n

'

°

a

ar e

4(a 4( a

40 b)

98 8 0 9 9 607 0 2



°

b = 15

+ b)

4( 2 2 ( ) w hich

)

a

tan

9 8 92 3 58

As

4(A

c o se c

both 4 5 the pro per for m ula be w rit t e °

ma y

n

= co s 0 4(a 4

tan

cos 4 ( a sec 4(

b) = 9 967 1 '

b ) = 0 1 0 33 '

a

co t

B ) = 05 614

4( A tan

40

06 31 8

:

0

°

153

:

tt a i n a b l e i n L o ga r i th m i c C a l c u l a t i o n W he t he logarith m f a trigo o m etrical fu ctio is give n it is g e e l ly pos ible t o fi d t he a gle w i t h su fficie t accuracy B t w e o ft e m ee t w i t h c a s es i which t his state m e t cea es to be qui t e true For e xam ple su ppose we are re t ai i g o ly five figures i ou r logari t h m s a d t hat w e wa t t o fi d 9 fro m t he sta t e me t that 3

Ac cu

.

racy a

.

o

n

ra

n

s

u

n

n

n

n

n

n

n

n

.

n

s

.

n

,

n

n

n

n

n

n

n

L o g s i n 6’

99 9998

.

his tells us othi g m ore tha that 0 m us t lie so m e w her e w ill the rete tio f bet w ee 8 9 2 3 7 N d 8 9 31 m a y as seve places f deci m als alway preve t a m biguity We n ote f e a m ple that every a gle fro m 8 9 5 6 1 9 to 8 9 has as its L g i the sa m e t ab lar value i 9 9 999998 We thus see that a gles ear 90 are t well de t er m i ed fro m the L g si like m a er a gles ear er are t w ell d i determ i e d by t he L g cos B t all a gles be ac urately fou d fro m t he L g t will w be proved I f 0 receive a s m all i re m e t h or i circular m ea ure h i 1 d t he i cre m e t i L o g t d be x u i t s i the 7 t h place f deci mal we have t o fi d t he equatio bet wee h a d

T

n

°

n

n

n



'

or

s n

u

,

an

n n

o

o

an

n

s,

n

n



n

n

z

o

n o

c

n

.

n

10

.

ca n

n

so

°

.

n

n o

n c

v z





no

n

u

.

as

an

°

n

n

n

,

o

.

°

n

,

n

n

s

n

n

n

or

o

x

o

o

'

°

an

n

,

n



n

n

an

n

s n

s

o

n

n

n

as

.

F U ND AM E NTA L F O RMU L AE

[

1

.

ha gi g the co mm o logs i to N apieria logs by the m o dulus w e have 6 i 1 6 log log 4 t h t 4 3 0 3 0 1 0000 0 0 ( / h i 1 cot 0 4 343 l g ( 1 C

x

_

CH

n

n

n

n

s n

an

e

o

n

"

s n

,

an

,

0 4 3 4 3 10 g , ( 1

h si n 1 t a n



whe ce by e pa di g t he logari t h m s x

n

x

which

n

n

4 34 30 00 s i n 1

"

be writte n

ma y

6

(t a n

very early

6) h

cot

n

,

a: s i n

h

d he ce the co cluded grea t est value o f h is value f 6 w he L g t 6 is give could ever be 1 wro g u less Lo g t 6 was it el f wro g to t he e t e t o f 0 0 000 0 4 2 l gar ith m u ed d t h c mputati E 1 S h w th at wh e 5 fig f t h la t deci m al t h err r f a gle d i exact t w ithi t w u it t ex ceed 5 ec d t mi d fr m i t t a g t c a E 2 I ve tigate t h ch a ge i t h val ue f a gl pr duc d b y t h alterati f u it i t h la t d ci mal f i t L g i d h w th a t u der all ci rcum ta ce it i m r accurat t det rmi e t h a gle b y i t t ge t th a b y i t i E 3 P r ve th at i f 6 i a m all a gle i t val u e i ec d i gi ve appr x i mat l y b y t h expre i c c 1 i 6 ( d h w th at ve if 6 b m uch 10 thi ex pre i wi ll t b err u b y much 1 E 4 I f 6 i a mall a gle ex pre ed i ec d h w that Th e

an

o

an

x

.

o

.

n

o

n

ne

x

o

n

s

n

s s ne

x

.

o

s

e as

.

s are

on

e

o

e

s

o

e

s

e

n

an

o

.

n

s

an

,

n

o

n

an

s

n

e

e

e

o

e

n

s n

o

on

o

e

o

an

e

o

e

an

e

s

s

s

s

n

n

n

.

s

s

e

ss o n

e

°

as

n

o se

s

s

s n

ss o n

s

s

.

.

e

o

.

o

x

n

n

o

e

n



n

nno

e

one

s

o

s

en

s

n

on

n

u re

n

n

x

-

n

o

s

o

.

.

n

n

s

s

er

an

o

n

n

no

n

se c

e

ss

an

o n eo

n s

on

s

n

s

s

on

s

s

n

e

o

as

so

n

"

o

s, s

Lo g si n 6 = l o g 6 + S ,

where an

d

S

Lo g

6)

co s

5 3 1442 5 1 ,

example h w that whe

as a n

s

o

n

Lo g sin 6

ua tity S i g iv i B ruh tab le ( Tauch it Leip ig 5 E D et e r m i e t h a gle 6 f which t h L g i i s 8 0 12 34 5 6 T ab le which l ik e th e f B agay ( Par i g i ve t h fu cti by each ec d h w that t h requi r d a gle d iffer fr m 0 m re th a a m all fracti f a ec d T det rm i e th at fra cti c mpute S = 4( 2 o + L g s 6) which b ec me 4 6 8 5 5 67 2 by t i t t i g 0 35 2 2 f 6 i L g T h e fr m t h equati 6 l g 6= L g i 6 S w b tai Th e q x

.

n

s

n

.

s

s

s

n

o

u

n



o

e

o

o

o

.

s

on

o

co s

o

s n

e

s

e

fo r n ot

we su

b

on

n

le S i a gles b c A B C will ge eral be the sid e s a d t i a gles f a s pherical t ria gle f t hey m ust fulfil three co ditio s 4

t

o

on

n

e

o

n

.

ons

°

o

s

.

n

e

n

,

s n

o

n

z

s,

co

or

z,

n

.

e

o

on

o

s

o

e

o

s

n s

n

os

s

°

n

e

,

on

o

en



D i ff e r e n i a l f o r m u l

.

x

n

n

o

a

,

,

,

,

ae

in

a

n o

,

n



,

or

S ph e r i c a l T r i a n g n

.

n

n

n

n

F U N D A M E N T A L FO RMUL A E

three o f t he di ff ere tials be ero t he the o t her th ree w ill also i ge eral va ish T his is evi de t fro m the equatio s as it is a lso fr m t he co sid eratio t h a t i f t hree f t he par t s o f a m d herical tria gle re ai u al t ere t he ge erally the o t her p m d ar t s ust also re ai u altere m p illus tra t io f e ceptio t o t his state m e t let G A Th seco d equa t io f ( i ) w ill i d Ab = 0 A c = o A B = O t require t ha t A = 0 th i s c s e a pher ical t ria gle u derg a m all U d er w h at c d iti E 1 ch a ge uch that A = 0 A b = o A A = 0 A B = 0 whi le b th A d A C t r 2 Fr m ( ii ) w that = 90 b = 90 whe c e A = 9O B = 90 t 2 If a pher ical t ri a gle re ce i v a mall ch a ge which d e E al ter t h m f i t th r e a gle h w that t h al terati i t h le gth f ide m u t ati fy t h c d iti th If

n

n

n

n

n

n o

an

x

.

x

n

a

ca n

,

,

n

n

o

n

.

on s

on

n

e

a

s

n

an

.

n

.

n

.

n o

a

n

,

n

,

,

o

n

n

s an

n

n

n

s

n

,

.

n

o

ze

z

n

s

n

n

o

,

s

o



c an

are n o

o

e se e

o

x

.

su

e

s

e

a

,

s

o

s

e

s

s

Aa

si n

s

s, s

°

,

e

n

s

o

.

o

n

on s

e

e

n

s

n

n o

s o

on

on

e

°

n

,

n

s

.

°

°

— A + n b si n S — B + Ac si n S ) ( ( )

O) = O,

(S

wh ere t e r po l a t i o n I t he cal cula t io s o f as t ro o my use is m ad e n t o ly o f log rith m ic tables bu t als f m a y other tables such f e a mple as t ho e which are fou d i every e phem eris Th e t of i t erpola tio is co cer ed with t he ge eral pri ciples o which such tables are t o be u t ilised L e t y be a qua ti t y t he m ag i t u d e f which d e pe d s u po t he mag itude f a o t her qua t i ty W e t he say that y i a fu ctio f d w e e press t he rela t io t hus *

5

Th e A r t

.

o

f In

.

n

n

n

o

o

a

s

n

n

n

n

n

o

or

,

n

n

x

ar

.

n

n

,

n

n

.

n

n

n

x

n

n

s

n

=

y

w here f ( a ) d e n otes

n

.

x

ac a n

o

o

n

n

o

n

n

,

f( ) as

T his ge eral for m woul d u ctio f i clu d e as pa ticular cases such equa t i s as = l = L or t w y g y g S u ppose that t he value ero is assig e d t o the the corre f y is g ive by t he rela t io y L e t p di g value y f i (i) ex t substitute successively h 2 h 3h f d let the corre po di g values o f y be respectively y y y & T he t he e se tial feature f a t able is that i colu m we place t he i 0 h 2 h 3h & value f a o t her colu m besid e it d i t h e corres po d i g values f y i y y y y Se '

n

an

y f

n

n

o

as

n

.

on

r

o

an x

o

n

z

s

on

n

0

o

n

,

s

s

n

o

o

,

,

or

a:

,,

2

n

n

s

x,

n

n

as, v z

n

.

n

,

n

,

,

c

,

o

,

.

.

,

an

v z

.

,,

u s

o

n

,

,

c

,

n

.

n

n

1,

an

,

n

on e

n

n

,

,

a,

c

.

F U N D AM ENTAL F O RMUL AE

4 —5 ]

value

o ft e calle d the g men t adva ces by equal ste ps h a d each corres po d i ng value f y o fte calle d t he i m n c t o is calcula t ed with as uch accur cy as is de ma d ed by f t he pur pose to w hich t he table is t o be a pplie d The

n

n

ar

n

,

u

o f x,

u

n

,

n

o

n

,

a

,

n

.

T

able

9

=

fo r

f ( w)

obj ect f uch a t able is ei t her t o sho w the val e f t he correspo di g t o a give value f t he rgu m e t or to fu n c t io how the val e o f the argu m e t corres po di g to a give value f t he f c t io We o ft e require t o k o w the u m erical value f a fu ctio orrespo di g t o argu m e n t which is t e plici t ly show i t he t a ble bu t which lies bet w ee tw o co secu t ive ta bular values f t he argu m e t T h e co verse proble m also freque tly arises f fi di g the value o f the argu m e t o res po di g to a value w hich lies betwee t w o co secutive t abular v alues f the fu c t io I t might a t first b e i m agi e d t ha t i ei t her o f these cases we should have to resort agai to t he rigi al equa t io ( i ) T his ho w ever is o t ecessary T h e charac t er f the fu ctio al relatio h as bee so f i m parte d t o the table that w he either o f t he qua tities x or y is give n t he other is a certai ed by t he art f i ter po latio w t o be e plai e d ature o f t his t i m ost clearly illustrated by geo m etry Th e We co struc t graphically t he curve y = f ( w) i the usual ma er Fro m t he origi 0 we m ark o ff alo g t he a is o f x a series f poi ts A A A t d i t a ces h 2 h 3h fro m 0 We f y fro m the compute the correspo di g values y y y Th e

s

o

n

n

u

n

n

n

u

s

o

u n

n

n

n

n

n

n

n

c

r

n

o

n

n

ar

n

.

s

x

n

n

n

,

n o

n

.

o

,

n

n

n

.

n

o

n

n

n

n

,

o

n

n

n

n

n

n

n

n

n

n

x

n

.

n

n

,

o

n

n

o

n

n o

,

n

n

n

an

n

o

a

.

n

c

o

o

n

.

i

n

ca n

nn

ar

s

.

n

n

n

n

.

o

n

,

2,

n

n

a

s

n

1,

.

,

,

2,

x

3,

o

F U N D A M EN TAL F O RMU L AE

or m ula at A A

he we erec t or di ates A P A P & & ( Fig 6) equal to the correspo di g values y y & & P i t s P w ill P Th p ge erally be f u d so place d t hat a curve be d ra w to pass s m oo t hly t hrough the m If t he poi ts A A & c are su ffi cie tly close t ogether i e if h be sm l l en o g h t he tre d f the curve w ill be so clearly i dicated that t here will be little a mbiguity d t he 0 curve y =f ( ) p si g t hrough P P ge n eral appreciably t i P will the e li m its fro m t he d i ff er wi t hi curve j us t dra w through t he sam e poi t T h e true curve w ill the character f the fu ctio which y is f cour e d e pe d u po t he art f i terpola t io w e are con cer e d A s however i f x with o ly a s m all part f the curve i t will be u ecessary to co sid er the par t icu l ar charac t eri t ics f the special curve v lved W e eed t there fore m ake use f our prese t pur pose f t he t rue curve y = f ( w) but o f y oscula t i g curve W e e mploy at fir t t he o c lati g circle which so f the ee ds f i ter i are co cer e is su f fi cie tly accura t e I t is ge erally l d t p d ssible t o ra w this circle w hose arc coi ci es so early w ith d p th at f the give urve at a g ve poi t t ha t f a m all di s t a c t he d e parture o f the circle fro m the curve is i se sible We ma y t here fore w ha t ever h the t rue curve regar d t ha t s m all par t w hich c cer s us as a circular arc A ccordi gly we des ribe a c ircle t hrough P P d P d we assu m e t ha t f y poi t P bet w ee P d P t h ordi a t e t o the circle is t he value f y f the corres po d i g w T hus i f A P be t he or di ate the A P = 0A i t he value f t h e fu c t io w he We shall m ak use f the circle to d e t er m i e e pressio f A P w hich hall i volve o ly its abscissa d t he coor di ates f P P P T his m y t f course be the val e f y as obtai e d fro m t he for m ula y = f (m) bu t i t w ill o t d i ffer appre iably there fro m L t TM M N N be a circle d TL L the ta ge t to i t a t T L t LN d B A be two li es w hich are both per pe n d icular T

f

1,

2

c

,

.

n

2

1,

.

2

,

n

2

c

,

,

1,

.

,

c

,

.

,

n

ca n

n

.

.

c

3,

,

l

n

o

n

l

n

.

,

o n

e

n

] ,

n

,

,

,

.

.

,



u

a

n

,

o

n

an

,

as

a

n o

3

n

1

n

,

2

,

,

,

s

n

o

o

n

,

.

.

o

n

n

s

o

s

n

n

n

n

n

n

n

,

.

o

n

s

n

In

nn

,

o

o

.

n

n o

n

or

,

a n

s

s

o a

n

u

n

on

n

ar

,

n

o

n

o

as

n

n

i

n

n

or

on

I

an

an

n

s

3,

n

or

n

n

n

n

n

,

x

x

an

e

or

n

n

u

,

o

,

,

,

,

,

.

n

o

c

n

,

n

.

an

o

n

o

n

n o

an

n

o

a

,

c

.

o

n

e

.

,

an

e

3

or

s

n

.

n

n

,

n

2

s

n

n

e

n

n

n

c

,

o

.

,

o

.

n

,

,

.

'

e

e

an



an

"

n



n

n

.

5

F U N D A M E N TAL F O RMUL AE

]

to t he a xis

X

of

We have by the

.

ro er y t p p

,

of

the ci cle r

i F ( g

LM

LN

LM

'

LN

'



LT

.

2 ,

L T ;





2

w he n ce LM

LT

W

L

'

L N

2



2

°

'

LN

us n w su ppose t hat LN d L N a pproach i d efi i t ely cl se to T the L N /L N 1 a d w e have Le t

an

o





'

n

,

LM

o

n

n

'

n

LM '



LT

2

L T ’



FIG

.

.

7

.

e e beri g t hat t he arc f the curve is i disti guishable fro m that o f its o culati g circle i n t he vici ity f the poi t f co tact w e ob t ai the pri ciple o w hich i terpolatio is based d w hich m y be thus e pressed I f a ta ge t TL be d raw touchi g a curve at T d LM be or di ate co tiguous to T the the i tercept L M that ordi ate be tw ee the ta ge t a d the curve is propor t ion al to t he square f TL d I Fig 8 0 is t he origi is the ordi n ate o f P that y y f T the as w e have sho w P B varies as B T d t here fore as CT a lso CB varies as C T he ce if be t he absciss f P

R m m

o

n

n

n

n

s

o

n

n

o

o

.

n

,

n

n

,

n

,

n

.

n

n

n

n

x

n

n

n

a

n

n

n

n

,

an

n

an

n

o

n

an

on

n

n

.

n

,

n

,

2

,

,

,

0

,

an

,



n

,

a:

an

a

,

o

y

where l d m are co sta t f f T i t s the eighbourhoo d i p f T his is f course the equatio a parabola With a cha ge i the st t to l d m we m a y write the equa t io a s follo w s n

an

o n

n

s

n

or

o

n

n

o

.

o

.

an



s

co n

n

n

'

an

FIG

.

8

.

n

— h );

we fi d l d m fro m t he co sid eratio that to h e poi ts o the curve T h e first gives ’

'

n

an

n

n

n

n

.

1 y l =



l

h

y0 i

h ( ,

( 2h

,

y) ,

a re

F U ND A M EN TAL F O RMU LA E

while

2 h, y

a:

gives

y, 9

2

y

m an

d

y

I

2k m

M)

2 ( 91

o

°

23 h

2



,

yo

2h

?

the equation becom es y

“ + 10 ( yl

3

:

yo)

h

(w

a:

h)

2h

?

23 h 1 y o)

( y2





be three co secutive values o f the fun ctio y where h is the di ere ce o f t he argu m e ts be t wee the seco n d d the firs t value d als o bet w ee t he t hir d d t he seco d The f t ha the first argu m e t but a y a gu m e t w hich is greater by less tha the third argu m e t the above form ula gives the require d fu ctio T h e co s t a t s f t his fo m ul a are very ea ily obt i n ed fro m the table by the m ethod o f d i ff ere ces

L e t y, , y, y2 ff

n

,

n

n

n

n

an

n

n

as

n

n

n

.

n

or

n

n

n

n

an

an

n

r

,

.

n

n

r

o

a

s

n

i

l s t D ff

yi

2 n d Di fi

.

.

yo

ya

90

91

92

Mi

first colu m con t ai s three co secutive values o f y d Th e seco d colu m shows t he di ff ere ces betwee each value T h e third gives the d i ff ere ces be t wee c o t h e precedi g o e the seco d Th t hi d d higher di ffere ces s e c u t i e term s i are to be si milarly for m e d i f required brevity we w rite y y A d y If f by t as the t i m e is ge erally the i depen de t d i f w e re place variable i astro o mical work d i f w e m ake the di ffere ce h t he u n it f t i me t he t he equa t io beco m es Th e

n

n

n

n

n

n

n

n

n

an

n

.

n

n

v

.

e

.

r

n

an

n

n

.

or

,

o

an

:

n

an

an

n

n

o

,

2

,

n

n

an

n

n

n

y

rate at w hich y cha ges w ith respect to t obtai ed by d iff ere t iati g the last equatio w i t h res pec t t o t is Th e

n

n

n

n

n

dy i t?

A

,

4A

ro m which it a ppears that the rate u ifor m ly

f

n

.

tA of

i cre s e w ill i t sel f i n crease n

a

F U N D A M ENTA L F O RMU L A E

two ti m e its the fu n ctio i creases fro m y to y he ce i t s a ve g e rate o f i crease pe t i m e u i t is 4 (y — y ) d as the ate i crea es u i for m ly i t will at t ai i t s w he l e g hal f the t i m e has elap e d i e whe t he fu c t io has t he value y H e ce w e d e d uce the followi g result T h e rate at w hich the fu ctio is cha gi g pe it o f ti m e at y e poch t i s hal f t he di ff ere ce be t wee the values f t he u i t f ti me a fter t d a t o u it f ti m e be fore t fu ctio a t is o fte m ad e i the Ephe m eris f a m ore ra pi d P rovisio dd a m rocess i ter olatio by givi g a itio al col i icati g f d o p p t he ra t e o f varia t io o f t he fu ctio a t the c rres po d i g m o m e t We shall illu t ra t e t his by fi d i g t he S ou t h D ecli a t io f t he oo M oo at 15 + t hours a fter G ree wich m ea S e pt 6 In

-

u n

n

ra

n

r

n

s

n

r

n

-

n

,

n

.

.

n

n

n

on e

n e

o

n

o

o

n

u

n

n

n

n

n

s

n

n

n

n

.

or

n

n

n

.

u n

r

n

n

n l

n

an

o

n

va u

e

n

n

an

n

an

:

n

n

,

n

n

n

n

0

a vera

n

,,

2

n

s

n

n

n

n

n

n

n

n

n

1 90 5

0

n

.

o

on

.

,

.

he m eris gi ve t he S ou t h ecli a t io t he M oon a t 1 5 d the varia t io n i 10 m i utes as G M T t o be 1 8 38 the sam e day the ex t li e t he m oo m ovi g south A t 1 6 m d as the f the t able sho w s t h e varia t io i 1 0 t be ma y be egar d e d as decli i g u i for m ly the te o f variatio varia t ion pe r t e mi utes at ( 1 5 + 4t ) hours a fter oon is Th e Ep

s

.

n o

h

n

o

n

n

,

n

n

n

n

an

n

r

n

n

,

n

n

ra

n

on

.

o

11

f

n

an

.

n

n

'

°

.

D

"‘

0 5 7i

.

be assu m ed t o be the average ra t e f vari a t ion f d i ce t is e t he w hole i n terval be tw ee n 1 5 a d 1 5 + t i ressed i hours t he t otal varia t io tha t i terval is f ou by d p We thus fi n d f t he S outh m ulti plyi g t he average rate by 6t D ecli atio o f the M oo at 1 5 + t S e pt 6 1 90 5 T hi s ma y

o

h

n

n

an

,

n

n

n

n

h

or

s n

n

n

or

.

h

n

n

18

on

.

1

°

x

,

"

1 4 1 34

,

3 4 2t

° .

For m ulae o f i terp latio are also use d fo the i verse f roble m f fi di g the t i m e t which a certai ctio reaches o p a specifie d value S u ppose f e x am ple t ha t it is required t o k ow the ti m e t he M oon s S outh S e pt e m ber 6t h 1 90 5 whe D ecli a t io is 1 8 W e have from the equa t io j ust fou d n

n

or

,

on

n

n

a

n

.

n

r

n

o

u n

,

°



n

,

18 40

n

'

°

18 38

n

,

°

n

n



n

1 4 1 3 15

his is a quadratic fo t d by eglectin g the las t ter m the root w e eek is fou n d t o be a ppro i m a t ely 08 6 S ubstituti g t his value i t i the origi al equa t io it beco m es

T

r

,

an

n

s

x

n

2

n

n

1 18 8

.

n

l 4 1 3t ‘

n

F U N D A M E NTA L F O RMU L AE w he n ce t = 0 8 5 9 a n d t he required t im e is ro o t o f the quadra t ic i s irreleva n t

11

15 5 1

m

.

°

5

The

.

other

.

It is easy t ge erali e the fu dam e ta l form ula tio give above L t us assu m e n

n

of

n

n

z

n

o

i t erpola n

.

e

1) ( t

1 ) + A 3 t (t

2)

— A 1) (t t t + , (

2) (t

where A A A A A are u d e t er m i ed coe fficie t s to be so adj us t e d tha t w he t beco m es i succession 0 1 2 3 4 the y assu mes the values y y y y y res pec t ively H e ce by subs t i t utio w e have ]

0,

2

,

n

n

,

3,

,

n

n

o,

2

1,

,

,

,

,

,

1 9

A

y

A ()

A

A0

2A I

0

l ,

y

2

= A , O y

ro m w hich

f

6A

1 2A 2

4A l

2 4A

2 4A ,

yo ,

AI

91

A2

2 ( 92

90)

6

361

yo

;



4 61 + 1 90)

468

1

24

this mea s we ob t ai t he ge eral for m ula n

f tAI i

-

-

-

t ( t — 1 ) (t — 2 )

— t 1) t(

'

1

2

3

)

1

.

3 4

,

A3 , A4

n

n

a

will usually be very s m all y

= z

If

.

60

1

.

c

n

461

49 3

A

.

are the successive di ffere ces G e erally t he l a st ter m m y be egle ted as A2

n

A

— 2 — 3 t t ( )( )

2

in t er polatio

of

n

n

t (t — l

A

n

,

2A 2 a

A0

A4

w here

,

,

A3

yo

,

.

+ 3A 1 + 6A 2

y

,

,

n

n

By

n

1 90

we m ake it equal to ero w e have z

+ 93)

94 )

6(31

0

qua ti t ies give i t he tables are o f course ge erally erro eous t o n e t e t which m y am ou t t o al most hal f a digi t Th e n

n

a

n

x

n

n

n

a

n

F UN D A M E N T A L FO RMU LA E

a di g we ob t ai

E xp

n

n

n

8 t ( y

4 8g

,

3y2 ( 8 t

3ys ( 8 t + y an

c n seque t ly

d

n

o

y

+

a

9)

4 t — 18 t

9)

2

12t

3

2t

2

M+

e4

mb

2 49 )

(54 1)

( 2t

c

8

w e have

3) ( 2 0

( 129

3 6)

2 15) (d

3

( 5 4t =

18 t

2

,

( 8t

48 3 ;

(8t

3)

a

4t

3

3

,

2t

12t

3

a

2a )

,

2t ( d t

+

24

f by w hich we see that the value y fi the fu n ctio f argu m e t hal fw ay bet w ee t w o co secutive ar gu m e ts is equal to the m ea f t he t w o adjacen t values less f the m ea o f the two seco d d i ffere n ces o t he sa m e o e eighth hori o t al li es as the e values As illustra t io f t his m ethod we m y t ke t he follo w i g m h M d roble T e oo n s m ea lo gi t u e at ree w ich m ea oo G n p bei g give as u n der fo 1s t 2 d 3 d d 4t h M arch 1 8 99 i t is required to fi d i t s m ea lo gitude t m id ight o M arch 2 d M m If t = 0

or

n

=

a

an

n

n

n

n

n

o

e,

n

z n

n

s

an

n

o

a

n

r

n

,

n

M arch l s t

l

oon s

on

iu

g t de

2 05

n

,

n

at n oon

n

1 st D i fi

'

6 9 '

2 18 36 4 5 0 '

2 31 48



1

3 1

2 4 5 14

2

'

14 4 0 6 ‘

+ 13 2 5 5 8

Th e

.

°

+ 13 1 1 18

4t h

n

2 n d D ifi

.



7

1 8 ‘

required result is °



2 1 5 ( 8 36 °

°

2 31 48

'

2 2 5 1 0 39 5

.

'

'

1 3 ( {g

11 2

n

,

ean

+ 12 5 8

3r d

n

an

r

,

°

2 md

n

n

a

n



a

n

n

.

18 99

n

.



n

o

n

o

-

n

1 4 4 0 6) '

'

.

F UN D A M E NTAL F O RMU L AE

I SE S O N C H A P I E S h w th at i 1 b y f rm u la relati g t a ph eric al t ri gle A B 0 m y b ch a ged re pe ti vel y i t 180 — b 18 0 — A 18 0 — B ec d f N apier a al gie (2 1) fr m t h 180 — C d h e c e ded uc e t h fir t * E XER C

x

.

o

.

e

a

,

,

°

an

n

an

.

o

n

s

n

c

n

s

e

o

n

on

a

.

o

s

an

°

°

,



o

n

s

o

,

,

c,

°

c,

,

a

,

s

,

o

e

g

three

s

Ex 2 .

x li

E pa

.

i

si n

al writte

ma y b e

so

fo

s

r u la

fo m

s

( 16) —b )

—B = A ) fl

c s in

flA



c si n

—b

B)=

a i m ilar amb i guity

is

o

ae

e D elamb re

r

h w th at th ere rm u l d

se n s

i n t h e fo m

n

si n an

w h at

in

n



o

s

f

s

ig

)

remai i

i n the

n

n n

.

Ex 3 .

S

.

h w th at o

co t a

d a + c o t B d B = c o t b d b + c o t A dA ,

dB = s i n C d b

si n a

B

si n

do

co s a

b c o s C dA

si n

.

whe t a ume t h val ue t t 1 t h c rre p d i g val u h w that a f rm ula f i terp lati b a ed y y y y re pecti vel y th e e data i gi v b y t h equati Ex 4 .

a re

If

.

o,

s

s

s

2

1,

ss

i

n

s

,

en

e

s

s

]

o,

32

,

e

o

o

s

o

o

n

es o f

n

on

s

on

of

y in

on

o

on

e

( 2 ) ( t l — to )

It

ufficie t t b erve th at thi i t h e i mple t expre i t w hich b v i u ly g i ve f y t h val ue y y y wh e t

is

s

n

terms f ub tituted o

s

o

o

s

o

s

o

fo r t

s

s

s

s

s

e

or

ss o n

s

s

o,

n

2

1,

o,

tl

.

S

.

o

o

l

e

o

z

e

t

(

i 1I/

ti me

i f the

Ex 6

.

.

be m

E

ea ured fr s

xtracti

n

om

g t h e fo

n

o

n

r

g f

ch

190 5

°



6 46

Su



.

y 1 + yo )

to

n s

d

.

hemeris

om

th e Ep n o on .

.

De

cl

.

ri l 7t h

6

40

8

th

7

3

9t h

7

25

Ap

°

of

Su

n



22



4

4 7 37

ec l i ati at 6 p m Gr e wich mea ti me n

on

in the

—2

N

ho w that t h e

are

u

o

t t — lz

t h e E po

n

o

n

y o) +

ll w i

e

z

1

Gr e en wi ch me a n

S

tg

.

h w th at i f t —t = t — t = l t h f rm ula o f i terpo lati o n las t example w il l r d uce t t h fu d ame tal f rm l a Ex 5

,

.

.

e

n

n

on

A pr 7 .

F UN D A MENT AL F O RMU L AE Ex 7 .

.

M

Th e



o on s s

em i d iam eter i -

l w

fo l o

s as

s

i i

Se m d -

f

o

et

S p

1909

.

S

h w that t h e M o

o n s se

Fr wh e V e u Ex 8 .

.

n

n

o

an

s

M

d

16

5

16

5

6

15

52

i

n

n

o

R A

n oon

e an

g

.

.

o

.

u

12

11

15

7 24

13

11

19

33 61

f

ht

69

t



Se p

on

ea ti me

A u g 1 1t h , 190 9 ,

on

n

4 i s 16

.

.

.

J pit

f

u

er

1 1h 13m



a d y aft r a

e

11

14

l l

15

20 3 6

r le

A u g 11 t h e fo m u

n oon on

.

of

a

on

e

on

o



97

o

1 1h 10m

on

.



s

11

acti al part I t rp lati gi ve t h equati

m

e

R A

s

f Ve n

18 61 ‘

m dn i g

e

e

If t b e t h e fr o

4

1 909

Au

n e

16

ll wi g data fi d t h J upiter have t h ame

m t h e fo

e

oon

3

a et r

-

tr

me

'

mi di m



o

.

M

a

h

10m 4 09 2 4 + t 2 67" 00

h

13m 3 5 8 5 8 + t

11



11

—05 3 1 t ( t — 1 ) '

44 7s + o 0 8 t (z s-

s-

'

I t i plai th at t mu t b ab ut 4 H e ce t h la t t rm each i de f t h equati m y b replaced b y d S lv i g t h im pl eq a ti w h ave t = 7 8 8 7 7 w he ce t h req ui r d a w r i 18 5 5 m 8 s

Ex 9 .

.

n

.

n

We

s

e

e

an

'

e

o

e

a

on

e

s

n

e

extr t fr ac

o

o

e

ns

e er i

m t h e Eph m

s as

fo

n

De c 2 1 .

0 hrs 12 hr s

22

.

G M T .

.

ll w o

o

e

sse

o

s

.

O

o

n

,

o

14

h

n

s on

2 1m 3 5 8 09 + (2 8 m °

as

n

ec

x

i

s en s on

M

o

f

oon

14

7

32 04

14

35

3 8 14

15

4

16 3 1

s







s

all that t h

m

,

,

.

on

s

h w fro m B e l f rm u la eglecti g d it i very t h M o at ( 18 + 1 2 x ) h u r D 2 1 190 5 w a s S

u

1 3h 39m

.

12 ’

e

'

i ht A c

.

e

o

.

R g

1 905

s

e s

h

s

e

s on

+ 3 8 6 (2x °'

1 ) ( 2x +

,

e R A .

C H A PT E R I I

.

I

I

T H E U SE O F S P H E R C A L CO O RD N A TE S

.

r duat d great cir cle th ph ere C rdi at f a p mt th 7 ph ere f th 8 E xpre i c i e f th b et wee t w p i t th t rm f thei r c rd i ate ph ere i I t rpretati f equati i ph er ical c rd i at 9 10 i cl i ati Th f tw th grad uat ed g rea t ci rcle i l Z } 180 j i i g th e ir 11 O t h i ter e cti f t w g rad u ated great ci rc le 12 T ra f rm ati f c r d i at 13 A dapta ti t l gar ith m G r a d u a te d gr e a t c i r c l e s o n th e s ph e r e 6 T h circu m fere ce o f a great circle is su pposed t o be divi d e d i to 360 equal pa ts by d ividi g m arks S tart i g f o m o e o f these m arks which is take as ero the succeedi g m arks i regular order w ill be ter m ed f d so o t o a t er w hich t he 3 p n e xt m k is ero so t hat this poi t m y be i di fi e e t l y t er m ed 0 or T hus w e obtai n w ha t is k ow as a g a d te d g a t d i t m y have sub rdi a t e m arks by which each i terval ci cl e o f 1 is further d ivi d ed as m y be required I s t arti g fro m ero the u m bers m y i crease i ei t her d irectio so that there are t w per fectly dis t i ct m ethods f gr a d ua t i g the a m e circle fr m t h sa m e ero m ark walki g t he outsi de f t he s phere al g a graduated A m great circle i t he d irectio i which t h e u m bers i crease t e fro m 0 to 1 will have his le ft ha d t ha t o t fro m 0 t o p le f the great circle which m y be d isti guished by the wor d o le l nd his right t hat pole f the g reat circle w hich m y be dis t i gui hed by the w or d ti o l e m ci nt w rd l b i g b l t i i t rigi l fh d k r Th Th r b i g v i l b l f t h purp w p p d ch ic f i u p l l i g th t i pr f r d wh ich m t i mm di at ly ugg t hp l G

6

.

a

e

es

n

oo

.

s

e

o

e

.

on

n

o

o

e

a re oo

o

n

n

o

oo

n

o n

s

on

s

n

s

es

s

o

s

e

a rc

n o es

o

o

oo

o

s

es

n

o

o

on

.

s

on

on s

on

s

e

an

s

ns o

.

s

o n n

n

e

e

o

on

n

n

°

.

os n

n

e

on

e

s

e

n

.

o

o

ss o n

.

on

s

.

.

e

n

n

r

n

z

n

,

°

r

n

.

n

n

,

an

n

n

u

'

ar

z

n

a

°

n

r

an

,

a

n

n

s

n

on

n

n

°

a

J

on

e an

a

a

a

one

e

or

s

an

o

e

e e re

.

,

no e

o se n o

e n

ro

os

o

so e e

o se

n

e

.

s o

e

e

a

n

n

.

.

n

o

s

e

n

on

n

n

a

on

a

,

.

o

n

o

z

e

o

n

n

n

o

°

°



n

o

n

'

a

n

,

an

re

u a

r

.

z

n

o

n

n

n

a

n

r

n

o

°

n

e

s

n a

e n

s e n se o

a

e s s n ort

o

e

ea

var o

o

o e

o r n ec

.

s s

se e

e

n

s

s

TH E U SE

O F SP

H E RI CA L

CO O

R D INA TE S

[

CH

11

.

hus whe the t erres t rial equator is co si dere d as a graduated grea t ircle f lo gi t u d es eas t war d fro m G ree wich or P aris t he orth pole f the eart h is the ole f tha t circle so g a d uate d u t h pole f the earth I f o the other d i t s a t i l i t he ha d t he equator h e gradua t e d as to show lo gi t u des i creasi g ob erver m oves westwar d t he t he ole f t h e circle so s th graduate d is the s u t h p le o f the earth d t he orth p le f the ear t h is t he t i l e Whe a poi t a s phere is i dica t ed as t he ole f a grad uated f that great circle grea t circle t he t o ly is t he posi t io rou d it d e t er m i ed bu t also the d irec t io o f gra d uati I f t he give poi t t he s phere had bee i dica t ed as t he l e o f the gra d ua t ed grea t circle t he the direc t io f ti gradua t io woul d be reversed f by defi itio t he t i l e is the right ha d f a m w alki g alo g t he grea t circle i the direc t io f i creasi g gradua t io T i d icate the direc t io 0 t o 1 a gra duated circle i t is su ffi cie t t o at t a h arrow head to t he circle 0 1 2 3 as how i F i g 9 a d Fig 10 d it w ill be e i e t to f eak the directio o f i cre si g o p Fig 9 gradua t io as t h p o si ti e directio d the dire ct io o f di min ishi g gr dua t io as the n e g ti ve directio T

n

n

n

or

c

n

n

o

n

n o e

n

an

so

s

s

e

no

n

n

,

n

n

n

n

n

on

o

o

o

n

n

n

c

n

n

n

an

.

7

,

e

C o o r di

.

°

t

n a es

on

a

n

n

0

0

n

.

an

,

n

po i n

a

0

co n

a

f

o

no

n

an

v

n

o

.

n

n

an

n

0

s

n

n

-

n

.

n

n

°

n

n

n

n

n

s

or

an

.

n

,

,

n

on

on

n

o

o

n

,

n

o

o

n

n

n o

n

an

n

n

n

o

.

n o

,

n

n

n

,

on

n

n

,

n

o

an

n

.

,

o

v

r

so

a

an

o

o

n

,

t

.

a

on

a

s ph e r e

n

.

.

grea t circle o f the sphere graduated fro m 0 at n origi 0 bei g ch se f re fere ce we e press the posi t io o f a y poi t o t he s phere by the hel p f two ordi ates d 8 wi t h respect to t ha t gra duate d great circle Whe specific values are give to a n d 8 t he corre p di g p i t S o t he sphere is ob t ai e d i the follo w i g way 10 F We m easure fro m 0 alo g the grea t circle i the di e c tio f i cre si g grad ua t io t o a poi t P so that 0 P = A t P a great circle is d raw er e icul r to this P a n d o d n O p p arc is t o be se t o ff equal to 8 If 8 is positive the the An y

°

n

o

n

or

x

n

'

n

a

n

ca n

,

n

n

n

o

n

a

co

an

.

n

n

a

s

,

on

n

o n

n

n

n

IG

.

n

n

n

n

o

n

a

r

n

n

n

n

an

a.

a

.

n

,

,

n

6—7 ]

TH E

US E o r

H E R I CA L

SP

R D IN ATE S

CO O

27

require d poi t S is to be t ake i t h e he m is phere which co tai s t he ole B t i f 8 is ega t ive t he t he require d poi t the t i l T hus whe S is i t he he m isphere which co tai the pl ce f a poi t t he phere is d efi i t ely 8 are give i dicat ed I t is o fte co ve ie t to speak f the he m is phere w hich co tai s t he ole as t he positive he m isphere n d tha t which co tai s the a t i o l ega t ive he m is phere th N egative values o f eed o t be co sidered f th ugh a poi t ye t i t w o l d ge er lly Q m igh t be i dicate d as 90 i f OC Q be m ore co ve ie tly i dicated by the m eas ure m e t bei g m de i the positive directio We he ce establish t he co ve tio that all values o f are to lie be t wee 0 d It is co ve ie t to restrict the values f 8 be t wee d 90 f this d is pels so m e a mbigui t y while still preservi g per fect ge erality Tw coor di a t es will i deed al w ays determ i e e f 8 oi n t but wi t hout this li m i t atio it will t f oll o w that o e p oi t w ill have o ly a si gle ossible air o f coor di ates For p p p e am ple 8 2 0 w ill i dicate a poi t n o t di ffere t fro m I f however we establish the c ve tio that 8 a 90 d e able to 8 sh l l ever lie outside the li mits 90 we m o e a ffir m that t o ly does air f co rdi a t es deter i e o p f h o oi t but that oi t ge eral air i a s but e p p p ordi at es Th e o ly e ce pt io s t heu re m ai i g will be the ole I the for m er 8 d l e f the fu da m e t al circle ti bu t i each is i d eter m i ate d i the latter 8 n

n

n

n



n

u

.

n

a,

n

n

.

n

n

n

n

n

n

n

e

n

n

aS

e

'

s

n

n

.

n

o

n

u

n

n

n

.

a

n

°

n

n

an

o

°

n

or

o

.

n

n

n

n

n

n

,

o

n

n

°

.

n

n

n

on

°

n

n o

n

on

,

n

an

an

n

n o

n

n

co

one

n

n

n

n

,

n

n

n

.

n

:

n

n

a

.

re t ricti that 0 i i 360 d h w th at t h p i t w ul d h ave b e equally repre ted 8 re pecti vel y f val ue f y f t h f ll w i g pa i r Ex 1 .

s

o

n

ar

n

o

n

,

x

n

.

an

n

n

n

°

an

on e

n

on

n o

n

a

a

an

n

n

x

a

n

n

n

n

or

,



n

n

n

.

o

n

n

n

on

n o e

n

°

a

an

a

a n

n

n

n

n

n

ns

o

a

,

n

,

n

n

n

n

n

an

Ab a n d o n

.

o

o n

e

o

e

o

o

i

g the ° a = 4o ,

n

or a

s

>

e

o

s o

n

>o

on s

s

°

an

se n

n

by

s

,

alway appl y t 36o t either b th f t h c rd i ate with ut th er b y al teri g t h p iti f t h p i t t which th e e c rd i ate refer f c r d i ate E 2 S h w th at t h f ll w i g pa i r We

ca n

s

n

e

x

.

°

e

e

o

.

o

o

s o

n

360

o

s

n

oo

(1

8

a

8

°

oo

e

o

o

o n

e

on o

os

or

o

oo

n

°

18 0 + a ;

s

i d ica t t h e ame p i t d thu v ri fy th at fo every po i t a pair o f c rdi at s b e f u d uch th at O il :l 360 a d 90 e

oo

o n

s

n

e

ca n

,

s

an

o

n

s

.

18 0 — 8 —18 0 ° — 8

18 0 + a

n

s

°

°

a ll

o

s

n

n

r

e

>a

>

°

n

on °

t he

2h)

here

sp

U SE O F

THE

8

E x pr e s s i o n

.

H E RI CA L

e

c o si n e

CO O

R D IN AT ES t

f th e

o

b e ween

t e r m s o f t h e i r c o o r di n a t e s L t A A be t he grea t cir le f re fere ce le t S d S be t he t wo poi ts A A S 8 we m ust have S F = 9 O — 8 d i like We have also er S P 90 ma d PA d P A are AA e ach po i n

t

th

f

o

SP

in

s

.

'

c

e



n

an

o

nn

'

an

,

A

d

n

an

an

as

SP S



'

'

a

a

.

lyi g f da m e tal for m ula ( 1 ) t t he t ria gle SP S w e have i f S S 9 cos 9 i 8 i 8 cos 8 8 cos ( ) ( i) Whe t he poi ts S S are c l ose t ogether the sphere a m ore co ve ie t f r mula t he d eter mi ati o f their dista ce is fo fou d as follows We have cos 0 i 8 i 8 cos 8 cos 8 cos ( ) 1 i 8 si 8 {cos i ( ) 2 ( cos 8 cos 8 {cos } ( cos ( 8 cos ) cos ( 8 S ub t racti g this fro m 1 cos é ( i ) }( w e have A pp

an

°

a

a

,

s

,



P i t s n ole

n

.

°

'

tw o

n

u n

n

o



'

n



s n

s n



'

co s

,

n

o n

n

r

n

.



n

n

a

a

n

o

n

n

on

FIG

11

.

.

.

s n

'

s n



a

'

2

n

s n

'

a

'

a

a

s n



2

a

1

2

a

7

a



2

'

si

)

2

n

a ( }

1

2 i n s 5 (a

a

n

” l

a



si n

2

é

9

co s

; (a a

'

a

i s ) n



5(8

2

n

a

1

si n

.

his is o f course ge erally t rue the a ppro xi m a t e solutio

T

s n

a

2

,

an

2

w he n

d

a ( 5

0



a

) cos 1, ( 8 2

1

is ve y sm all it gives r

n

9

2

We

can

L e t SN

(8

0

0

2

00 3

2

56

7

rove this for m ula geo m etrically as follo w s ( Fig d S N be per pe dicular to S P d SP res pectively is a very s m all tria gle

p

.

an

As SN S ’

:

'







n

an

n

SN

’2

+

N S ’

'

2

= SS

whe ce a ppro i m a t ely n

x

8 (

(a



a

)

2

cos

2

'

8

SS

.

US E O F SP

THE

HERICAL

COO

RD INA T ES

[OH

II

.

x lai h w t h luti f t h la t que ti appli t b th th fr m t h ti l i f t h p iti ve le h w i ti ui h le t d w h d g p c d b fr m t h fi r t tar t t h d i recti th 5 S h w th at i f L b t h l g th f t h arc f a gre t ci r c le E earth ( upp ed a phere f r d i R ) exte d i g fr m l t M l g l t lat X l g Z th e Ex 4 .

o

E p

.

s, a n

s

on

e

x

on

2,

.

L =R

tan

2

co s

co t

d)

o

e

n

A,

l

(

si n

co t

A,



e

s

e

(

—l

co s

A,

cos

L e t S , S 2 b e t h e t w o po o , N the OP , P 2 t h e q

e uat r

th e

os

e

no e

o

o

es

.

u s

that t h highe t latitude r ach ed

d

an

on

a

o

n

a

e

on

.

on

,

o

,

.

n

2)

where an

s

e

o

en

a

o

s

os

s

e

e

o

.

.

s

o

on

e se

o

s

s

e

o

e

o

e n o

s

n

s

o

o

o

on

so

e

o

n

i t n

co s

s

n o

A, e m 1 2

by t h e g

k g si n

( Fi g

r at cir cl w ill b e

e

c

Z2 )

(l ,

2

l g)

(Z,

co s

se c

o se

e

c

.

r th

po

le

(1,

Z2 )

n

A, s i n A2

si n

S, S 2

co s

x ec d part 8 pr d uc ed co s

pr ve t h latitude S equal A S OP F r m A N OS To

on

,

,

,

s

2

high t ece ary es

ss

n

,

we

have si n

N S , s i n N S, O

c ec S S E f th 6 V er i fy that i t h expre i ch a ge i f d a ther p i t 8 th ere i d 18 0 d explai w hy thi 8 re pecti vely x

an

if

N S , s i n N S2 s i n S , N S 2

si n

an

,

N OS ,

si n

S , OP ,

o

,

.

.

o

co s

the

on

s

e

o

, co s

co s

.

o n

no

°

ao

In

.

ate s

te

ss o n

s no

,

r pr e

2

,

e

0

,

s

9 di n

n

.

os

an

t a ti o n

o

f

an

qu

a

is

ti o n

.

12

.

i ta ce betwee a p i t d 8 b al tered i t 18 0 ece ary n

s

e

n

ss

n

o n

n

an

a

s

e

d

e

n

n

o

FIG

.

o

°

+a

.

s ph e r i c a l

in

8

a,

co o r

.

d 8 are give Whe the as we have sh w a poi t f which these qua t i t ies are the coor di a t es is d efi i t ely deter m i e d the s phere I f w e k ow o t hi g with regard to d 8 e ce pt that t hey sa t is fy o equatio i t o which they e n ter i co j u ctio w ith o t her qua t i t ies which are k w we ha e t su fficie t d ata t o d eter m i e t he two u k ow s A y value subs t i t u t e d i t h e equa t io will give f equatio i 8 f which i ge eral or m ore roo t s c be f u d R e peati g t he process wi t h d i ff ere t values f we obtai i d e fi i t ely u m erous series f pairs f coordi ates 8 eac h f which c rrespo ds t o a poi t t he s phere If sev e ral f t hese poi t s be co s t ructe d they will i d icate a curve t race d o n

an

a

n

o

n

,

n

on

n

.

a an

n

n

n e

n

n o

n

o

n

o

n

n

an

n

o

o

n

n

or

,

,

n

n

n

,

n

an

an

o

on

n

a

n

o

o

n

n o

one

n

n

n

n

n

n

n

x

.

n

a

o

n

v

,

n

.

n

n

n

,

n

n

n

n

n

n

n

n

o

n

n

can

a

,

,

.

n

8 — 9]

TH E U S E o r

SP

H E R I CAL

COO

R D IN ATE S

the s pherical sur fa ce Th origi al equa t io m y be described as the equatio o f that curve j u t i the sa m e way as equation a aly t ic geo m etry n d y i dica t es a pl a e curve i i W e shall first sho w that i f the coordi ates f a poi t 8 satis fy t he e qua t io n

e

.

an

n

n

n a: a

a

n

s

n

n

n

n

.

n

a,

n

o

n

here A B C are co sta ts t he locus f t he poi t great cir cle o f which t h e poles w ill have coordi ates where 180 ’



w

,

n

n

,

o

,

n

°

a

ll be a

wi

n

a

8





,

an

d



,

tan

= B /C ;



a

‘ ‘ 2 / A /N A H B + 0

si n



.

We c n m ake A posi t ive because i f ecessary t he ig s o f all the ter m s c be cha ge d A ssum e t hree e w qua tities H 8 O B = H i a cos H cos such t hat A = H si cos the by squari g d a d di g I] i VA + B 0 T aki g the u pper sig we btai fro m the firs t equa t io i 8 a posi t ive qua tity there is co f sio he ce 8 is posi t ive a d as Th e seco d d t hird equatio s give betwee 8 d 18 0 d t hus cos is fou n d without am biguity d w e d i I f ho w ever w e h d take the h a ve obtain e d e solutio egative value o f H t he i stead f 8 we shoul d have h d 8 n d the two las t o ly be sa t isfied by fro m the firs t equati 1 d 8 i s t ea of T hus t here are 0 w utti g t o solu t io s + p A d these are tw o a t ipo dal p i t s 8 nd a e d uces t o T h e origi al equatio the H { i 8 si 8 cos 8 cos 8 (a )} 0 w he n ce 8 8 m ust be 90 fro m the fi ed poin t d there fore i t s locus is a great circle i E ati fied 1 S h w th a t if t h f ll w i g qu ati a

n

,

n

an

s

n

.

'

n

n

2

n

n

a



n

n o

°

an

s n a

,

n

a

an

n

on

n

n

n



an

2

s n

n

n



2

.





a

n

o

n

,

'

s n

an

'

a

,

'

n

n

n

an

,

u

n

n



,

a

an



a

,

n

'

n

n

,

on



n





°

o

n

ca n

n

a

n



a

n

.

n

a

,

a

a

,

n

n

n

s n

n

o n

,

.

r

'



'



n



co s

°

a

x

a,

,

a



'

an

,

.

x

o

.

.

si n

A

l cu

the

s of

o

o

e

t h e po

i t n

a,

8

th at i f D

d

Ex 2 .

a re

c

ons

2

If

.

ta t n

e

i

s n a co s

w ill b

e



in g

on

e eral a n

o

.

a co

s

8 = D,

all ci rcl

which t h rad iu

e of

e

uati repre e t m re th a a p i t t h cu rre t c rd i at f a p i t a ph ere a d 8 h w that t h e eq ati a re

a,

o

e

n

u

repr e t a great ci rcle which a p le s

sm

s

is

s

32 on

eq

oo

s

n

n

s no

es o

o n

n

o

on

o n

s

n

.

a

,

b

on

ta n 8 = t a n 6 si n es n

s s

8+ C oos

1

= A2 + B J+ 0 2 the

s, s

n

8+B

cos

an

o

(a

h a s t h e po

i t n

a a

) a

2 70

'

an

d 8

90

°

b

as

T H E U SE

OF

SP

H ERI CA L

CO O

RD I N A TES

t i o n o f t w o gr a d u a t e d gr e a t c i r c l e i t h e a r c :l 1 8 0 j o i n i g th e i r n o l e s f t wo d t d great circles i ge eral Th i cli a t io i g u navoi dably am biguou f it m y be ei t her o f two su pple m e t al a gles d it is o ly whe the two circles cross at right a gles tha t t h is a mbigui t y disappears f t wo g d te d great circles ee d B t the i cli atio t be a mbiguous because w always dis t i guish t hat f t he t w o su pple m e t l a gle which is to be d ee m ed t he i cli atio o f t h t wo circle Th i c l i ti o is d efi e d to be t h e a gle :l 1 8 0 10

cli n a

Th e i n

.

°

n

>

n

e

s

.

n

n

o

or

n

an

,

ra

u n

s,

n

s

u a

e

s

n

n

a

n

n

n

.

n

n

u

n a s

o

e

ca n

ra

u a

n

on e

n

n

s

n

e

.

n

n

F IG

13

.

n

na

n o

o

n

°

n

n

F IG

.

14

.

e

n

>

.

be t wee those par t s o f the circles i w hich the arrow heads are bo t h divergi g fro m i t ersectio or co vergi g t o w d s i t ersec t i I Fig 1 3 t he two seg m e ts o f t he circles d ivergi g f o m 0 d co seque tly the a gle is to be A 0 A = are 0 A d 0 A I f however we si m ply cha ge the d irecti o f the arrow hea d 0 A wi t hou t other altera t io i the figure we have the y co ditio show i Fig 1 4 where the divergi g seg m e ts 0 A d 0A t he a gle A 0 A 1 8 0 w hich is accord i gly o w co t ai t o be take as the i cli atio o f the two graduated circles t his case If ( Fig 1 3) is the grea t circle per pe d icular bo t h to 0A the si ce 0 A = 90 we have d 0A d GA = A A If N d N be t he oles f 0 A d GA res pectively we have A N 90 d A N d he ce n

n

-

n

an

on

n

n

an

n

n

an

,

,

an

n

n

n

n

n

.

n

n

an

n

e,

2

n

n

on

,

°

n

n

.

,

n

,

e

,

-

,

n

n

n

r

,

on

n

n

n

ar

n

an

,

2

n

n

n

n

n

.

.

,

-

in

.

n

.

an

1

,

e

2

,

1

.

an

I

2

M In an

tin

like

o le

o

f

n n

n

,

2

an

an

2

A 1 A2 =

N,

a er i Fig 14 t he for m er case

m

o

n

an

an

,

2

°

,

n

n

,

°

.

.

e

Z

,

n

.

ole N f 0 A is o w t he w e have S i ce A 0 N = 90

the

n

,

o

n

,

°

n

2

2

,

10 1 1]

TH E

-

°

in

re

H E R ICA L

C O O ED I NA TE S

d

°

on

nc

n

e

d by the t d

,

n

.

u a

o

n

e

r

n o les

be t w e e n the i r

are

e,

2

n

ra

o

n

n

o

n

°

,

,

x

s

the i n c l i n a

me a s u

an

e,

a

as

SP

as A ON 90 we have N 0 N 18 0 alre dy e plai e d is t he i li atio f the two grad ua t ed t h i case T h e w e b t ai t he i m por t a t result t ha t tw d t d i ti b tw e e e a t c cles i s a l w ys g g

A , 0 N , = 90

which circles

USE o r

r

a

.

o oub a ques t io m y arise as t o t he arc N N ( Fig Is i t the lesser f t he t w o arcs w hic h w e shoul d aturally take or is it t he arc recko ed t he o t her way rou d t he circle fro m N by d A ? T here are thus tw o arcs toge t her m aki g A of which ei t her m y i o e se se be regar de d as t he i cli a t io W e however re m ove y a m biguity thu ari i g by t he o t io t ha t the i cli atio f two gra d uated grea t circles is ever t o e ceed E 1 If B C CA A B b t h p iti ve d i r cti th r grad uated g r at ci rcle which f rm t h t ri a gle A B C d i f A B C b thei r re pecti ve le h w th at h If B A A B b t i de f t h 1 C C th p iti ve d i e cti ( ) lar t r i a le B t h le th i d e A B re e cti vel y A C f 0 g p p d a g le f AB C re p ctively uppleme tary t ( 2 ) T h ide d i de f AB 0 t h a gle If E 2 8 d 8 b th l f t w graduated ci rcl h w that f t h t w ci r c le if i t h i c l i ati N

n

a

,

,

n

n

an

.

n

o

2

2

,

n

,

n

n

n

a

n

n

n

n

n

n

s n

s

an

ca n

n

c

.

n ve n

n

o

x

x



,

.

.

e

e

os

n

e

o

s

e

,

on s on





an

,



ee

e

e

,

s

no

s,

o

s



'

n

o

e

x

e

.

.

s

n

e

e no

s an

s

s o

a ,,

, an

s an

n





s

e

on

n

d

that i f

a,

8

a

sin

r





on s on

s a re

o se s

s o

2,

o

8

e

2

'

a re

s

e

s

s

,

,

=s

i

e n o es o

o

e

e

s

o

e

.

s

o

n

8, s i n 82 + c o s 8,

n

es of

n

i

:

co s

8,

co s

the

82 s i n s

co s

o

es s

o

s

co o rd i at

the

a re

s o

n

os

e

.

co s e an

e

,

,











m

82

co s

co s

i t r cti e

n

se

(0 2

a ,

(a , of

on

t h e t wo

ci rcles

)

e

8, s i n 82 s i n

sin

a,

8,

co s

82

co s

si n a z

s rn 6

co s

8 si n

a

=

sin

8,

co s

8,

s

where t h u pper e

an

d

l wer ig refer t o

s

si n

co s a ,

n s

o

m

8,

co s a ,

e

t h e t wo

i ter ecti n

s

ons

.

t e r s e c t i o n s o f t w o gr a d u a t e d gr e a t c i r c l e s L t C d 0 ( Fig 1 5 ) be t w o gr duated grea t circles which i t ersec t i t he t w o diam e t rically o pp si t e p i ts V d V L t N be the ole f C d N t he ole f C A poi t m ovi g alo g 0 i the posi t ive d irec t io crosses a t V i to the p i ti e he m isphere bou d ed by 0 T hus V is describe d as t he a s ce di g o de o f C wi t h respec t t 0 11

O n th

.

e

in

.



an

n

e

a

.

'

'

n

o

n

an

o

.

"

n

n

n

os n

B

.

A

.

n

n

n

n

v n

n

an

o n

o

n



.

o

.



.

e

TH E U S E O F

SP

H E R ICA L

CO O

R D I N AT E S

oi t movi g alo g 0 i the posi t ive di rectio crosses at V i to the n eg ti e he m is phere bou d e d by 0 Thus V is described as t he de cen di g de o f C wi t h respec t t o C C fro m which coordi a t es are m easure d I f 0 be t he origi PN 8 t he d 8 are the coor di ates o f N the d GP ole f C w i t h re pect to 0 A t he a gle betwee t w o g raduate d grea t circles is t he arc betwee t heir oles 1 0) w e se e t hat 90 8 is t he i cli a t io bet wee C n d C we have O V = 0P + P V A p

n

n

n

a

n



n

n



n

v

.

"

no

n

s

"

.

on

n

n

'

a,

an

"

s

o

n

n

,

n

.

n

n

s

an

a

°

n

n

n

n

n

"

a

n

.

OV

'

0 V + 18 0

°

a

thus we ob t ai t he f llowi g ge n eral s t te m e t If 8 be t he coord i a t es o f t h e ole f e gra d ua t e d great circle 0 w i t h res pec t t a o t her 0 the the i cli atio f the t w circles is 90 8 t he sce di g o de f C C has coor di a t es 0 d t he desce di g n ode o f O C h a s coordi ate 90 +

an

d

n

o

a,

a

n

n



o

n

n

a

n

n

,

°

a,

2 70

°

a

,

,

n

n



o

n

n

n

o

o

on

n

on

n



an

n

n

s

0

.

as is o ft en co n ve ie t w e t ake Q

I f,

on

o

°

,

n

n

n

.

,

F ro

.

15

,

0

as t he coordi ates o f the n

.

asce di g ode f C as the i cli atio o f the two C an d l f circl es w e have ( Q as the coordi ates t he o e 90 ) ( f the circle f re fere ce bei g 0 n

n

n

'

o

on



n

e

°

o

n

e

,

o

n

n

n

n

.

o

n

§

1 1]

T H E U SE

or

SP

H E R ICA L

RD I NATE S

CO O

35

ge eral to fi t h posi t i d d irecti f gra d ua t io f o grea t circle with respec t t o a other we m us t k n ow three m f ara e t ers t he seco d circle wi t h regard to the fir t We p m y f i s t a ce be give t he t wo coordi a t es f its ole F t his fi es t he ole d t he n o t o ly is the grea t circle d mi e d f whi h that n ole is t he pole but also t he d irec t io t i which t he graduatio d va ces t he seco d ircle is k w give t he coordi ates o f a pole f t he I f we h d m erely bee great cir le t he d ubt the place f t he great circle woul d be defi ed bu t so lo g as it i u k w whe t her t he give pole is the ole or t he t i l e t he d irecti o f gradua t io will re m ai u spe ified T h e third para m e t er is require d t o fi x the o i gi f t he seco d circle t h gra d ua t i o d i g o de f the seco d circle O we m y be give Q the a s the firs t d also the i cli a t io S tar t i g fro m the origi d thus fi d the asce di g we set ff Q i the p si t ive d irec t io ode T h seco d ci cle is the n e teri g t he positive he m is phere I f we m ake t he tw di e g i g arcs fro m t he ode o f t he firs t con ta i t he a gle t here is o a m bigui ty as to t he e act place f the cir le require d d e f C with r gard t E 1 S h w th at t h a ce d i g C i th de c d i g de f C w ith regard t E 2 S h w b y a fig u r t h d i ffere ce b tw e t w grad a ted great circle which h avi g eq al i cl i ati t t h grea t ci cle f r fere ce h ave t h d i t a ce f thei r a c d i g d e fr m t h re pectivel y 6 d ri gi E f t h a ce di g de f a grad ua ted grea t 3 If 0 b t h l g itu d c i rcle L d i t i cl i ati t a fu dame t al ci rcle d if Q b th c rre p di g qua titie with regard t a ther grea t circ le L det rmi e t h c rd i at f t h a e d i g d e V f L u p L th L t N N ( Fi g 1 6) b t h de t h fu dam e tal ci r cle ON V i t h a c di g b t h d i ta c e N V W h ave L l t de f L u p t fi d i t rm f d Q —Q Fr m f rm la (6) i 1 w b ta i In

n

x

on

e

an

n e

n

o

a

or

,

n

a

a

n

,

n o

c

on

r

n

n

o

n

n

c en

n

6

n

n

n

n

o

.

.

e

o

n o

n

o

n

.

n

n

n

n

o

v r

n

n

n

n

x

.

.

s en

n

n

n

6

c

n

s

u

an

on s

n

n

e

as

e

n

e

e

n

s

e

o

s

e

o

o

,

"

o

n o

n

o

.

s

n

s o

o

u

r

o

e

s en

n

n o

e

o

n

s

e

n

s

,

o

e

.

x

.

s

on

s

e

n

e



e

,

s

e

n

s en

no

n

e

n

so

o

e

.

s

u

o



o



o

e,

e

(9



'

an

,

,



on

e

e

n

e

.

e

n

as

e

e

on

e



e

,



s on

I '

n

e

,

s

n

.

en

e

'

an

.

n

e o

n

c o t .v s i n

n o

e

o

n o

o

no

n

n o

n

n

o

n

n

n

s

sc

s

e

o

o

on

n

n

es o

n

n

e

on

e

e

.

an

Q)

co s

(0



9

)

si n e c o

co s e

t



e ,

si n e c o t e

wh e n c e

sin

T o fin d

which val ue

of v .

(Q

0

.

take

i s to b e



n

)

o bs

er that ve

as

i V i iu x m u t h ave t h sa me ig b th zl 18 0 d d V which h w whether x x + 180 i t h a gle requi red

in

an

n

o

an

n

r

n

n

n

n

o

e

n

o

n

.

n

n

.

o

on

.

oo

no

n o

an

n

o

s

a

on

o

n o

r

on

n

c

.

e

x

n

o

an

.

.

e

n

n

,

n

x

n

n

n

n

c

n

o

n

n

n

n

.

c

n

n

n

an

,

o

,

n

n

o

n

n

s

,

x

er

o

n

n

or

o

on

an

s

o



e

s

a re

o

>

or

x

si n °

,

—Q Q ( ’

)

s n e

°

s

e

s n

s

e

s

s

'

n

.

n

a s sin

—Q K Y (

)

,

W h en t he f

n:

is

u d am

en

n

H E RI C AL

SP

TH E U S E o r

CO O

R D I NAT ES

k w we de term i e 8 t h c rd i at tal ci rc le fr m t h equati n

n

n o

e

o

oo

e

a,

with re pect

V

es of

n

s

to

ons

si n cos

8 co s

co s

8 si n

(a (a

si n v s i n

8

.

e,

Q)

c o s x,

Q)

si n v c o s c . .

Q —Q '

la t example fi d t h i cl i ati d Q re pecti vely p ified b y Q grea t ci r cle h ave f u d th at t h c rd i at f t h le Q + 2 7O 2 w h ave d h e ce b y 10 E 90

Ex 4 .

t he two

We

W ith

.

'

e ,

.

If

.

a:

an

n

s

Q,

s

oo

le gth n

s an

co s

d

Q



w= o o s

'

,

45

e

+s

S

,

i

n

s

e

e

no

on

n

pb

etwee

n

.

°

s a re

,

90

°

an

e

d

e

.

n e si n e

c mm h w th at

th e

of



es o x

co s c co s e

p

'

an

s

n

'

e

n

n

be t he

ci rcle defi ed b y

f th e

e

co s

Ex 5

o

,

n

°

Q +

ata ec

s s

o

'

th e d

o

on

'

co s

(Q

er

p pe n d

icular t

t h e t wo g

o

rea t

o

co s c

si n e sin e





co s

(0

t o f c o o r di n a t e s B ei g give t he coordi ates f a poi t w ith regar d to e gradua t e d grea t circle i t is o ft e ecessary to de t er m i e the co r d i ates f t he sam e poi t wi t h regard to a di ff ere t grad uate d grea t circle L t 8 be the rig i al coor d i ates f a poi t P d le t 8 be t he coordi a t es f t he sa m e poi t P i the n e w syste m I like m a er let 8 d 8 be the origi al d tra s for m e d c r di ates o f s m e other poi t P S i ce t h e tra for matio ca t affect t he d is t a ce P P we m ust have t ha t di ta ce the sa m e w hichever be the coord i ates i which it is e pressed d c seque tly 8 ) 12

T r a n s fo r m a i o n

.

n

n

.

n

n

o

n

n

o

n

on

n

n

o

n

.

a,

e

oo

n

a,,



an

n

nn o

n

on

n

0.

an

n

n

n s s

n

,

n

0

n

a

'

.

n

0

o

an

n

n

0

n

o

n

o

n

nn

n

o

'

x

n

n

,

an

U SE o r

TH E

SP

H E R ICA L

COO

R D I NA T E S

be t h gradua t ed great circle wi t h ole at N d rigi L t Q Q be 0 to whic h t he oor di ate are t be t ra for m e d the dista e fr m O d 0 res pec t ively f V t he a ce di g ode t he fir t L t be t he i cli a t io f t he f t he seco d circle t wo gradua t ed circles The Q Q are the three para m e t ers which c mpletely defi e i every way t h seco d gradua t ed great cir le wi t h re fere ce t o t he first We h ave w t o selec t t hree poi ts o t t he s m e grea t cir le d such t hat t heir co rdi a t es i bo th syste m s be d irectly perceived T h poi ts we hall h o e are respectively V A It d N is obvious fr m t he figure t ha t as VA VA 90 the coor di ates t he two sys t e m are a s follo w s o f these poi t s i = Q For V = Q ; d ’



Le t O A

n

e



s

ns

e

.

n

o

an



e

.

o

on

n

o

o



an

o

s

s

n

c

n c



s

n

e

,

n

n

n

n

n

o



n

.

n

n

o

6

,

,

e

n

n

c

n

n o

c

n

o

an

,

,

on

n

a

n

ca n

.

c

s

n

e

o

s

o

n

n

s



an

a,

'

a0

A



+ Q

N

a0

.

°



n

an

,

80 = 9O

= 0;

;

° .

e

.

ubs t itu t i g t he e coord i ates successively i the equatio ( i ) w e have t he ge eral for m ulae f tra s for m a t io Q) ii cos 8 cos ( Q ) cos 8 s ( ( ) cos 8 i ( Q ) si 8 i cos 8 cos i ( i 8 Q) si 8 cos cos 8 si si ( Fr m t hese we d erive cos 8 o ( Q ) cos 8 cos ( a Q ) cos 8 i n ( Q ) i 8 si cos 8 cos i ( Q ) i 8 i 8 cos cos 8 i si ( Q ) f by m ul tiplyi g ( iii ) by cos d a dd i g ( iv ) m ul t i plie d by si we obtai ( v ) d by m ultiplyi g ( iv ) by cos d subtracti g ( iii ) m ulti plied by i we obtai ( vi ) T h firs t set f equatio s d eter m i e the coordi a t es 8 whe 8 are kn o w d t he seco d set d eter m i e 8 are 8 whe k ow A o t her proo f f the fu da m e tal for m ulae f t he tra n s f r ma t io f s pheri al coor di ates m y be obt i ed i t he follow S

n

s

n

o

s n



co

a



n

s n

n

n

'

a



a

,



s n e



n

n

n

n



e



6 s n

n 6

a

a

n





o



c

s









a



a

s

s n

o r,



s n

n e

s n

6

n

,

an

a

n

o

n

,

n

n

n 6

n

6 an

.

n

n

n

w ay

S

lso

A

n

a





n

,

n

a,

o

n

c

or

n

n

a n

a

n

.

i ce n

a,

n

n

o

o

g

an

n

.

n

a

a





in

n

n

s n e

e

a

s n 6

e an

n

6 s n

V is

VN D

the pole f N N ( Fig Q w he ce A N N P ’

o

a

,

.

n

'

w e have A VN N = 90 a Q We also see 90

1 7)



°

.

°

1 2 g ]

TH E

USE o r S P

H E R ICA L

CO O

RD IN ATES

tha t Q A VN D w he ce 4 N N P 90 Q Th e figure also shows t hat N P 90 8 N P 90 8 d N N I the tria gle NN P w e t hus have e pressio s fo the three i des a n d t wo a gles d he ce fro m t he fu da m e tal f rm ulae 1 f 1 d d w e e uce ii iii iv t he la age t ( ( ) ) ) ( ( ) p Th e essi ty already p i ted t f havi g t hree equa t io s i t he for m ul a e f t ra n s for m ati m y be illustrate d from the grou p ( ii ) ( v ) a d ( vi ) d 8 fro m equatio s ( ) S u ppose t hat w e sought d (v) w e have at o ce i i i Q s 8 cos 8 cos s Q sec Q t 8 e e ( ) { ( )} ) ( the right —ha d side are k w t ( Q) A all t he qua ti t ies is k o w L e t 9 be t he a gle :l 1 8 0 whic h has t his value f i t s ta ge t the ( — Q ) m ust be either 9 or 9 + we —Q d ecide which value is to be t ake fo by equatio ( ii) For as 8 d 8 are al w ays betwee t h li m its — 90 d cos 8 n d cos 8 are both ecessarily positive Th e Sig o f cos ( Q ) m ust there f re be t he sa m e t he sig o f cos ( Q) It is thus ascerta i ed w he t her Q is t o be 9 or 1 8 0 9 f f these a gle will have a cosi e agreei g i n sig o ly o w i t h cos ( Q) T hus t he two e quatio s ( ) Q ) without d ( v ) d eter m i e ( a m biguity d there f re is k ow We the fi d cos 8 fro m ( ii ) A t t his poi t t he i su fficie cy f t w equatio s beco m es a ppare t f though t h m ag i t ude o f 8 is k o w its Si g is i determ i a t e H e ce the ecessi t y f a t hi d equatio like ( vi ) which gives t h e value f i 8 d he ce the sig f T h e proble m o f fi d i g 8 fro m ( v ) d ( vi ) m ight also be solve d thus E quatio ( vi ) d eter m i es i 8 a d thus shows that 8 m ust be or o t her o f t w su pple m e t al a gles It is ho w ever u derstood that 90 :l 8 ii 90 d w e choose f 8 that o e o f t he su pple m e tal a g les which fulfils this co ditio T hus 8 is k o w Q) d E quatio ( ii ) will t he give cos ( a d he ce cos m v w ill give he ce Q is deter i ed wi t hout i s ) ( ( am bigu ity a both its i e d cosi e are k ow a











n

°

°



a

°



x

S

n

an

,

c

ou

o n

e

.

n

n

,

on

or

n

o

s

.

n

a

on

o

,



r

n

,

n

n

n

o

n

.



n

e



an

,

n



.



a



an

n

11

an

n

an



a



s n e

n

n

s

n

n

n

n

n

no

a





or



can



r

n



a

a



n

°

e

as

a

n

n

o



.

an

n

.

o

a

a



n



ne

an

,

.

a

an

n

n

a

>

n



s

°

n

.

,

a

n

on



n

6

n

a



.

°

,

n

s

or

n

n

.

n

an

a

o

n



n

an

11

n

n

n

.

o

n

a

n

o







n

.

n

n

,

'

or

e

n

n



an

n

n

a

n

n

.

n

n

n

n

n

r

or

s n

o

n

n



o



an

,

.

n

s n

n

one

n

o



°

°

>

>





n

n

n

.

or

an



n

'

n

n

n

n

a





n

.

po

i t n

1

.

in d

If

icated

s

on

the

h ere

sp

.

a



n

h w th at o





an

n

a

an

S n

s

n

n

.

n

n

n

Ex

n

n

n

n

.

8= c,

an

d fin d t h e

Ex s

ec

on

d

h w th at t h c rd i at y t m re pecti vel y

2

.

s

H E RI C A L

SP

US E o r

TH E

S

.

s e

le

no

of

[

fir t

O A in the ’

OH



11

.

an

s

d

a re

s

s

the

of

es

n

oo

e

o

R D I NATE S

COO

i determi at 8 = 90 ati fy t h equati ( ii ) (iii ) ( i v) a d veri fy th a t th e e qu a titi e f t h equati o A a verificati m E 3 ( ii ) (iii ) ( i v ) h w th at t h f t h ri ght h a d mem b er i u ity f th qu are 4 S h w th a t t h E w r itt qu ati ( v) ( vi ) m ight h ave b ce fr m ( iii ) ( i v ) d w at F d i g o d e f 0 A w ith re p ct t O A V i th d T hi i m pl i e that d 8 m y b i t r ch a ged w ith d 8 i f at t h am e ti me Q d Q b each i c rea d b y I f t h pla e f t w o grad u ated gr at ci r c le c i cide t h w E 5 f t h c rd i at cti 8 o d th c 8 g rad u at d great ci r c le th er f t h ame p i t t h ph ere th I t h g e eral f rm ula ( ii ) ( v ) ( v i ) w m ake = 0 i f t h e t w ci r cle = h m d d i t d ra u a t e a e i r cti d 1 80 i f th ey re g rad ua t e d i g I t h fi rs t c a e pp ite d i r cti ’

e

x

s o

e s

o

x

o

on

n

o

or

x

.

e

.

on

o

n

e

,

S

,

.

o

e su

.

e en

,

o

s



n



o



an

a

e

en

'

s

s

.

e s

os

n

e s

e

e

o ns

es a

o n

o

n

e

oo

e

o

n

e



an

s

n

on

e

co s



8

si n

8

(a



e

In t h e

s

ec

an

d

on

d

'

an



a ,

o

c

°

s ar e

a

e

(

'

a

Q



)

Q



= ) c o s 8 si n

Si n

wh c

o

n

s

co s



s

n

e

e

an

,

o n

.

,

e

.

e s

,

s are

ne

on

,

on

e

co s

en

,

n

s o

n

o

e o

n

,

.

n

n

,

s

on s

e,

se

on ne

on

e

a

n

e

e sc e n

ons

s

e

,

e

s

an

a

e

e

e

ns

n

-

o

.

.

e

n

e

on o

s

.

.

n

s

s s

n

s

n

a

°



Q

cos

si n



8

8 co s

(a

Q)

(a

Q)

8,

.

case co s

cos



8

(a (a

co s si n



8



co s

8 cos

co s

8 si n

si n

8,

) Q )

Q







sin

8



8

—a

—8



,

Q)

(a (a

Q

)

.

co rd i ate 8 h ere ch a g ig b e au e t h rever al f t h e di recti f g radu ati i terch a ge t h p iti ve d gati ve h emi ph re E L t S b a fu dame tal grad u at d great ci rc le d l e t B X be t h 6 c rdi ate f y p i t P with re pect t S L t S b a th er grad uated le with re pect t S d l t 6 x b t h e c rd i a te f it g reat cir c le L t Q de te t h d egree m i ut S a t i t a ce d d ec d mark d i g Sh w de S L t B X b t h c o rd i at f P w ith regard t S th at f t h deter m i ati f B X i term f B Th e

o

o

n

on

x

oo

.

n

n

e

.

s

n

e

o

an

an

e

0

n

n o

d

0,

e

Q

0

)

co s

B s i n (A

AO)

co s

6 s i n (X

Q

0

)

si n

5

130

co s



or

the d

i

cos

co s

= B si n ’

e term i ati n

on o

B S i n (A AO) 6 co s s in

3

co s



8



si n

6

Si n



B

co s co s

sin

term

s o

(X 30

5

0



Q

'

.

AO),

f B, N ’

)

O

cos co s

B s i n 30 s i n (X

Q

0

BO s i n (X

Q

O





8

co s

s

s

3 s i n 30 c o s ( 7x t o )

3 s i n 30 + c o s 6 c o s 30 c o s (X

f B, k i n

cos

on

o

,

(N

e

s

o

s o

B

co s

e

s

.

,

s n o

o

cos



s

no

e

es o

n

,



e

.

on

n

e

an

s

s

o



on o

n

es an

e

,

n

oo

n

s

ne

o

on

o

s

e

e

e

,



e

.

an

n

s,

e

th at f

os

s

c

n

s

si n an

e

o n

e

on

es S

n

e

no

or

s

n

)

)

.

.

n

o

1 2 — 1 3] Ex 7 .

Le t

.

y tem ytm w e h ave s

s

s e

a,,

an

an

d

s

or

d

82 t h e of

n

s

Ex

x lai

co s

82

.

acc r i ext ri r o

e

Fi g

s

h ere

p

17 i s

.

ch a

the

n

n

s

s

s

si n

oo

s

n

on

s

82

n

o

oo

e

cos

,

o

s

n

e

s

s

s

n

e

n

n

e

o

cos

s

s

o

e

o

tsid e

ou

on

s

s



82

(a ,

'

cos

.

ge s i n t h e o o d ppo s d t o b e

n

s

on

e

o

n

n

s

)

0 2 ’

es

s

( ii ) ( iii ) ( i v) ,

R D IN A TES

c rd i at f t w tar i t h fi r t rre p di g c rd i ate i t h ec d tar m u t b t h a me i b th y te m

(a ,

cos

o

os

n

s

e

ee fr m t h B t i f w w i h Fi g i ide th e V i t h as s

on s

s

COO

c r i ate t h c ele tial u e vi ewed fr m t h i ter i r ph ere i h w th at t h f rm ulae rem ai u al ter d upp ed t b e d raw a s u u al fr m t h appeara ce

E p d n g as the o and s o 8

.

equati

m th e

o

co

t h e t wo

sin

veri fy thi fr

H E RIC A L

82 b e t h e

8, si n 82 + c o s 8,

si n

SP



i ta ce

As the d

.

8,

d

an

s

T H E U SE

n

s

s

n

e

e

o

s

h ere

p

or

the

of

th e

.

o

e

n

.

repre e t a p rti f t h phere ee f m th d de I t ad f Q d 8 w h ul d v i t di g 18 0 + Q d d i m i larl y 18 0 + Q Q T h e e ch a ge 8 d —8 f ma k e alt erati i t h f rmulae (ii ) ( v) (vi ) E f tw p i t If d h w that t h 9 8 8 t h c rd i at e d e f t h grea t ci r c le j i i g th em ri gi b y qua titie d i ta t fr m t h L d L + 180 wh ere u

e

e

ns

s

s

n

°

an



x

.

no

on

a,

.

s o

e

an

n o

17 to

.

e s c en

s n

n

n o

n

e





a ,

e



o

e

s

as

s

an

e s

o

v r

e

s

n

s

n

ro



or

,

.

s o

n

a re

e

'

,

oo

o n n

o

o

an

,

a re

on

n s e

.

°

s

an

o

s

o

o n

o

n

s S

e o

o

e

n

n

s

°

an

t a t i o n t o L o g a r i th m s If i calculati g the tra s f r m ed c ordi ates t he equa t io s ( ii ) ( v ) ( vi ) 1 2 ) be used as they sta d the t w o t er m s i ( vi ) should be evaluated logari t h m ically d the 8 i take fro m a t able f a t ural S i es Th equa t io ( ii ) de t er mi es o ( Q) a d ( v ) is use d o n ly t o d eter m i e the ig o f Q f this w e ee d calcula t e o ly the logari t h m s f the t wo ter ms the righ t ha d sid e eve whe t hey are f oppo ite sig s fo It is however o fte t hought co ve ie t to e ff ect a t 1 2 ) by t he i tro d uctio n o f m atio f t h e form ulae ( ii ) ( v ) ( vi ) au iliary qua ti t ies w hich wil l m ake t he m m ore i mm e d iately ff d T m t l ga i t h ic calculatio hi be bes e ec t e as m a d a t ed f s y p follo w s d M a gle be t wee 0 d L e t m be a positive qua ti t y 3 60 such t hat i 8=m s M ; cos 8 si ( If M is the s m allest a gle H e ce t M = t 8 si ( a — Q ) A m is which sa t isfies thi M is either M or M + 1 8 0 13

Adap

.

.



n

,

n

n

,

o

n

o

a

n

n

,

n

n

e

.

n

n

n

a

n

o

n

s

n

n

,





s

a



or

n

.

ra n s

n

r

n

,

,

x

c



on

o

n

n

s

o

n

,



n

S

n

n

n

n

n

n

,

an

o

,

n

or

o

n

r

a

.

.

an

an

n

°

n

n

an

°

n

an

n

co

s n

n

co

a

n

,

.

°

s,

,

0

.

s

TH E

SP

USE OF

H ERIC AL

CO O

R D INATE S

[

OH

.

11

f M i t ive we us t c h o se t ha t value which gives M wi t h m p By the sa m e i g T h s l g m a d M becom e k o w i 8 subs t i t utio f t hese au iliary qua tities i ( ii ) ( v ) ( vi ) 1 2 ) these equa tio s be o m e cos 8 ( Q ) cos 8 s ( Q ) cos 8 i ( Q ) m i ( M ) m cos ( M si 8 ) From the la t o f t h e e for mulae 8 is ob t i ed both as t o m g T his value subs t itute d i the t w o i t d ( :l d as to ig o t her form ulae d e t er mi es both cos ( — Q ) d i ( — first gives the m ag i t u d e f Q d t h e ec d gives h T i t s ig or

o

o s

S

as

n

n

s n

o

u

.

n

n

n

x

o

co s

n

,

n

.

,

c

n









a

co s

co



'

s n

a

s n

a

e



n

6



s

u

n

e

s

an

>

a n

s

n

n

.





n

a

n

S

a

o

n

e

a





an

a

s n

'

an

on

s

.

= 75 c rd i a t f a p i t S h w b y th e f rm u l e ( ii ) ( v ) ( v i ) th a t wh e t ra f r med t o a ci rcle f refer ce = = = d efi d b y t h 5 u a titi e c o rdi ate Q 2 1 2 Q 3 I 15 th q

Ex

o

.

1

Th e

.

a

,

e

a

Ex 2 .

s

n

Ex

.

M

an

If

3

.

m = co s P K

an

n

are

n

s

a

o

,

n s o

°

°

e

,

r b lem f E d m h w th at M VP ( Fi g 1 7 ) wh o

o

s

x

.

1 be

d M = N K,

an

d

o

so

en

o

°



e

lved with t h h lp e

e

o

2 92 38 a n d L o g m = 9 8 2 7 8 °

o

.

t ri a gle N P K ’

o n

n

o

s

°

If t h e p

.

ua titie

q

= 32 7

o

,

n

e



es

n

,

ne

be co m

oo

°



f the

au x i l iary

'

.

r d uced meet NN i K h w that b ta i t h f r m u lae ( i ) fr m t h r i ght a gled p

en

n

o

'

s

e

o

o

n

S

e

o

-

n

C H A PT E R I II

FI G U R E

TH E

.

I

O F T H E EA R T H A N D M A P M A K N G

I tr duct ry La titu d R ad iu f cu rvatu re al g t h m er i d i a T h the ry f m p m ak i g th at a m p hall b c f rmal C d iti Th cale i a c f rmal repre e tati M er ca t r pr j ecti Th l x d r m e S t re graphic pr j cti Th tere graphic pr j ecti f th y ci rc le al a ci rcle Ge eral f rm l ae f tere graphic pr j ecti M p i which each ar a b ear a c ta t rati t re p d i g area t h phere o

n

.

o

e

s

e

o

on

a

s



o

e

s

o

o

e

on

n

on

o

s n

o

on

o

on

o e

s

e

s

on

o

o

e

n

n

a

o

on

e

e

on

o

o

o

on

o

an

on

h er

e

sp

is

e

so

n

o

a

u

or

s

n

s

o

e

on

n

s

on

on

o

ons

n

o

o

the

co r

s

e

tr o d u c t o r y That t h e earth is globular i for m would be suggested by the a alogous for m s o f the su a d m oo d it is d m st a t e d by g M M fa m iliar fac t s as set forth i books o geog a phy A ccurate m easure m e t s o f the figure f the ear t h are o f fu da m e t al i m por t a e i A t ro o m y d t his cha pt er w ill be d evoted t o t he ele m e t ary parts f this subject as w ell a s to e pl ai i n g how curve d sur faces such as tha t f the ear t h be d e picted fl t sur faces i f m p m aki g t h e art I t is e c essary to e plai that by t he e pressio figure f t he earth w e d t m ea i t irregular sur face diversified by o n ti e t d ocea as w e actually see it but a sur face part f w hich is i dica t e d by the cea at res t d which i other parts m y be defi e d coi ci d e t wi t h t h level t o which w ater would rise at the place i f freely co m mu ica t i g wi t h the sea by m ean s f ca als w hich w e m y i m agi e traversi g the co t i e ts fro m ocea t ocea 14

.

In

.

n

n

n

n

n

n

n

,

e

an

r

n

n

n

n c

n

s

n

a

x

o n o

an

n

.

n

.



o

c

,

,

o

a

n

an

,

e

n

n

a

n

a

s

n

ca n

,

x

n

n

o

n

o

n

n

n

as

as

,

n

n

o

,

on

n

an

o

n

n

.

o

n

x

r

o

n

o

n

n

n

n

n

n

n

o



T HE

F IG UR E

THE

or

EA

RT H

AN D

[OH

M A P M A K IN G

.

111

t tu d e I f the ear t h be regar d ed as a s phere the the lati t u de f y s t ati t he ear t h sur face is t he i cli atio to t he pla e o f t he terrestrial equa t or f t he terres t rial radius to tha t statio B t t he true figure f t he earth is n t s pherical It rather appr x im a t es to the s pheroi d f revolutio obtai ed by the rotatio f ellipse abou t i t s m i or a is Th le gths f the s e m i a es o f this elli pse by C olo el C larke i are s give 2 0 9 2 620 2 feet a ( appr i m ately ) 3 9633 m iles 637 8 2 kil m etres 2 0 8 5 4 8 95 feet b ( appr i m ately) 394 9 8 m ile kilo m e t res T h figures i square brackets de ote the logarith ms f t he u m be r s to w hich they are a tt ached If the or m al P N to the earth s su face ( Fig 18 ) m eet the f la e t he equator i N be the se m i a is m ajor the N d O A p 4 P NA d A P OA is ) is t he g e o g (f p hi c l lati t u d e f P i t s g e o ce t i c la t itude 15

La i

.

.

n

,

an

o



s

on

on

n

n

n

n

o

n

o

o

o

x

n

n

n

o

an

o

x

-



n

n

a

n

e

.

o

.

n

u

.

ox

o

ox

e

s

n

o

n

n

.



n

n

o

n

a

t he equation n

n

,

an

o

.

o

f

.

t he elli pse

coordi ates f a poi t the we easily see t hat th e

x

-

F IG

If

.

an

ra

n r

r

n

o

P

o

f

18

.

be z z g g which 7x is t he e xce t ric a gle be

l

- -

i -



1

,

an

d )

t a n x/b,

a

f G e o d e sy C



,

lr

a en

v .

n

n

tan

d

'



t a n qb

b t a n X/a

d o n Pr e ss , 188 0 , p 31 9 .

.

,

an

d g



n

,

FI G UR E

TH E

T

aki g n

RT H

A ND

MAKI NG

M AP

as u ity we have cos gb cos h cos MN/ m

[O H

.

II I

n

a





r

v

(

.





p

r S111 c

7t = ( 1 —

b si n

y

t here fore we

If

O F TH E E A

m

2

e

,



)

2

e

Si n

¢

2

.

ake (1

2

6

)

cos Y d log Y are give i the Ephe m eris T h qua tities l g X each d egree f (I A si j> is m ulti plie d by e i X d Y f a s m all error i 4 will m ake appre iable e ffec t X d Y d log Y m y be obtai ed by i s pec t io T hus l g X f the table withou t troubles m e i t er polatio t he accurate T he values f l g i 96 d log cos ¢ bei g add e d to l g X d l g Y respectively w e b t ai l g i qt d l g cos d the ce W e m y ote that l o g X d log Y have a co sta t d di ffere ce As illus t ra t io f the applica t io o f this m ethod we m y t ake t h follo w i g case T h g e gra ph ical la t i t ude o f C a m bri dge bei g 5 2 1 2 5 2 ho w t ha t t he re ductio to be a pplied to obtai the geoce tric d fi d the d is t a ce o f C a m bri dge fr m the la t i t u de is 1 1 earth s e t re whe the earth s equa t orial adiu is t ake as u ity log Y = L gX 9 9 9 7 9 5 99 w e obtai n

X si n



3

n

e

o

o

or

n

)

s

.

n

2

<

c

a

n

n

an

.

o

n

.

o

n

a

an

r s n

o

,

an

n

n

o

an

n

n



n

on

n

an

,

n

2

n o

)

s n

o

n

n

o

o

co s

an

an

o

r

an

r

o

o

an

n

an

r

n

n

.

n

an

o

n

e

e

a

n

.

n

o

n

S



°

,

n

n

'

an



n



n

n

c

n

o

r

s

n

n

.

o

Lo g

L o g s i n qS

Lo g Lo g

i

r s n (

ta n

Lo g

d)

r co s

¢

r si n

Lo g

If

the 1

d

I

() ’

9 8 9668 0 1

gb

a id

in

could

o

o

J

52

°

< ,b ‘

9 97 8 8



52

1



30

11



22

12

(b

.

.

S

on e n

f

n

n

r c

s



,

an

n

t c m put i .

52

°



9 9 9 90 77 0

r

r co s

E

r

course also have bee fou d fro m o gb but d w e a d here to t he rule o f usi n g the larger o f qua ti t ies see p 7

r

t wo

cos qb



9 8 95 7 5 7 1

)

r

r sin

4

0 1 0 7 5 7 90





Lo g

97 8 7 2 5 34

)



Lo g si n

Lo g

co s

g

i

g th e

ve s

ta b

a

r du ti e

.

.

,

c

l

on

i n M o n t h ly N o ti c e s , R A S

e

.

o

f th e

l titud a

e an

d lo g

r

.

.

.

vo l

.

xu n

.

p

.

1 0 2 fo r

15 16]

THE

-

Ex 1 .

Us

.

i

F I G URE

g C

n

larke elem t ’

s

en

d)

ta n t he the

fig ur

TH E E A

or

RT H

fi gu re

fo r t h e

s

AN D of

M A K IN G

M AP

th e

47

earth h w that s

,

o

[9 9 970 35 2 ] t a n



cl d i b racket r pre e ti g a L garith m d h w th at ge graphical latitu de f G re e w ich i 5 1 2 8 38 i t ge ce tric latitu d e i o se

es en

s

n

o

o

°

e

5 1 17 11 '

Ex 2 .

s n

n

n

If po

wer

f

s o

hi gh er tha

e

n

the

s

X = 1 — § e2 — i Y= 1 + i

h w that t h e tab l c o cer ed ma y b e c o mputed fr .

n





d

a re n

°

s

,

s

an

o

S

o

as

n

s



.

Ex 3

o

S

.

e

2

2

e

fo r L o g X om

es

o

n

Lo g X

9 99 7 7 8

Y

0 0 00 7 4

lo g

ec

on

co s

2 d>,

co s

2 d)

an

d Lo g

co s

000 7 4

co s



,

s

o

.

000 7 4



eglected h w th at

Y

2 d)

fa r

so

as

lace

fiv e p

s a re

.

a l o n g th e m e r i di a n t a t y poi t i T h curvature o f t he earth alo g a m eridia the curva t ure o f the circle which oscula t es the ellipse at that poi t the ellipse I f a cos 9 b si 9 be t he coor di ates f a poi t t he the equatio f t he orm al a t t hat poi t *

16

R a di

.

u s

o

f

c u rv a u r e

.

n

e

n

an

s

n

n

n

n

,

o

n

n

on

n

n

o

.

n

is

a w s in 9

the la t itude the m ajor a is

and

fo r

d )

by



co s

9=

(a

2

— b2

) si n

9 co s 9

or the a gle which t he or m al m akes w i t h n

,

n

x

ta n

(

5

a

t a n 9/b

.

ce t re o f curvature is t he i t ersectio o f two con secu t ive or m als D iff ere t ia t i g ( i ) w ith regard to 9 w e see t hat the o o d i n a t es o f the ce tre f curvature m us t atis fy t he equa t io cos 9 by si 9 ( a b ) cos 2 9 t he c d ( ii ) w e have f S olvi g f a n d y fro m ( i ) ordi ates o f the ce t re o f curva t ure i 9 b b a cos b 9 a ) ( / ( ) / y t he r d ius f curva t ure we the fi d an d f Th e

n

n

n

n

.

r

n

n

c

o

or

or

an

a;

o

n

a:

or

a

a

2

ter m s

o

,

(

sin



9

b

2

co s

,

2

the lati t u d e p

H e n ce

a

2

s n

3

n

n

o

f

?

2

3

?

p

in

?

2

n

n

or

n

s

a re

n

n

a

w e see that

2

b

2

if

(b

cos oS) be the d ista ce betw ee t w o poi t s

?

s

si n

?

1

()

a

2

2

n

n

n

on

F IG UR E

TH E

t he sa m e

m

radia s are

eri dia

b g

n

RT H

EA

MA K ING

M AP

AN D

[

CH

111

.

whose geographical la t i t u des e presse d respec t ively w e have

in

x

n

d

an

THE

or

,

2

a

b

2

? cos t q) 1 It easily foll ws that i f powers o f the eccen trici ty above the seco d are eglec t e d we have as n a ppro i m ate value o f the arc bet w ee t he la t itu d es (j a d gb

(b

si n

2

2

2

n

.





an ’

n

n

n

an

o

n

z

n

n

z

z

n

n

n

n

on

z

n

n

,

on

an

n



on

.

u

n



,

an

ns

n

,

.

e

z

.

0

n

n

,

n

n

n

o

,

n

°

.

n

n

o

z

n

o

,

z

n

n

n

or



n

n

z

n

an n

o

no

r

.

.

.

n

n

n

n

n

n

n

r n

n

.

e

n

z

n

,

n

n

§

R IG H T

34 ]

A S CEN SI O N A N D

orm ulae ( ii ) ( iii ) ( iv ) ( v ) ( vi ) equatio s

f

,

,

of

,

,

D ECL I N A TI O N

we have the

12 ,

d

esire d

n

c o s a si n z

=

co s

cos z

=

s i n si n

)

8 — Si n

si n

¢

a

8+

f

S(S



d

oos

8

cos ¢

co s

8 c o s (S — a )

co

a

)

the equivale t grou p

d

an

— S (

= c o s 8 si n

— s i n a si n z

n

— si n S (

— a

(S

a

co s

)

co s

8 = si n

a si n z

= cos 8 cos 4) c o )

— si n

s z

t

c

c o s a si n z

the equa t io s ( i ) we n calculate the e i t h dista ce n d a i m uth w he the d ecli atio a d t he hour a gle (S — ) are k ow d co versely by ( ii ) w e c n fi d t h e d ecli atio d t he hour a gle whe n the e i t h dis t a ce d the a i muth a e k o wn For a deter m i a t io o f the e i t h dis t a ce w he t he hour a gle d t he d eclin atio are k o w the followi g proce ss is very co ve ien t Th a gle sub t e de d at t he star by t he a e j oi i g e ith d t he pole is called t he p a l l cti c a g l e T hi w e the shall d e o t e by ) d f its deter mi n a t io we have fro m the fu da m e t al for m ulae ( l ) ( 3) 1 t he followi g equation s i w hich h is writte i s t ea d o f ( S ) f t he hour a gle By

ca

n

n

n

z

n

n

an

,

n

n

n

a

z

n

n

n

n

n

z

a

n

n

n

a

n

an

n

an

z

r

.

n

n

n

an

n

n

n

n

z

e

.

n

z

n

n

n

n

n

n

r

an

ar

n

an

7

n

or

,

si

n

co s

W he n h dis t an ce

a

n

n n s

.

n

n

n

,

,

n

n

n

or

a

n

si n z

=

n

si n z

= si n

si n

p co s ¢

co s (

n

n

h

8—

co s

¢

si n

8 co s h

are k ow the par llactic a gle 7 d t he e i t h A si d n both be fou d fro m these equatio n s cos ct are bo t h lways posi t ive i t f ll w fro m t he seco d equa t io tha t ; d i have t he sam e Sig T hey are bo t h positive t o the w es t f t he m eri d ia d ega t ive t o the eas t It is o fte d esirable t o m ake t hese calculatio s by t he hel p We i t rod uce two e w a gles m n d f subsidiary qua t i t ies by the co di t io cos cos 4 i h i cos m i t i cos 4) cos h Si m d m which satis fy t hese If m be a pair o f values o f equatio s they w ill be equally sa t isfied by 360 n d 1 8 0 m an

2

d 8

n

n

a

,

an

o

n

t

n

an

o

n

n

.

) s n

S n r

n

n

an

°

n

a

n s

s n n

0

n

n

n

.

s n n

o,

n

.

n

n

an

n

n

n

n z

n

n

s

n

o

S

.

,

o

z

an

1

n

ca

a

7

n

o

an

°

o.

R IG HT

92

I t is a w e use airs p

m

at t er f i differe ce whether i the subseque t w ork — 18 0 m T aki g o f these t w o 0 3 6 or m m we have by ubsti t utio i ( iii )

o,

n

as

n

o

o,

cos

i

n

one

n

8 ( + m)

a n n Si n

1; s n 2

n

.

s

,

cosz

si n

°

o

,

n

n

n

n

o

°

n

D E C L I N AT I O N

AN D

ASC E N S I ON

n

i cos ; si cos ( 8 m ) T he e equatio m y also be writ t e thus n z

7

s n n

n s

s

a

n

tan n =

ta n

z

c o t n se c

(8 + m

t

(8 + m

se c

z

n

co

( vi )

.

Fro m the first o f these ) is fou d d the the seco d gives Of cour e coul d also be fou d from the firs t f ( v ) but i t is al w ays f fi re erable t d a gle fro m p its t a gen t rather tha i t s cosi e n

1

an

n

s

n

2

z

.

n

o

,

o

n

an

n

n

n

n

(s

or mulae ( iv ) n d ( v ) m y be ob t ai ed at o ce geo m etrically For i f Z L be pe rpe dicular to N P i Fig 2 9 w e have N L = m d Th e f

a

n

a

n

.

n

n

an

.

ZL

90

°

n

Fm

.

29

.

.

It is plai fro m equatio s ( iv ) t hat as a d m depen d o ly o t he la t i t ude d the hour a gle they are t he sa m e fo sta rs o f all decli atio s It is there fore con ve ie t to calcula t e on ce fo all fo a give observa t ory or ra t her fo a give latitude a table by which f each particular hour a gle a t y s t atio t hat la t itu d e t he values o f m d L o g cot u c a be i mm e di t e l y obtai e d E 1 V er i fy th at t h equa ti n

n

an n

n

n

.

n

n

n

r

,

x

.

e

.

.

t a n ”=

u derg n

°

o

n

n o

n

n

an

n

,

an

n

on

a

n

r

or

3 60

n

n

r

r

n

n

on s

c o t n se c

cha ge whe n

n

m

(8 + m )

an

d

n

an

z = s e c 17 c o t

d ta n

cha ged re

are

n

s pe

cti vely i to n

l 8o + m °

.

an

d

.

et rm i e t h e ith di ta ce d parall actic a gl f t h tar b e i g + 38 6 1 Cyg i wh e it i 3 E i t d ec l i ati f t h mer i d i a d t h latitud f th b erver b e i g 5 3 Fr m equati ( i v) w fi d m = 2 7 4 3 d L g t = 9 6676 ( ) H e ce = 34 8 + m = 65 5 2 d ( v i ) n = —4 8 Ex 2 .

D

.

e

s

e

o

o

ons

°



e

n

n

n

an

e

an

z

11“

o

e

n

n

°

n

°

z

,

n

s

on

e

o

e

s

°

n

°

n

s

n

an

e

o

.

e

s

n

'

°

an

o

co

n

°

n

.

n

R IG H T

AN D

AS C E N S I O N

D E C L INA T I O N

ecli a t io H ere the four qua tities co cer e d are h 8 d t he for m ula is t here fore cos = i 4 i 8 cos 4 cos 8 cos h d 8 co s t a t d su pposi g h D i ff ere tiati g i 8 i A cos s s cos 8 cos ) h) A t si ( 4 t f the e fficie t f A d) w e obtai d subs t i t uti g si n cos A4 sec a Az O f course t his m ight have bee obtai ed direc t ly from for m ula = = m A 8 O A 0 as j ust give by aki g 2 ( ) A a other illustra t io a n d o e i volvi g t he parallactic a gle we shall deter m i e w he the parallactic a gle o f a g ive s t ar beco m es a m a i mu m i the course f t he d iur al rota t io Th e co ditio s are tha t while I; d 8 are both co s t a t h d a shall vary i such a way t h t t h e shall be cha ge i 7 T h e for m ula i volvi g 8 ) h is i e A 7 m ust va i h d

n

n

n

.

n

n

,

,

an

n

n

n

s

n

8=

cos

co

n

t n

si n

n

,

,

n o

n

n

,

n

er

.

t a n qt

n

n

a

n

n

an

(

7

.

o

n

n

.

n

n

n

.

n

n

n

x

n

h

,

n

n

o

n

n

n

s

,

.

n

,

,

c

co

)

n

n

n c

or

a

z

n

.

an

z

n z

an

)

n

an

n

n

) s n

S n

z

,

h + si n 8 c o s h

.

z

an

n

r

n

7

,

,

.

i ere tiati g w e have i h A co t cos i h s 8 7 ) h 0 ( n d as the coe fficie t o f Ah m us t va ish cot i 8t h fro m whi h we fi d cos = 0 d the star m ust be o t he pri m e vertical I t his w e have a t her illustra t io o f t hose e ce ption al c a ses i w hich though t hree f the varia t i s are ero the for m u l ae do t require that the other three varia t io s shall al o be ero D ff

n

n

n

7

a

s n

n

n

n

c

,

a

,

s n

,

an

an

,

n

.

n

n o

n

on

o

n

x

z

n

no

s

z

s

i ere t ial for m ulae are specially i s t ruc t ive i poi ti g out how observatio s sh ould be arra ged so t ha t t hough a s m all error is m ade i t he course o f the observatio the e iste ce o f t his error shall be as li tt le i jurious as possible to the resul t that is sought S u ppose f i sta ce t he m ari er is seeki g t he hour a gle f the s i ord er t correct his chro o m eter W ha t he m easures is t he alti t u d e f the s n B t from re fractio n d o t her causes whi h en t irely obvia t e t here will be a sm all error S kill i t he al t i t u d e d co seque t ly i the ze ith dis t a ce T h e observer m ea s ures the e i t h dis t a ce as d co n cludes that the T h e d ff

n

n

n

n

n

n

n

n

n

x

,

n

n

.

,

u n

or

n

n

n

n

o

o

c

n

n o

n

n

,

u

.

n

.

u

n

a

ca n an

n

n

z

n

n

n

n

z, a n

n

.

o

§

R IG HT

35 ]

A SC E N SI O N

A ND

95

D E C L INATI O N

hour a gle is h B t the true e ith dis t a ce is + A i e A2 is the quan tity which m ust be adde d to the observed e ith dista ce to give the true e n ith dis t a ce Th e t rue hour a gle is there f re o t h bu t so m e slightly d iff ere t qua ti ty h A h where A h is the correc t io t b be a pplie d t o h so t ha t A h is t he qua ti t y w sought T h e for m ul a co tai i g o ly t h e parts d 8 h is i cos si S 8 cos 1 cos 8 cos h 4 d regardi g d d 8 as co sta t D i ffere t iati g this A cos d cos 8 si hAh si i h cos 8 i si d substi t uti g i cos ¢ Ah A w he ce sec 4 cosec A Ah Th e follo w i g is a geo m etrical proo f o f this for m ula m oves fro m P t o P ( Fig 30 ) abou t the pole N If the s P P bei g a very s m all arc its e i t h d is t a ce cha ges fro m Z P '

n

u

.

n

z

n

z

z,

.

z

n

z

n

n

n

no

n

n

.

n

o

.

n

,

,

n

,

.

n

n

n

n

z

n

2,

n

)

n z

n

z

) an

n z

,

,

s n

,

,

a

)

n

n

n

n

s n a

2

,

.

)

s n a

n

),

()

an

n

an

n

z

.

n

'

u n



to

,

.

n

,

n

z

n

n

A A NP P be perpe dicular to ZP A = = P P i NP A h s n d P are both TP 4 n d A ZP T 7 A cosec 7 w he ce i f N K is pe pe d icular to Z P w e shall have t hat t he ra t e f cha ge f t he A = A h i N K by which we lea e ith dista ce o f the s u w i t h respec t t o the t i me is proportio al ZP

'

.





If P T

n

,





1

a

2

7

r

n

,



z

z

n

s n

rn

,

n

n

s

z

,

an

n

o

n

o

n

RIG HT

96

A SCE N S I O N

AN D

D E CL INAT I O N

to t he Si e o f the pe pe dicular from t he pole through the We have also n

r

n

su n

.

N K = si n Z N si n

si n

the vertical circle

on

cos d si

(a

)

Ah w hen ce as be fore sec q!) co s ec a A z Th e o bserva t io n shoul d be so ti m ed t ha t

n a,

.

shall be as s mall as p ssible f the the error A will have the s m allest d m i f t h ossible e ff ec o the eter ati e hour a gle I t ollows t f p H e ce the prac t i al rule that shoul d be ear 90 or so well k o w t o the m ari er t ha t f t he de t er m i atio f the t i m e the al t i t u d e o f t he s shoul d be obser ve d w he t h s is o or ear t he pri m e ver t ical d oes t co m e t o the pri m e ert ical the s malles t If the s value f A h/A is e 8 By lvi g t h f rm ulae 1 d Ad h w h w E (3) f A 8 A b d ed uc d t h f r m ulae ( 6) f th b E 2 S h w g m t ricall y th at i f t h a u med d c l i ati err e u t t h ex t t A 8 t h err r the ce pr d uced a determi ati f b rvati f th u e ith di ta ce wi ll b t h h u r a gle fr m o

n

or

,

z

n

n

o

n

.

n

c

or

n

n

n

on

°

n

a

c o se c a

n

n

u n

no

so

.

.

n

o

or

can

x

on

eo

o

.

.

o

s

n

o



o

e

e

e

se

o

an

on

)

o

o

S

,

n

on

o

e

on



e

on

n

s

n s z n

su n

o

e

n

8 A8

.

er wh at ci rcum ta c i t h cha ge f e ith d i ta ce f a i r al m ti pr p rti al th r ugh ut t h d y t i t ch a g f

Un d b y t he d u n .

e

o

e s

o

c o t 17 s e c

Ex 3

ss

n

o

e

,

2 an

,

.

e

en

e

o

,

.

e

o

e

v

s e

z

o

x

u n

e

.

u n

e

n

n

n

o

.

s

es

n

n

e

s

o

z n

s

n

o

tar o e h u r a gle ? t t whe ce i d thi s m u s t b c W h ave fr m ( 2 ) A /A h = d) t h eq a t r d th ta t d t h e b erver m u t b tar mu t b c m u t b e a equ a t ri al tar b erv d e ith Ex 4 I f t h e h u r a gle i b e i g d eter m i ed fr m f a c ele ti al bj ect f k w dec l i ati S h w ge me t r icall y th at a d i ta c err r t mall err r A d) i t h a u m ed latitud e gt wi ll pr d uc e ¢A¢ i t h a i m uth i t h e h u r a gle wh ere th at thi err r wi ll ge rally b f l ittle c eque pr vided Sh w al t h o bj ect b e ear t h pr i m vertical T h t ri a gle P S Z i f r m d fr o m t h p lar d i s ta c e P S th Fi g 3 1 e ith d i ta ce Z S ( = ) d t h c latitude P Z Th h d m i t t h f t e aralla ctic a le e a ti ve c a u it ea t r i ia b o i p g ; g T h e t ri a gle P S Z i f rm ed fr m t h e p lar d i ta c e P S e ith d i ta ce Z S d t h c latitu de P Z d> A t ) D raw Z M SZ d S Z very d S L perp d icu lar t SZ th e cl o e to geth r b t S Z = SZ w m u t h ave SL = Z M L SZZ i t h a i m uth At th at SL = Z M = L PSZ = c ec q d SS = SL c + o ) s

on

o

o

o

a

an

e

on

o

s

o

n

e o

n

o

s

o

n

s

o

an

n

on s

e

s

a

s n a co s

z

o

e

,

s

s

e

on s an

e

u

o

o

an

o

o

o

an

o

on

n

,

an

e

s

.

°

.

s

n

e o

s

o

n

o

n

o

e

n

z

1

s

s

e

'

an

e

r

an

a



,

a se c

n ce

o

n

e

s

o



,

c

-

as

an

s a

.



'

.

co s a

c

n

n

s

n

os

.

e

s

e

so

se

o

'

o

'

s

o

e

as

e

.

se

en

z

on s

o

o

u

s

o

o

o

an

e



e

an

n '

e

e

o

s

co

z n

.

e



,

e

s

.

n e

s n ’

n

on

n

z

e

s

n

e

o

e

n

z n

s

s

n

s

n

o

a

,

n

n

ss

so

e

z

e

n

no

o

o

s

n

s

n

o

.

c

.

)

.

are

e

R I G HT i re ti ati g co c b t ai

D ffe we

o

n

cot

n

se

n

A S C E N S IO N A N D D E GL I N ATI

2

A

l



d ta n

co s

i ere tiati n

n

g aga i

si n ( )

co

th

h

co t

si n

-

d)

4) c

si n

o se

c

h

2

.

i

aki g ii2 0 w hav l A t Ac c c A g—E; c h

n an

h,

1 Go t

os

o se

)

—co t A D ff

c ec h 8c ch 8

1tan

co s ( )

oN

d m



n

e

,

e

2

2

o se

co

2

o se

,

a

an

d °A

d

dh2

here f e i f x b t h ch a ge f max i m u m a i m uth T

o

ta n A

e

or

e

n

of

si n

a i m uth z

2

8

.

in t

se

c

on

r

ds f

o

et

m t h e mo m

n

z

1 = 5 1 5 4 t2

si n

A

‘’

Si n 2



2

sin

1

8 ta n A

[ Math

.

.

ri

T p]

t i m e o f c u l mi n a t i o n o f a c e l e s t i a l b o d y A t t he m o m e n t o f u pper cul m i atio 2 9) the right asce sio n f the b dy is the sidereal t i m e T h e proble m o f fi di g t he ti m e o f u pper cul m i atio re duces there fore to t he disc very f t he right asce sio o f the body at the m o m e t whe it crosses t he m eridian T H E T I M E o r A STAR s U P P E R C U L M I NA T IO N I the case o f a s t a the com putatio is a very simple as the a ppare t right sce sio al t e s very slo w ly we e ; f al w ays fi d it by i s pectio fro m the tables d so have ca sidereal t i m e f u pper cul m i atio n a t o ce t h For i sta ce su ppose we seek the t i m e f cul m i a t ion o f A ctur s a t G ree w ich o 1 906 Feb 1 2 w hich fo t his particular d f m ur ose is co ve ie tly recko e ro a are t oo o Feb 1 2 pp p p t o a ppare t oon Feb 1 3 W e fi d i the e phe m eris f 1 906 h m t hat t he R A a t u pper cul m i atio Feb 10 is 14 11 22 4 2 i 1 0 days ; d there fore a t cul mi atio o I t i creases m h Feb 1 2 t he R A is 14 1 1 O tha t day t he si d ereal ti m e m at m ea oo f G ree wich is 2 1 2 6 W e t hus see t ha t A rcturus will reach the m eridia at m m m l 6 44 2 4 + ( 14 1 1 26 f si d ereal t im e a ft er m ea oo o Feb 1 2 We t ra s for m t his i t o m ea t i m e by the t ables give i th au t ical al m a ac m h l 6 15 5 7 ‘

36

th e

On

.

.

n

o

o

n

n

n

.

n

n

n

n

o

o

n

n

n

.



.

n

on

r,

a

n

or

n

n

n

n

r

,

n

o

e

n

n

n

n

n

r

n

.

o

,

n

n

u

an

.

n

r

,

'

n

n

.

n

n

n

n

on

n

.

.

n

.

n

n

.

n

n

n

n

n

n

.

or

°

on

.

.

an

n

.

n

n

n

n

n

n

.

h

n

or

n

h

h

h

n

n

n

n

n

.

n

n

.

e n

44 52

n

n

h

m

o

43

52 79 '

5 1 86

°



'

16 42

57

7 95 ‘

.

n

§

R IG HT

36]

A SCE N S I O N

A ND

D E C LI NA T I O N

cul m in a t io o f A rc t u r us there fore t akes place a t m Feb 1 2 16 42 I t h case f a m ovi g bo d y such as a pla et or the m oo whose right asce sio c h a nges ra pi dly fro m ho u r to hour w e f roceed as ollows p L t t he right asce sio f t he body be at t hree c o t t f w hich the tables g ive the calculated e u t i e e pochs t values d such t ha t cul m i atio occurs be tw ee t d t T he t aki g either f t he equal i terval t t or t t as the u i t f t ime d su ppo i g cul m i a t io occurs t u its a ft er t we h a ve by i terpolatio fo the R A at cul m i atio Th e

n

h

on

n

e

.

.

o

n

n

n

n

n

,

,

.

e

s

c

n

v ,

2

1,

n

n

an

n

n

a1

n

s

n

s n

an

n

n

o

n

,

a , , a , , as ,

r

+t

(

n

or

3,

,

o

.

1

2

3

n

an

1

n

2

n

n

.

— l

a2

n

s.

o

1

n

) (a

1

his w ill be t he sid ereal tim e of the b dy s cul m i atio L e t d let H be t he v a l e f 9 be the si d ereal t i m e at the e poch t u i t i i d ereal tim e T he at the m o m e t f cul m i atio th t h S i dereal ti m e is ’

T

(

1

,

n

e

n

o

s

n

.

an

,

u

o

n

n

.

n

o

n

n

e

Ht

01

t his

Bu t

m

.

ust be equal to the e pressio al ready w rit t e n

x

— 1 )

(

w he n ce

;

n

a1

Fro m this equatio t is to be d eter m i e d T h equatio is a quadratic ; but obviously the sig ifica t root f our pur pose is 2 G ) is a s m all i dica t e d by the fact that § t ( t 1 ) ( ap fore d e duce ua tity sol e the equa t io w e there T q f ro i a t e value r t by solvi g t m p '

n

n

012

al

n

n

x

t he n we i n tr o duce t his value solve the follo w in g si mple equa t io n Ht

011

an

n

o

d

91

3

n

v

o

.



an

or

n

n

t

(

01

a2

t

,

2 012

d

)

“3



TI

.

o

on

n

n

n

n

ean n o on

.

,

e

R A. o .

h

.

an

n

fo r t

(t

)

i t o t he sm all term



M E o r A P L A N ET S U P PE R C U L M I N AT IO N m m illustra t e the roc ss w e shall co ute the t i e e T p p atio o f Ju piter a t G ree w ich S ept 2 5 1 906 Fro m the au t ical al ma ac p 2 47 w e have l t di ff M f Jupit r 53 59 1 90 6 6 S ept 2 5 TH E

n

n

e

.

°

.

o

f

cul m i

.

,

,

s

.

2 n d di ff



.

49

40

20

40

46 7 1



'

—0° 68 ‘

.

RI G HT H en

ce the R A .

of

.

°

the w hich is

u iter t d ays a ft er oo n

o en t

cul mi atio t his equals the sidereal ti m e

of

n

n

m

t [24

12 13

whe ce t he equatio n

m

°

°

3

° 1

1)

0 3 4t ( t

2 6 90 t

30 39

°‘

°‘

m

°

1 2 13

°

[24

t

m

3

t he le ft ha d sid e N eglecti g the last t er m o all seco ds i t he firs t solutio we have n

n

n

n

n

18

w he n ce

0 77

t

d

o m i t ti g n

°

t ( 24

26

.

x

n

o

f t

i to

0 34 t ( t °°

n

n

e

°

an

,

,

m

°

n

-

I tro duci g t his appro i m a t e value it reduces to Th equa t io t here fore beco m es n

,

is

fo r t

n

is

25

.

0 34 t ( t

2 6 90t

°

e t

S p

on

n

°‘

°°

1n

m m

D E C L I NA T I O N

J p

6 39

At

A ND

A S C E N SION

m

12

2 6 90 t

30 3 9

°‘

11

m

°

m

°

t (24 3

13

ii 2 332?

w he n ce

2

s

m

)

° 1

.

0 7 6641 6

.

8

u iter s cul mi a t io will there fore be 0 7 6641 6 o f a m ea sola m G M T ( see N A 1 906 day a er n oo i e at 1 8 2 3 p T H E T I M E O F T H E M O O N S U P PE R C U L M I N ATI O N the m ti i so r pid t ha t the places I the case f t he m o F fro m hour t o hour as give i the e phe m eris are required the sake f illustra t io we shall co mpute the t i m e at which t h e 1 9 06 O t 2 9 m oo cul mi a t es at G ree wich m oo o tha t d y is 1 4 2 7 T h si d ereal ti m e at m ea T h m oo s R A at o ( N A 1 906 p ( N A p 1 75 ) i m m oti I f there were t ha t t h e t his woul d m ea 0 23 m us t cul m i ate abou t t o clock i the eve i g A t m oo m f the m oo is about 0 4 3 1 0 o clock t he R A d t hi sho w s that t he i terval bet w ee oo d the m oo s cul m i a t io i s m m abou t 10 1 6 f idereal ti m e or abou t 1 0 1 4 f m ea sola ti m e W e are there fore cert i to i clu de the ti me f cul m i a t io by t aki g fro m the e ph e m eris the followi g M l t di ff ’

J p ft

n

n

n

n

r

°

.

,

.

.

.

.

.

.

,

.

,



.

o

n

a

s

n

n

,

on

o

on

or

.

,

n

o

on

n

n

n

n

e

c

n

n

.

.

n

°

a



.

.

n

e

.

,

,

°

.

n o

.

n

on

.

.

on

s

.

,

n



n

n ’

.

.

en

o

n

n

n

o

n

n

n

.

Oc t 2 9 .

.

10

h

h 12 h 11

oon s R A .

.

s

.

0

44

m 1 5 6°

0

46



40

4 8 43 ‘

+1 .

.

0 ° 42 m

+ .

:

44 7 7 ’

5 6 34 ‘

n

n

o



1 906

n

,

a n

.

s

n

°

.

n

an

an

n

s

o

n

°

n

n

°

n

r

n

R IG H T

A SC E N S I O N

A N D D E CL I N AT I O N

For e xam ple l e t it be propose d t o fi d the ti m e w he t h e cul m i ates a t t he L ick O bservatory M ou t H am ilto m oo m T he lo gi t u d e is here 8 6 D e 2 5 1 90 6 C ali f r ia t i m e f cul m i a t io the G ree wich a d i f 0 is the local m e 0 m ea ti m e is 8 6 2 5 t he sidereal ti m e t Th e e phe m eris sho w s t hat o n D e m d the m oo s R A oon is 1 8 l 2 G ree w ich m ea m at 0 to 3 3 at 23 d i t is v ries fro m 2 1 9 also see that the cul m i atio at G reen w ich takes place a bo t m G M T I the followi g 8 the m oo s R A i creases 8 22 m about 1 5 ; he ce cul m i a t io will take place at L ick at abou t m m 8 37 loca l m ean ti m e or a bout 1 6 43 G M T Th e por t io o f t he tables to be e mployed i n the accura t e ca lculatio is there fore as follo w s n

,

n

n

n

n

o

,

c

on

.

an

n

°

n

°

n

.

,

n,

n

,

n

o

n

n

,



.

c

n

n

n

°

a

°

°

n

n

°



n

.

.

an

u

°

n

n

.

.

an



n

n

n

.

l

°

°

a

.

n



.

n

.

n

°

°

,

n

.

.

.

n

G M T .

De c 2 5

1 90 6

.

16

.

.

.

h

l

.

i

d ff

st

2 n d diff

.

.

.

m 1 +

17 5 5 63

+1 18 °

54

Le t 8 6 T

hen

O 91 ‘

°

6



16

w here t is a fractio n

t, m

°

9

7 53

t

S

a

n

n

o f an

hour

.

.

idereal ti m e t L ick correspo di g t i m e 9 is fou d as follo w s T h e si d ere a l t i m e at G ree wich m m ea oo 18 1 2 T h e L o gitude o f L ick Th e



to

n

the loca l

m ea n

.

n

n

n

°

n

n

(3

m

1

1

x

19 9 3

e pressed i m sidereal ti m e 7 5 4 42 88 ( 1 0 9 8 6) t A ddi n g these t hree li es we ob t ai n t he si d ereal ti m e o f the m oo s 2 8 23 9 4 t pper cul m i atio a t L ick (1 0 T h e R A o f t he m oo at G M T ( 1 6 t ) is (7

°

m

53

t)

25 l l °‘

x

n

°



°“

n

u

n

.

n

°

n

50



.

.

.

0 04 t ( t °‘

t

is a bout t he thi d to fi d t w e have As t

an

rd

term i this e pressio is

m

8-

9 8 6)

°

m

n

n

h

2 8

m

° 1

°

n

2

°

°

.

.

°

° 1

°-

2 3 94

t (i

h

0

2 50

x

n



R IG HT

36—3 7]

A SC EN S I O N

A ND

D E C L I N A TIO N

7 1 7 103 hours



m

43

H e n ce

the cul m i atio f the m oo at L ick t ook place at m m 1 6 4 3 1 5 7 G ree w ich m ean t i m e or a t 8 36 local m ea ti m e n

°

°

n

o

n

°

n

n

,

.

tt i n g o f a c e l e s t i a l b o d y T h e ti m e o f isi g or setti g f a celestial bo dy is m uch a ff ec t ed by re frac tio P o tpo i g t he co si d er tio f the eff ect to a l t e c h a pt e ( V L ) we here give the for mulae f o f re fra c t io fi di g w hen a celestial body at m ospheric i fl ue ces a pa rt is the hori o i e 90 fro m the e ith 37

Ri si n g

.

d

an r

se

n

n

n

s

.

a

n

.

n

r<

n

n

a

°

n

,

.

o

or

n

,

z

n

r

n

n

o

n

z

.

F IG

n

on

,

.

32

.

.

Fig 32 the poi ts N a d Z a e t he orth pole n d the e ith res pec t ively P is a star a t the m o m en t o f risi g or setti g w hen ZP W e have there fore In

z

n

r

n

n

.

a

n

n

.

n

8 w h e ce cos h t t a t P rovi d ed the star be o e w hich rises d sets at the latitu d e f the observer there are t w o solutio s h correspo d i g t o setti g a d 360 h corres po di g to risi g b f i re ar e d h w th a t e ct E 1 t t U le t d ) j ( g g j et i a pl ce f latitude I d ec l i ati 8 eith er r i e E h w that t h umb r f h u r i 2 If t h N d e cl f a ta i f a plac e w hich i dereal d y d uri g which it wi ll b b el w t h h ri th h latitude 30 i 8 136 E 3 i 1909 i 19 39 N d t h latitu d e T h dec l i ati f A r ctu r f Camb ri dg i 5 2 fi d t h h u r a gl th r ug h w hich t h tar m ve b etw e t h ti m e at w hich it ri e d th a t at which it cul m i at n

an (

n

n

x.

n

a n a n

.

a

.

o

e

e

n

s

e

o

r

s

n

s

n

.

n o

s

S

e

an

o

S

a

n

()

o

e

o

e

o

n

o

o

o

.

e

n

zo n

o

o

s

n

o

s

o

.

e

.

.

n

n

°

as

s

n

,

n

s

s n or s

s

e

s

x

n

n

.

.

e

ss

n

.

on

x

°

n

,

o

an

n

n

.

°

us

on o n

e

o

s s an

n

n

s

e

°



.

an

e

e

o

n

es

s .

RI GH T

1 04 Ex 4 .

8

a ,

d

an

d S be t h e

"

to

i dereal ti m f ri i g ti me f etti g S h w that r t f t h equatio

Le t S be t h e

.



an

A S C ENS I O N A N D D E C L I N ATIO N

oo

n

s

o

t h e t wo

a re

e o

s

o

.

s

oo

os

s are

n



co

n

e

s o

a tar wh e c rdi ate S where

of

s n

c o s co

= — tan

ta n 8

¢

.

er w hat c diti w uld t h a i muth f a tar remai c ta t r ri i g t t a it ? tar i t h ave a c ta t a i m uth it m u t m ve al g a great If t h ci rcle pa i g th r ugh t h e ith H e ce t h tar m u t b t h cel ti al th equat r d t h p le t h b erve h ri th b erver i t rre trial equat r E If p b t h latitu de 8 t h d ec l i ati d h 6 f a c le tial b d y i t h u r a gle wh e ri i g etti g h w that whe r fracti i t c idered Ex 5 .

Un d f om

.

n

on s

e

s

on

x

o

.

o

s

o

z

n

s

n

n

z

n

.



s

o

e

e

r s

zo n

o

e

s

s

.

,

e

on

o

s

on

e

i

o

es

e

on

s

e

.

e

(

.

z

on

o

e

n s

e

e

an

o

on s

o

s

e

r

o

s

ss n

o

o

s n

ons

n

e

e

,

n

s n

or

s

n

n

S

,

on

e

o

on

e

n

o

an

o

s

s

n o

ons

co s 2

2

Ex 7 .

an

y

s

S

.

tar pa

du

1

( ) se c

8 c o s ( qt

i terval b etwe t h e ti me at which e E a t a d t h e ti m e o f i t etti g i c ta t [M ath T r i p ] tar wh e d E a t Z t h e ith d P f th p iti T h e L E ZP = 90 Z P = 4 5 d Z P i s pr d uced t J S i ce d Z H = 90 i s i fle ct d f m Z o

h o w th at

s se s

= se c h §

latitud

in

s

45

e

°

the

en

n

n

n

on s

s

n

s s

.

.

.

Le t E b e t h e

le that

t h e po so

(Fi g

os

on

o

s

e

°

n

.

PJ

°

,

F I G 33 .

o

n

n

.

t r i a gl Z B E H e ce t h h ave Z P = P J d tri a gle w a d J PH d E P = HP d a s H i 90 fr m t h e ith it i t h p iti n f e eq u al th at half a idereal d y lap e whi le t h e tar m ve t h e tar at se tti g

ZJ = Z H = n

we

o

an

,

n

mE

to H

Ex 8 .

Eas

t at

.

ZJ H =

th r f re

d

e

e o

i n the

n

n

e

,

an

°

s

so

o

s

e z

a

e

n

e

s

s s

es

n

os

o

s

s

o

o

s

.

tar wh ame ti me a

T wo

the

an

an

s

r

L

e

,

ar

f

h ave

o

ro

e

n

an

z n

e

,

an

,

°

an

s

u e

n

s

s

s

o se n

d

ecl i ati al t

d

n

so

o

o n s a re se

t

at

81 , 8 2 the

s

a re o b s

erved

am e ti m

e

;

S

t o be i n the

h

o

w

that

t he

R IG H T cele tial

her

sp

s

( F i g 34 ) m o .

e

A SCE NSI ON A N D

by thes

ve ver s o

i e

of

n

the

SS = c o s 8 d i

D E C L IN A T I O N

latitude

In t he

.

If S T b e pe rpe n

'



.

al ti m d t t h ta S d icu lar t Z S w h ave s

m l

S T = S S s i n S S T = c o s 8 co s n d t = s i n He n

ce

S ZS

¢ dt

si n



F I G 34 .

e s

o







e

(

pd t

r

e

.

.

.

t t tu d e a n d l o n gi tu d e For certai cl a sses o f i vestigatio w e have to e m ploy yet an other system o f c o ordi ates o t h e celes t ial sphere J ust a s the e quator has fur ishe d the m e a s f d efi i g the right asce sio a d the decli a t ion f a star so the ecliptic is mad e the bas is f a syste m o f coordin ates k ow as celestial lo gi t ude d latitude We e mploy i t his e w syst e m the am e origi as be fore T h e first oi t f A ries is t he origi ro w hich lo gitude is to be T f m p m e sured f t h e m easure m e t is t be that o f d t he directio the appare t a ual m ove m e t o f t he s alon g the ecliptic as i dicated by t he arro w head o Fig 3 5 A great circle is dra w fro m t he le K o f the ecli ptic t hrough the sta S d t he i tercept TS this great circle bet w ee the s t ar d t h e eclipt ic is that coord i a t e w hich is called the l ti t de o f t he t ar Th e lati t ude is posi t ive or egative accordi g as the s t ar lies i the he mis phere which co t ai s t he ole or t he a t i o l e o f t h e ec l i tic m Th the ecli t ic f ro the origi n T to T e e p p the foot f t h e per pe dicular is called the l o gi t de w hich is 38

Ce l e s i al l a i

.

n

n

n

n

.

n

n

n

o

o

n

n

n

n

an

.

n

n

an

n

nn

o

u n

n

-

.

,

an

.

n o

n

r

on

n

n

n

an

s

a

,

n

n

.

ar n

n

u

n

n

.

o

o

n

n

n

.

n

s

o

n

n

n

o

n

n

a

n

,

n

n

n

.

n

n

on

n

,

,

n

u

,

§

RIG HT

38 ]

A S C EN SIO N A N D

D E C L IN A TI O N

the seco d coordi a t e T his is m easure d rou d the circle fro m 0 to so that i f t h e righ t c e si obj ect f the ecliptic is i cre sed its lo gitu d e is also i crease d Th e reader will f course observe t hat the m ea i gs o f t h e words latitude d l n gitude as here e xplai ed i their a s t mic l sig ifica ce are quite di ff ere t fro m the m ea i gs o f t h e sam e w ords i their m ore fam iliar use with regard to terre trial m atters I t is usual t e m ploy the letter A t o e press t o o m ic al lo gitu d e n d B t o e press ast ro o m ical latitude thu s n

'

n

n

.

°

as

n

a

n

n

on

.

o

an

n

on

.

o

an

o

n

n

n

a

n

n

n

ro n o

n

n n

n

s

o

.

n

T T = 7t

d TS =

a re

equa t or ecliptic

x

a

an

Th e

x

an

of

d

as r

n

n

,

S

.

the solstitial colure L H i t ercepted bet w ee t h e the ecli ptic i s equal to the obliquity f t he n

n

o

.

F IG

.

35

.

be the R A d decl f S t he t he for m ulae f t ra s for matio are obtai ed either fro m the ge eral for mulae f a d fo the 1 2 or directly fro m the tria gle S E N ( Fig d lo gitu d e w e have the equatio s d e t er m i atio o f the latitu d e i 8 si cos 8 i si 3 cos If

a,

8

.

.

o

n

,

n

n

n

B

si n

X = si a

n

r

n

to s n

n

o

.

an

n

cos

or

n

n

n

an

n

n a)

in 8 +

S n a

co s w co s

8 si n

a

cos 8 cos 7x cos 8 cos d 8 are k n o w by w hich w e d e t er m i e 8 a d X whe It is ge erally easy t o see fro m the ature f t he proble m w hether t he lo gi t ude is greater or less t ha Whe t his is k o w o n e o f the l a s t t w o equatio s m y be d ispe se d w ith W e c a m ake these equatio s m ore co ve ie t fo log ith m ic a

,

ca n

n

n

n

n

n

a

an

n

n

n

n

a

n

.

o

n

n

n

n

n

.

n

n

r

ar

n

R I G HT

A SC ENS I O N A ND

w ork by t he i n tro duction

[

D EC L I NAT I O N

CH v

au iliary qua ti t y M A S T L so d we have that t M c sec t 8 i B w ) cosec M si 8 i (M B i A i 8 cos ( M w ) c sec M cos B A cos 8 cos Th e for m f t he equa t io s shows t hat a cha ge f 1 8 0 i n t he t a ff ect t he resul t d pte d value f M d oes E t h a gle subte d ed at S by K N I f we re pre e t by 90 w e have fro m D ela m bre s f r m ulae cos ( 4 5 J; ) cos } ( E A) s ( 4 5 5, B ) cos {4 5 l ( 8 4 i J E 4 s 5 4 cos si A 5 8 5 + B ( ( ) ) } ) } ( ; ) ( { l J m) l cos ( 4 5 si ; (8 } ) A( E 7x) i ( 4 5 } B ) i {4 5 cos 3 (E A) i ( 4 5 4B) i 45 —} ( 8 w ) } i ( 4 5 } ) by which A d B well as E be d e t er m i ed I f it be require d t o solve t he co verse proble m a m ely to d eter m i e t he R A d lo gi t u d e are d decl whe the lati t ude give we have by tra form atio f ( 1 ) i 8 = cos s i n B + si w c B i X cos 8 i si si B o cos B i 7x cos 8 cos cos B cos 7x E d dec l i ati le f t h 1 S h w th at t h r i g ht a ce i f th ecl i ptic re p ctively right a ce i 90 d th at t h d d ecl i ati f th l ti E 2 If R th d decl f t h p i t f t h e l i ptic wh e 8 l gitu de i A h w that o

an

x

an

s n

n

s n

S n

,

o

a

,

.

n

o

n

n o

o

o



n

e

°

a

»

°

n

°

s n

°

as

an

n

.

°

n

a

s n a

n to

a

,

,

,

n

o

n

s n

7

n

,

an

n

ns

,

a

.

n

.

1

°

s n

1

ca n

an

.

,

°

n

n

a

°

s n

,

°

s n

x

1

s n

1

s n

°

co

1

.

n

°

co

n

o

o

°

a

°

.

°

n

s

,

s n

co s

a

n

an

an

a

cos

f

o

n

os

s n

s co

c

s n

a

x

.

o

.

s

are

n

x

o

on

.

e

n o e are

a re

a ,

on

s

s

,



°

e an

.

ns on

s

e

e

.

.

If

.

A

.

an

an

e,

p

d

0

2,

o

.

A=

c

os a co s

si n

A sin

a)

si n

si n

Aco s

a)

= Si n

82 b e t h e

R A .

e

s

on

g

itud

s n

x

.

°

e

.

an

an

.

.

n 0)

a1

s

If

e s

a

e

an

ns on

o n

o

e

c

os

8,

co s

a

d d

an

.

8

.

ec l

of

.

two

s

cos a l

)

ta which have rs

o

n s on

e o

o

Ex 5

ag

s

o

no

8,

r ve th at = i ( ) ta (t 8 E 4 T h ri g ht a ce i f O ri i i d th b l i quity f t h ec l i ptic i 2 3 +7 d latitu de f t h tar re pecti vel y 8 7

t he

ame l

81

e

o

e

an

cu

o

al ,

on

n

to

cos

Ex 3

an

o

on

a

s

s

h

5

49 m

.

S

°

h

o

w

B

°

:

,

i t s de

that

cli ati

the

n

l

on

16

' = 2 3 2 7 32 w

:

.

.

°

°

' = A 3 5 9 17 °

s

°

s

6

t a n 82

1 co s 0 2

e

a re

= 6° 33’ 2 9

o

an

17 3 5

'

s

h w that o

on

g

is

itude

R IG HT A SC EN SI O N A N D D ECL IN AT I O N [C H V h t aralla ctic a l a i t h r i h th a t a i ve la titu e f S w f d p g g p d b cal culated f t he y h ur a gl b y t h f rm u lae qu a titi .

ta n 8

ta n



a

co t

:

e

o

dc

h,

os

)

zo n

o

.

or an

e

e s ca n

n

se

on

o n

e o

n

s in a

= + s i n qt t a n h ,

o

= — si n h

'

+ si n

cos

or

n

co s

e

e

8

cos a

8

si n

1

( ) se c

n

)

o



= + se c ( ) s i n 1

'

= + si n h

q

cos

re p cti vel y t h d ecl i ati d t h h r a gl f a tar d e ith d i t a c b ta i t h f l l wi g f rm u lae b y which i t a i m uth th at latitude t h val ue f b ea i l y det rm i ed wh e f ) h m d t e fi e i t la t exa le c rre i h k w d d ) p p g ( Ex 7 .

I f 8, h b e

.

n

n

n

si n cos

8

.

h

ave

fo r

(a (



a

a a

on

s

e

r

i ll u t rati e ith d i ta c d a i muth i i ve th a t h d e c l i a ti t g As

.

n

on

n

e

n



1 9 44

s

S

.

.

o

o

a

e

o

o

an

a n

o

s

n

.

la t xampl

the

e

we

cal c late

the

s

e

e



(8

an

the

e

r

,



d the

ca n

s

e

E xs 6

W es t

e

d 7,

u

h u r a gle 2 n

o

i

be

°

n

g

latitude 5 2 determ i ed b y b rvati ti me f b ervati h h ur rm ul a i appr x i mat l y an

n

o

o

an

.

°

e

e

an

of

e

s



in

s

o se

b latitude qt f t h p le tar which at t h f t h al titu de d th at t h f d a p lar d i ta ce p gle h E x 10

h w that

s

f t h e fo m °

n

a

o

on

s

s

on

se

o

as a n

o

e

o

ht ¢ pc h+5 i l p i e ith d i ta ce whe a ta 11 S h w th at t h h u r a gle h d th E d e W e t m y b f u d f r m t h equ ati i s d e E as t = i h c 8= 1 i h c i 8 = si ¢ o 8 s ; ; ; qt d t h l wer S i gn i t h e latte r b y u s i g t h e u ppe r ig i t h f rmer ca Fi d t h e fi r t d ec d d i ffere ti al c efficie t f t he e ith E 12 d i ta ce o f a tar w ith res pect t o t h h u r a gle W ca i ve tiga t thi s ither fr m t h fu dame tal f rm u lae ge o m et ricall y f ll w Fi g 3 6 rth po le Z t h e ith P t h e tar I t h ti me d h t h tar N i th h m ved t H w h ere P E i perpe dicu l a r t NP d NH If P Q b e pe rpe d icular t Z H th e =a —

x

o

.

.

or

u

e

c

s

n

x

s

n

n

as

o

o

n

co s

n

e

s

an

o

s

e

e

s

o

o

n o

os

se a n

e

n

h ave al da

w

h e ce n

oos

2

os

o

n

co

c

o se

s o

n

n

n

o

z

z n

or

s

.

n

n

e

o

e

an

.

n

c

z

.

c o s ( ) si n a

1

dh

.

so

PQ

PH

c o s 1;

da

dh

co s

c ec os

8 c o s 7)

z

co s

c ec os

r

s

.

e

,

s

,

n

n

o

dz = H Q = H P s i n ”= c o s 8 s i n q dh =

We

n

on s

s n z

o

ze n

,

o

s

e

o

.

.

,

o

n

.

an a

e z n

on

e

s,

z s n

o

e

n

as

s

e

g

an

s

2

e

n

n

.

.

n

s n

s z



s n

o

a

s

u

n

s n

os



(8

n

a

n o

'



n

a

o

s

e 2

n

s

8) s i n q ,

(8

r ula f A r ctu ru a t t h

o

z

e an

n

s

z n

,



ua titie u ed parallactic a g l ) c c (8 (

co t z co t

o

are

s

e o

n

8) c o s

s

si n

on

s

an

o



co s

:

q



c o s 7)

z



o

s i n 7)

.

z = si n

h w th at w ith t h d e term i i g ) t h e s tar S

.

n n

Ex 9

(8

Si n 2

an

a

n

co s z = e n

) si n )

z

ou

e

o

,



e

or

i

Ex

o n an

s

s

e

n

n

as

e

o

e

s

e

ca n

n

o

o

e

n

o

e

s

z

8 c o s 7) .

c ec os

z dh,

s

§

RIG HT

38 ]

ec with re pect

T o fin d t h e

fo r

u

n

d

ad ia

s

AND

to

en

i

an

ss

111

D E CL I N AT I O N

i er ti al co e ff cie t w h d a u mi g th at

d d ff

on

s

A SC EN S I O N

n

n

i ere tiate

d ff

e

an

a

d h

bo

a re

ab ve th expre ed i d z/d h

n

as

o

ss

n

n s,

— co s

¢ cos a

— co s

¢ cos a

FIG

dh



8 c o s n c o se c

cos

.

36

z

.

.

a tar ex c ed t h latitud h w that t h m t rapi d ra te f ch a ge i e ith d i ta c b y d iur al m ti i equal t th i f t h d ec l i ati tha t h latitude I f t h d c l i a ti b le h w that t h m t rapi d rate f cha ge i e ith d i ta ce i equal t t h i f t h latitu d e E 14 If ith d i ta ce f b j ect at t h h r a gle h b th d if b th e ith di ta c f t h ame bj ect at t h h ur a gle h which i very ear t h h w fr m E 12 that E x 13 .

If t h e dec l

.

os

o

e

S

co s n e

o

o

e

e

cos ne

o

.

e

n

n

n

n

on

z

e

s

s

n

e

.

o

e

30

e ze n

z n

o

of

on

n

e

e

e

n

n

n

n

e

on

e,

S

o

on

ss

e

n

o

s

e

n

s

z n

o

,

s

e

o

.

.

e

2

n

os

e

x

i ati

da

s

o, S

n

o

e

o

s

e

x

o

an

o

n

s

o

e

o

e

o

ou

n

0 an

n

s

.

—h 5 c ¢ i 2 2 i 1 h co 8 ) 5 ( c ¢ where t h e ith d i ta ce expre d i arc d t h h ur a gl i ti m e E r i f me u reme t f e ith d i ta ce f t h e am e 15 A tar e m de at cl ely f ll wi g h ur a gle h h L t h b t h r ithmetic m ea f t h e ith d i ta ce d h u r a gl S h w that t h e val ue f co rr p d i g t h i b tai ed b y applyi g t t h c rrecti 1 — 2 25 i 1 h 2 c c c 8 < ) ( 1 25 z

—z

1 5 (h —h0 )

os

~

0

e z n

x

.

s a

2

es

on

o

n

o

s

o

,

z n

o

n

s o

co s a

s

00

o

n

es

e

n

s

n

s an

n

co s

an

n

s o

n

e z n

ns o

o

o

0

s se

as

os

2

s n

~

s a re

es o

a

ar

n

s

se

.

s n a

s

s z,

l



es

n

o

o 2

n

n

n

s n

co s

) co s a

os

co s 1

o se

2

r

I



e

,

.

s



z

o

.

n

z” o

e

.

o s e c z,

o

e

20 ,

o

on

e

RIGHT

aki g A — d i h av fr m t h la t qu ti M

s

we

) s n a

cos

n

e

i

g

d d

an

iv i di

n

5 2 25 si n

:

= Zo + A

22

= Z + A (412 o

=

g by

1

4) c o s a

co s

co s

8

c

oe

n

c ec os

2,

on

ZI

zn

a dd n

,

es

s

e

o

B

D E C L I N ATI O N

AND

AS C E N S I O N

(hi

ho) + 3 (i

n

( k2

720) + 3

h 0)2 7

A (fin

ZO +

n



i = 20+

3

(h

—h

r

)

2

0

,

which pr ve t h th e rem T hi f rm la i u efu l wh e it i d e i ed t b ta i t h b t re ul t f r m a ri f e ith d i ta ce t ke i rapid ucce i 16 S h w th at i f t h h u r a gle f a tar f d ec l i ti E 8 b h d h wh whe it h t h a i muth it h t h a i m uth 180 + t h b f u d fr m t h eq u ati latitude I o

s

o

es o

se

x

e

s

o

s

u

.

n

s

s

n

z

.

n

a

s

n

as

n

e

ca n

()

e

n

o

=

¢

n

es

s

o

.

o

s

as

en

e

o

ta

o



an

a

z

n

o

e

n

ss o n

s

n

e

o

.

o o

s r

s

na

on

°

z

e

e

a

e

on

ta

n

rth latitude 4 5 t h greate t a i muth attai ed b y f th P r ve that t h cir cump lar tar i 4 5 fr m t h rth p i t f t h h r i tar p lar d i ta ce i [ Math T r i p ] fi d th latitude i f t h l c al idereal time b E 18 Sh w h w t tar h ave t h am e a i muth b rv d a t which t w k w tar h ave t h a im uth are T h h u r a gle h h a t which t h t w k w d ( p 3) E x 17 .

In

.

o



s

s

x

o

se

no s

s

s

o

.

°

°

s

n

n o

n

an

n

o

n

no

n

.

i

n

n

s

s

e

e

—co s

h

c o t a si n e

zo n

e

,

co t a s n

n

o

e

e



s

wh e c eli mi ati

o

on e o

e

o

.

e

.

o

o

n

z

o n

e n o

o

o

e

e

s

s

o

.

e

h = ’

s

z

s

o

j

8 + si n

e

1 ta n

8 + sin

p

h,

t

h

c co s



(

e

.

s

t a n

co s ( )

s

o

co s

z

a



,

a

g

ta n 8 si n h Sin



— ta n

(h

'



8

s in

h

h)

im l ta e u sl y b rved a t t w a e eri ia at a t im e whe o th g pla ce t h decl i ati f th P r ve th at i f j) b t h latitu de f i 8 f th e f th i r latitude i appr x i ma te l y place t h di ffer c Ex 19 .

o

Tw o

.

se

o

e

on

n

s,

al titude i g hb u r i

n e

e su n

o

e

en

of

s

e o

the

o

.

e

B

an

s

e

8

e

u

s

.

l

on

g

itude

S

.

,

an

h w that

d

o

a)

t he

ob

if

a

s

u

f th e

e

is the

l i quity si n

o “

1

(s in

Si n

e

al titude i t h pri m cl i ptic t h latitude f t h ’

e

n

e

,

si n

on e o

o

Bsi n

n s

a)

o

n

xam ] vertical L i t plac e i

[C o l ] Ex 2 0

n

o

s

Bco s

d B+ AB, a re m m d n

(

,

s

ABc o s

,

s on

n

s

su n

L /s i n

a

e

o

)

.

E

.

,

e

s

s

.

h o w h w 1) t h latitude m y b accurat ly f u d fr m b erved e ith d i ta ce f a b d y f k w d c l i ati o ear t h e 8 wh e meri d ia a um i g appr xi mate val ue Ex 2 1 .

o

s

S

.

o

s

z n

n

,

ss

n

e

(

o

n

as

an

a

o

o

o

n o

e

e

n

e

n

n

o

n

o

n

n

an

R IG HT

1 14

A S C EN S I O N

AND

[

D EC LINATI O N

OH

v

.

extr mely mall d m aki g i B B i 1 w b ta i t h d e i r d r u l t d T ab le f X Y i each d y th r ugh ut t h y ar gi ve i t h ph meri d Z f 23 A u m i g t h M i l ky W y t b a g reat c i r c le f tar cutti g E 18 d m aki g a gle rthward m ea u red t h equ a t r i with t h equat r det rm i e t h d dec l f i t p le 24 A pla et h el i c tr ic rb it i i cl i ed at a m all a g l i t t h E h w th at i f i t decl i ati i a max i m um e ith er t h m ti i e c l i ptic latitude va i he t h l g itude i appr x i m atel y 90 + i t i wh re i t h l gitu de f t h a c d i g de i a m ax i m u m t h pla t P m u t b 90 fr m t h A t h d ecl i ati i ter ecti N f i t rb it with t h equat r T h pr j ecti f N P t h ecl iptic w ill al b early L t N T b t h per p dicu lar fr m N T 83 t h ecli ptic wh ere T i t h ver al q ui x de d 88 t h a ce d i g mall t ri a g le N T T w h ave t d i th I th i TTt NT tri a gle N T 88 w h ave t N T i ( PT ) t i T T) H e ce i i ( t i T T= t T T= i d appr x i ma tel y t i whe ce t h pla et l gitude i i ge eral 9o + i t i ca e

In t he

x

.

o

e

n

x

R A .

s

n

on

o en

o

s

e

e

s

n

n

e

n

s

on

s

4 P M .

.

.

n

co

e

o

n

e

n

on

e

e

no

an

on

Mo on S

tar

7 10

on

n

e

a

s n a

a

e

o

on

o

e

o

e

an

°

en

n

s

n

a n a) ,

s n

n

°

n

.

37

on

n o

an

.

e

n

.

co

a) ,

co

a)

s n a

n

.

n

e

n

s

,

56 9

N

24

3

31 6

N

12



na

e

°

s an

15 24

on



d t h e mo o n

be



°

12 m

8

.

.

s en s on

°

e

a) s n a ,

s

e

o

e

o

e

h w th at t h tr ue d i ta ce b twee Regu l u G r e w ich m ea ti m Ja 6 1 909 i 4 1 5 9 i D cli t i R i ght A c S

a)

o

e

e

s

.

a

F IG

Ex

s,

n o

s

ne

r

s n

co



e

S n

o

an

n

an

an

s n

n

s,

.

°

o

e

an

.

s

,

e

:

o

s

e

n

e

n

n

s

,

,

.

o

n

n

o

e

e

s

e

s

o

n o

s o

e e

n

s

s

s

n

s n

:

.

o

.

s

n

es

s n

e

an

on

on

,

e

o

o

n

s en

on

so

n

s

e

n

.



e

a re

n

e

s

e R A. an

n

s, o r

e

s

n

e

o

e

an

e

n

s

on

e

e

an

o

n s

n

a

°

n

s

o

e

.

,

.

.

S

s

n

o

e

o

o

ss

.

e

e

a

or

an

B is

su n

co s

an

S n

the

of

s

40 45



i

n

g g

i ve

n

at

§

R IG H T

38 ]

A SC EN S IO N

A ND

D E C L I N ATI O N

r ve that f tar which ri t t h rth f ea t t h rat at which t h a im uth cha g i t h ame whe it r i e whe it i d ea t i d i a m i i m um wh e t h a i muth i t i — A r th f ( 2 a t wh re ) i t h latitud d t h al titude f t h tar whe d t [ M ath T r i p 190 2 ] f t h al titu d S h w th a t b ervati f tw k w tr 27 E at a k w Gr e wich ti me u ffici e t t determ i e t h latitude d l gitude f t h b erver Sh w h w fr m th e b rvati t h p iti a terre trial gl b e f th b rver m y b f u d g raphic all y tar ch e f b ervati f t h m eri d i a If t h pp ite i d e h w th at t h err r i latitude d l gitude d t t h m all rr r i t h b erved al titu de f ea h tar r pecti v l y Ex 2 6 .

P

.

e

or a s

z

es

n

n

s

an

o

n

se s

s

e

e

s

o

e n o

z

s s n

s

s s as

n

e

,

n

s

e

u e

s

,

a

l



o

an

s n

n o

o

co s a

s

e

e

,

e

s

t

e an

e

a

o

e s

n

u e e as

.

x

.

o

.

n

no

e

o

o

e

S

o

o

s

are

s

o

e

e

o

s

c

wher

e

d)

se c

i s the

(

)

s

o

(

o

on

on

s

are

—0 2)

a re o n

d

o

o

n

e

se

e

o

os

on

.

s o

e

n

o

e

e s

6

I

se c ( ) s e c

n

e

a

l

,

2a 2

on

a re

t he

z

s o

n

on

f the ,

s

190 2

tar

s

]

,

e

(a 1 + a z) s i n (a l

a i muth [O xf rd Sec d Pu b l ic E xam i ati o

s a s

n

an

ons

s

o

no

e

tima ted latitude a n d 2

an

os

u e

es

.

s

O

on

es

a l

es

n

+

CO S

o

o

0 1

a 2

es

n

an

n

o

6

or o

os n

s

o

e

o

s

o

.

a

se

e s

on s

s

n

e

o

on

o

.

C H A PT E R V I

M O S PH E R I C

AT

law

.

I

F

RE R ACT O N

.

tical re fracti m ical re fracti A str Ge eral th e ry f at m ph eric r fracti I t grati f t h d i ffere tial equati f t h e refr cti atm pher ic refracti f rm u la f Ca i i atm ph er ic refr cti O th r f rm ul a f d te m p rature r fracti Eff ct f at m pheric pre u re f at m pheric re fr cti fr m b O t h de te rm i ati vati h ur a gle d decl i ati E ffect f refracti t h app re t d i t c e f t w i gh b u r E ff ct f refracti i g c le ti al p i t th a gle f a d ub l tar Effect f refracti p iti Th e

s of op

on

on

on o



ss n

s

or

or

a

os

on

a

on

on

on

an

ss

n

e

n

or

os

os

o

e

on

n

o

e

on

e

e

o

e

os

o

on

e

n

o

o

n

os

o

on

e

a

on s

e

on

o

o

se r

on

on

o

e

n

o n

s

on

o

n

o

on on

o

e

on

an

s an

n

a

e

on

n

o

o ne

o

s

e

on

os

on

o

n

o

s

e

r e fr a c t i o n t I f a ray f ligh t A O ( Fig 38 ) m ovi g through o e t ra s pare t ho m ogen eous m ediu m E H e ters at O a differe t t ran s pare t ho m oge eous m ediu m KK the ray ge e lly u dergoe a su dde cha ge f direc t io d t raverses t he n w m ediu m i t he d i tio OO T his cha ge is k ow as ef a cti o T h ra y A O is called t h e i cide t y d t he ray 0 0 t he re fracted y d both t he i cide t ray d the re fracte d ray lie i t he a m e pla e through the or mal t O t o t he surface se parati g t he m edia orm al a t O t o t he sur face separati g t he t w L t M ON be t h is k ow as the a gle f i ci de ce d m edia t he A N OA as the a gle f re f cti n d t he fu d a me tal law is e pre sed by the f r m ula o f re fractio

39

Th

.

laws

e

f

o

o

p i c al

o

.

n

.

n

n

n

n

o ’

n

ra

an

n

n

s

n

r

n

n

n

e

n

.

n

n

n

n

n

r

n

re c

e

.

'

n

n

ra

n

n

an

ra

an

n

a

n

s

.

n

n

n

,

n

n

x

an

n

n

e n

e

,

o

n

n

o

ra

,

an

o

n

n

o

n

an

n

o

s

Si n « f

i

i

I

u. S n ( ),

,

w here p is a certai n con s t a n t de pe n di n g o n t he char ac t er o f t he t w o m e dia If by a chan ge i n t he directio n o f the in ciden t ray .

.

ATMO SP

H E R I C R E F R A CTI O N

[O H

VI

.

the m ediu m K K is parallel to the u pper surface the ray its e m ergen ce at 0 i t o a secon d layer f the m ediu m E H o O A w hich is parallel to the i ci d e t w ill pu sue a directio directio A O T hus w e lea that a ray f light o n passi g through a pa ra llel S ide d ho m og e eous plate is o t cha ged i doubt be shi ft e d laterally A s w e are d irectio though it w ill f ra ys the lateral shi ft o w o ly co cer ed w ith t h e d i e t i o s eed o t be at t e ded to L e t u be the re f c t ive i de x fro m m ediu m E i t o H L Fig e t f be the re ractive i de fro m E i to H ( u it is r equired to fi d the re fr ctive i dex fr o m the m ediu m E i to H f

o

,



n

n

o

.



n

r

n



n

,

rn

.

o

n

n

n

r

n

n

.

n

n

c

n

o

.

ra

,

n

a

,

n

,

.

n

n

n

no

n

n

n

n

-

n

n

a

x

n

1

n

,

2,

n

,

z.

F IG

.

39

.

ray fro m H through parallel plates o f H a d H e m erges i H parallel to its rigi l d irec t io ; d i f i d 6 be t he uccessive gles f i cid e ce t h e fro m t h e first i cide ce n d t h e last e m erge ce w e have the equa t io s A

n

an

o

n

n

an

n

n a

o

o

s

n

1

,

«f

,

)

,

n

n

,

,

n

a

n

n

Si n

S i n ‘’

l

w he n ce

d

an

)

y , sin

I

()

d

si n « f

i

p

,

si n

y,

si n

6

,

6

.

We thus ob t ai t h follo w i g resul t fro m a st a d a rd m e d iu m I f p be t he i de f re frac t io i to a o t her m ediu m H u the i de f re fractio fr m t h e s t a dard m ediu m i t o a other m ediu m H d i f i be the a gle f m o f i cide ce o f a ray assi g d irect ro E to H d 6 the p a gle o f re fractio t he u i p “ si 6 d the i de f e frac t io fo a ray passi g d irectly fro m H t o H is [ / M n

n

]

n

e

x

n

n

n

an

n

n

n

n

o

2,

n

n

x

n

,

1,

n

n

n

o

n

n

.

r

n

,

,

2

n

n

,

2

an

1

n

()

1

s n c

o

,

an

x

n

2

Lg

o

r

1.

t r o n o m i c a l r e fr a c t i o n T h e rays f light from f m celestial body si g ro outer as p s pace t hrough t he earth s at mos phere u dergo what is kn o w as 40

.

As

.

o

on

a



n

n

n

39—4 0]

AT

M O S PH E RIC R E F R ACTI O N

the u pper regio s o f the at m osphere t he d e si ty f t he air is so s mall t ha t bu t little is t here tributed to the total re fr ctio re frac t io w i t h w hich Th astro om ers h a ve t o deal takes place mai ly withi very f w m iles o f the ear t h s sur f ce I co seque ce f re fraction a y o f light fro m star does o t pass through the atm osph ere i a straight li e It follows a curve so tha t w he n the observer eceives the rays the s t ar a ppe r s t o h i m to be i a direction w hich is n o t its true directio a s tr o n o mi ca

l

n

f

r e r a c ti on

In

.

n

o

con

a

n

e

.

n

n

n

n

a

e



a

a

n

n

.

n

n

o

ra

n

n

.

,

r

a

n

n

.

FIG

.

40

.

light co m i g towa ds us fro m a dista t star i the directio S A ( Fig 4 0) pursues a st ra igh t p th u t il it e ters the e ff ective a t m os phere a t A d from t he ce the path is n lo ger straigh t From A t o the observer t O t he ray is passi g through at mospheric layers o f w hich t he de sity is co ti ually i cr e si g so tha t t he ray curves m re d m re till i t reaches 0 To the observer t he rays a ppear t o co m e fro m T where O T is the ta ge t to the curve at 0 I f through 0 a li e OB be draw n i which the parallel to A S t his li e w ill how t he d irectio s t ar would a ppear i f there h d bee re fra cti g disturb ce T hus the e ff ec t f re fractio is t o m ove the a ppare t place f t he s t ar through t he a gle TOR p to w a ds Z the e i t h f the observer R e frac t io is greatest at the hori o where objects are a ppare tly eleva t ed by t his cause through ab ut T h obser e d coor di ates o f a heave ly bod y m ust i ge era l receive correctio s which will ho w w hat the coordi n ates would have bee had t here bee n re f ac t io Th i ves tiga t io f the e ffec t s f re frac t io is t here fore i mporta t part f pra ctical a stro o m y A

ra y o f

r

n

n

n

a

.

,

an

n

n

n

o

a

.

n

o

,

n

n

n

a

n

n

an

n

n

o

.

,

n

n

n

.

n

s

n

n

a

an

n

r

u

n

.

o

z n

,

z

n

o

n

o

n

e

n

n

v

n

n

o

.

n

,

n

,

S

n

n

n

n

n o

n

o

.

.

n

o

n

r

an

.

e

n

n

n

o

o

AT

M O SP H E RI C R EF RA CT I ON

[

CH

.

VI

appro i m a t e t able is here g ive showi g t he a m ou t by ces f s t ars w hich re fr a c t io n d i m i ishes t he appare t e i t h d is t d t he t her m o m e t er T h baro m eter i su pposed t o s t a d a t 30 i m y p 4 33 at 5 0 F S N e w c mb s Sphe r i c l A st An

n

n

x

n

n

n

s

e

z

n

n

an

n

o

.

an

.



°

r on o

a

o

ee

.

.

.

,

R fr cti e

88

°

40

a

on



For e am ple at appare t e i t h dista ce o f 5 0 w e lear d that co seque tly the true e i t h that the re fractio n is l 9 I t w ill be oted t hat f d ista ce i 5 0 1 y e ith d is t a ce e i th t he re f ac t io is t so m uch as 1 d t ha t fo < 45 d ista ces p t o 2 0 the re frac t io is prac t cally 1 pe x

n

an

,





n

s

°

n

n



°

u

n

z

z

n

r



i

Gen

.

e ra l

an

o

n

n

n

n

a

.

n

r

n

n

n

o

a

,

n

n

n

.

su c

an

e

.

n

x

o

an

]

2

n

.

n

n

n

n

n

n

.

I G.

n

n

an

th e o r y o f a tm o s ph e r i c r e fr a c ti o n We shall su ppose t hat t he ear t h is spherical at m os phere is co mpose d f a successio o f t hi layer s bou d ed by spheres co ce tric w ith the ea r t h Th e re fr c t ive i d e f the air throughout each layer is to be co sta t but it m y vary f o m o e layer to a other C o sid er t w o h layers A d B ( Fig T h re fractive i d e x f t he outer layer A is relative to free ae t her d u t hat o f B is “ A ray passi g through A i the directio P Q F 41 is be t i t o t he directio QR as it passes i to B 41

n

n

or an

n o

n

r

n

n

n

an



°

z

°

r

.

d

z

n

AT

M O S P H ER I C R EF R AC TIO N

[C H

VI

layers a d reaches the ear t h a t 0 D ra w the ta ge t TOP t o the cur e at T where the ray e t e s a layer w hose re fractive Th ta ge t c i cides w ith a s m all i de is d r a d ius d C ar t co seque tly the a gle A T f o f the ray Q p re fr ctio Whe the ray fi st e ters the at m os pheric stra t a t he t ge t to the curve m ust coi cide wi t h the true d irection o f the s t ar O the other ha d t he ta ge t to the curve a t 0 i dic t es the directio i w hich the ray e ters the eye o f t h e observer Th e a gle betwee these t w o t a ge n ts sho w s the total cha ge i the directio f the ray T his is the qua t i ty w hich w e seek to determi e fo this is w hat w e c o m m o ly c ll t he re frac t io I f p be the re fraction the dp is the a gle be tw ee two c o n Fro m d 6 — d b i f 6 A A CT d t A CTF s e c t i e ta ge ts d geo m e t ry we see that d 6 t ¢ / w he ce n

v

n

,

x

n

r

an

. u , ,

an

n

a

n

n

.

o n

n

n

n

r

o

n

n

n

n

.

n

n

n

.

n

n

o

n

a

n

n

r r

dp = — t a n

.

n

,

r r — d x d d p / ,

w ritte n

log log y di ff ere tiati g w e h ve r

n

(

tra nsfor m this equa t ion by ( i ) w hich

n ow

can

(

n

log si

.

.

n

an

c,

an

We

n

n

n

v

n

n

.

r

,

a

n

n

n

n

n

n

n

u

n

r

n

e

.

n

an

n

.

co st

]

n

n c;

.

be

ma y

,

a

= 0 d ¢ ¢

w he n ce

dp

li i a t i g t

E m

n

n

b q

an

by t he hel p 1

dp

f

o

(i)

we

fin d

a n , 8 11] z

(

u

T

4) t

tan

°

7

/A

2

a

°

n

° 0

si n

°

é ) ‘

z

hus w e obtai t he di ff ere tia l equa t io n

In

n

t e gr a t i o n

f

o

d“

t he re fractio n

fo r

n

t l

di ffe r e n i a

th e

.

qu

e

ti o n

a

fo r

.

th e

ti o n To deter m i e t he re fr c t io accura t ely th i s equa t io would have to be i tegrated bet w ee n the li m i t f u 1 the value d f u a t t he u pper layer o f t m os phere I t is t t his poi t that the di ffi culty i the t heory f re fractio m akes itsel f felt

r e fr a c

.

n

a

n

n

n

o

rl i rt i h r

1 Th e '

fo r

f

a

n se

ge n

on

e e

cu i

ss o n

R e fe r e n

.

.

.

o

di s

e a

o

f th e

c

a

e

on

o

m a y b e m a de t o P

e

r

n

a

n

i t gr ti n

u.

,

,

a

n

o

a .o a n

s o

r

r

f t

hi

o fe s s o

ll

u ti i r N wc m b

s

eq

a

on

o

e



s

s

i ul t

t o o d ffi c

C o mp e n d i u m

’ Sp h e r i ca l A s tr o n o my a n d t o P o fe s s o m An C a pb e s P r a c t i c a l A st r o n o my ’ ’ co n o f B e s se s e a b o r a e n v e st g a b e fo n d i n B r ii n n o w s Sp he r i c a l on w

c u t

As t r o n o my

th e

l

e e ga n

l

l

t i

i ti

i d bt d t P f E T t ppr x im t m th d h r g i

.

I

a

am o

n

e

a e

e

o

e

ro

o

.

e

.

e

.

.

ill u Whi t t k r f c l li

ve n

a

.

e

or

a

n

g my

a

tt t i en

on

to

4 1—4 2 ]

AT

M O S P H E R I C R E F R A CT I O N

123

e pressio to be i tegrated co t ai s t w va i ables d which m us t be relate d I f the law f t his relatio w ere k w the we coul d e press i t er ms o f p so that the proble m woul d be t he i teg a tio f a cer t ai fu ctio f I B t we have t m recise i f or a t io as to t he law acco d i g to which the i de x p f re fractio varies w ith the elevatio above t he earth s sur face It iS ho w most i teresti g to fi d that it is possible to obtai a n a ppro i m ate solution O f the proble m quite s u fficie t f m ost f an r ose w i t hou t k o w ledge the law acc rdi g to which u y p p t h e de sity o f the at m os phere di m i n ishes w ith the elevatio above the earth s sur face W e shall a su m e r /a 1 s where s is a s m all qua tity because the altitude o f eve t he highest par t o f the at m osphere is s m all We shall substi t ute this i co m pa riso w ith t he ear t h s radius value f /a i n the e xpressio o f dp d disregard all powers o f W e thus have 3 above the first Th e

n

x

n

n

n

x

r

n

r

n

n

'

o

n

n

o

n

r

no

u

!“

n

n

n

n



.

n

n

x

n

n

s

n

no

n

ever

u.

,

.

n

o

an

r

n

n

n

r

o

.

n

o

o

o

or

n

n

n



.

s

n

n



n

n

or

.

n

r

an

.

F o si n

z dn

r

it

1

(W ’

o

P o si n

A,

p (p

1

P

2

p

.

.

si



.

Si n

i

a. s n z , o

p

(”

a

P0

1

2

2

du si n

2

Z

dp

z 2 0

ll



“0

°

(“

1

Z

su

p, si n

a

2 0

P

z

du

si n

°

re f ctio is thus e pressed by two i tegrals f which t he first d m ost i m porta t part e presses w ha t t h e re fractio w oul d be i f s 0 i e i f the earth s sur face was a pla e T his is f course a w ell k o w ele m e tary i t eg ral d i t s value is Th e

ra

n

x

an

n

n

o

n

x



,

-

n

.

n

.

n

n

n

si n

If

w e de n ote by

be writte

x

o

.

an

1



( I‘ -

o

s in z

)

the s m all qua t ity (n n

1)

o

the i tegral n

ma y

n

si n

"

1

x

) si n z }

z

this w he developed i po w ers f by M c l i t heorem w ill be co ve ie t f calcula t io If we eglect all po w ers f 1 ) ta n 1) ta z above the seco d we see tha t ( + 5 (u is t he a ppro xi m ate value f the firs t i tegral evalua t i g the seco d i tegral we are to o t ice t ha t s I e t ers as a factor i t o the i t egra d d there fore w e shall m ake

an

d

n

n

o

n

n

n

x

n

or

n

n

n

n

n

n

n

o

°

z

u 0

,

n

au r n s

n

.

o

n

a

x



o

.

n

n

an

n

°

AT

MO S PH E R IC

R E FRA C TI O N

a ppreciable e ror by pu tt i g u n 1 f qua t i t ies o f t he sm all t hat they m y be eglecte d T hus 1) are ord er ( t he seco d i t egral assu m e t he si m ple for m si cos [ L t m be t h e d e i t y f t hat at m os pheric shell w hich has y as i t s re frac t ive i de t he n by G lad t o e d D ale s la w u a d m are co ec t e d by a equa t io f the f r m n

r

n o

8

o

:

,

n

.

s

n

n

n

a

so

u , o

or

F0

n z 3

n s

e

n

1

.

o

.

x,

n

s

n

n

n n

z

o



an

n

o

cm ,

1

p

.

where c is a con s t a t qua ti t y so n

n

,

da

be t he de ity t he i t eg ral beco m es I f mo

ns

o

dm

c

.

t he air a t t he sur fa ce

f

o

t he ear t h t he n

f

,

n

s

.

dm

.

I t egratin g by parts t hi beco m es n

s

t he ter ms i n de pe n d e n t

i n tegral va i h a t bo t h li m i t ; we also make = s whe m = o d s = 0 whe m = m T h i t egral i this e pressio h a re m ark ble ig ifica ce f i t is obvi us t ha t it e pre se s t he t o t al m ass o f air lyi g ver t ically over a u it area t he ear t h s sur face d is t here fore propor ti l t o t he pressure f t he at m os phere i e t o the heigh t f t he baro m e t er T hus the actual la w by which the de sity f t he a t m osphere m y vary with t he al t i t u de is t w require d i t he proble m T h e theoretical e pressio n o f t h re fractio has there f re assu m ed a re m arkably si m ple for m It is the diff ere ce betwee two i teg als whereo f t he firs t has bee f u d d the seco d m ust be pr portio al to t a + t Fro m t his w e lea that the t o t al re fractio m ust be f t he for m A t a + B t where z is the appare t e ith dista ce d A B are certai co s t a ts T h values o f t hese co sta t s are to be deter m i ed by observatio as is shown i 46 We ca also a ssu m e various hy p theses as t o the relatio betwee r d u a d co m pare t he results so calculated with fo r

o

f t he

n

s

s



n

s

n

x

n

o

n

x

n

n

an

a

as

s

0

s

or

,

n



on

ona

n

n

e

.

an

o

,

.

o

.

n

.

n o

a

o

n

no

.

x

n

e

o

n

r

n

o

n z

n

z

n

rn

.

an

an

n

3

z

n

,

n

o

an

n

an

n

n

.

n

.

n

n

n

n z

n

n

e

n

z

o

o

n

n

an

3

n

n

.

n

n

AT

to

M O SP H E R I C R E F R AC TI O N

ake the m s t ric t ly parallel We might there fore a t ici f d m a t e t ha t w i e e arture ro tru t h will arise by as u i g d m p p t he at mosphere to be i hori o ta l layers i whi h case the o hom oge eity pro duces e ff ec t the t o t al re frac t io ec ti g t he re frac t io wi t h t he e i t h dista ce Th for m ula co i n t he case f a su pposed ho m oge eous at m os phere has bee thus ob t ai e d by C assi i We shall a su m e t ha t t h at m osphere is co de sed i to the space be t wee t he two spherical shells o f radii CS Th d C V res pec t ively at m sphere is c sidered f u i for m d e sity d o f f t ive i d ex a I t i i ges Th LI m p y t he a t m os pheric sur face t o o d which OI H is or m al re ches t he observer o t he ear t h sur face at S s tha t a gle o f z LI H = p is t h i ci de ce d [ SI C e is t he n gle f re frac t io F m 44 h T h e ray reaches t he server i t he directio I S so t hat A I S V = is t he appare t e i t h dis t a ce f the obj ec t I f de otes as be fore the radius f the ear t h a d l the t hick es o f t h at m os phere S V we have fro m t he tria gle S CI °

6

m

n

.

s

no

n

z

n

n o

n

nn

e

n

,

c

n

on

n

n

n

n

n

n

.

z n

n

n

o

n

n

.

s

n

e

n

n

n

an

e

.

on

o

n

n

o

an

n

r e ra c

.

e

a

n

ra

n

an

n

n

a



s

n

e

x

an

n

n

o

,

n

o

a

.

.

.

o

n

n

o

n

n

z

o

z

,

n

,

a

.

n

n

n

s

e

,

n

l /a ) s i n gb si n m f l

1 (

also p si n p H e ce l /a ) s i p (1 i very early si ce l /a is a s m all qua t i ty es t i m ated at less tha an

d

n

xr

n

1 8 00

,

(

.

.

n z,

t

n

n

n

.

be the whole re frac t io i e t h e a gle through w hich t he i ci e t ray is be t fro m i t s ori gi al directio w e have i 4; p i n d assu m i g to be e ressed seco ds f p p n

If p d n

n

n

a

ubs t itu ti g n

x

fo r

n

.

n

n

p

S

.

,

si n

si n a r ,

i

1



n

n

(

Sin (

n

si n « f

t

si n

i

,

co s (

5

o

«f

,

,

a re

p

se e (

.

respec t ively t he e x pressio s n

AT

p

s

1 {

(p A

tan z

l /a )

(1

c osec 1 {t a n

1)

.

l /a ) s i n

1 (

co ec 1

1)

(p

MO SP H E R I C R E F R A C TI O N

si n

2

an t (

z

z 2

fi “

z

3

ta n

2

z

) l /a }

° B t a n z +

co ec 1 1 B p ( ) l / cosec the prac t ical applica t io o f t he f r mula w hich has thus F bee d erived by t he d i ffere t pr ce ses f t his d t he precedi g ar t icle w e must obt i u m erical values f A d B This has to be do e fro m ac t ual ob erva t io f the re frac tio i t le st d we hall assu m e it has t wo par t icular i sta ces ( see bee t hus fou d t hat at t e m pera t ure 5 0 F d pressure 30 i the re fr c t io s a t the app re t e i t h dista ces 5 4 d 7 4 are res pectively d T h for m ula ( i ) will thus give fo t he d eter m i a t io f A a d B the tw o equatio s w here

(p

A

l /a )

1) ( 1

.

s

a

.

o

n

or

n

n

a n

,

o

s

o

n

o

n

s

n

an

n

z

an

a

n

a

an

.

a

.

s

°

n

a

an

n

n

n

r

n

o

n

n

an

n

n

°

n

.

°

an

.

r

e

n

n

o

n

n

A A

20 0 4 6 ‘

B (t a n

(ta n (t a n

B (ta n

olvi g these equa t io s we obtai the followi g ge eral e pressi fo the re frac t io a t m ea pressure 30 i n d t e m pera t ure 5 0 F 8 2 4 8 2 t a 5 9 t 0 06 6 p tha t u le s t beco m es very T hus B /A is o ly s great i e u less t he obj ec t is ear t he hori o we m a y eglect the eco d t er m t he re fractio m y I f t h e e i t h d i t a n ce d oes t e ceed be co m puted wi t h su fficie t accuracy f m a y purposes where o e t re m e te m perat ures are i volved by the si m ple e pressio S

n

n

r

on

x

n

n

n

n

n

n

a

.

°

.

,



an z

n

,

s

n

n

o

n

3

z z

a n

s

n

n

.

.



z

n

z

n

,

.

z

n o

s

n

x

n

x

n

n

or

n

x

n

[0 t a n

a

n

z,

here w e are usi g on ly the first ter m that is eglecti g the ter m c t ai i g t i t is slightly m ore accurate to t ake k = rather t ha T h e qua ti ty h is ca lle d the coe fficie t o f re frac t io E 1 f a h m ge e u atm ph ere W ha t ught t b t h thi ck e which w ul d gi ve expre i f refr cti i acc rda ce wi th b

an

d w

n

n

on

an

n

3

x

.

.

o

n

z,

n

n

n

n

,

n

.

o

o

an

e

ss o n

e

n

or

B /A

ss

a

l /a ,

o

o

on

n

o

o

n

o

n

s

os

o

se r

128

AT

wh e c that taki

M O S P H E R IC

RE F

RA CT IO N

e

n

n

so

Ex

2

.

g

a

m

= 39 5 7

a

on

we fi n d l = 4 5 m

s,

i le

s

.

h w that t h refractive i dex f t h e atm ph ere w u ld be d temp 5 0 F acc rd i g t o Ca i i th e ry f at pr ure 30 i S

.

n

os

°

an

.

o

n

e

o

e ss

refr cti

i le



ss n

n

o

.

.

o

s

.

x

S

.

o

s

.

ns

n

S

,

n

ss

e e

.

e

n

s

s

o

n

o n

e

e

an

o

r



a re

or

as

e

r



an z



e

an z

o

s

e

lc = h ( 1

re

ss

o

1r



o

se

on

a

d b e di s

on

e o

m

itt

ed

e

s n o

o

t he

.

n

ss o n

e

at

on

°

e

ss

n

on

ze n

n

'

n

e s

x

°

n

s

.

.

s

o

o

o

ze n

n

o

.

i t h e refracti h w fr m f rm ula ( ii ) that t m p = 50 F appare t ith d i ta ce 61 48 th a t h fi fth part f a c S h w th at i f qu a titi es le 4 E regarded t h ec d term i t h expre i f t h refracti m y b whe ever t h e ith d i ta ce d e t exce d l t xpre t h refracti wh re E 5 If w th t wh e i t h pp d i ta c i t ead f i t h u ual f rm h t b th expre ed i ec d f arc d i d i ta ce h w th at if k Ex 3

o

se c

2

z

n s

2

s

Is

e

e a

on

ru e

t

a r en

e ith e ith

z n z

n

s o

i

z s n

t a e f o r a tm o s ph e r i c r e fr a c t i o n It is obvious t ha t the de si ty f t he air co s t ituti g t he a t mosphere di m i ishes as the dis t a ce fro m t he earth i creases T h e i de x o f at m ospheric re frac t io will i like m a er d i m i ish fro m its value at t he earth s sur face to t he v lue 1 a t the u pper li mits o f t he re fracti g at m osphere W e take as i 4 1 t be t he ra dius f t he lowest a t m ospheric layer f w hich p n d the ra dius o f the layer whe p has w here n is decli e d t o u ity S i mpso ass m e d that a qua t i t y at prese t u k ow Th e assu m ed equatio gives = w he p = 1 as already arra ged A s i creases is t di mi ish d this w ill be the case provided ( + 1 ) be positive W e have see 4 1 ) tha t p s in 91 co s t Equa t i g the x d lower li m i t o f t he pressio s o f t his pro duct fo the u pper a t mos here p 44

O h e r fo r m u l

.

.

o

n

n

n

n

n

n

n

n

.

nn

n

n



a

n

a

o

n

or

.

n

n

r

r

o

an

o,

r



n

n

.

n

n



n

n

n

n

n

.

n

r

.

n

u

,

an

,

.

u

n

o

.

u

.

r

n

n

r

p

w here a

t

n

)

o

.

an

=r

a srn z

I

s rn z

n

o

n

.

p

w he n ce

oa

sin z si n z

or

r

n

a no

F

r

” o





si n z

si n z

’ ,

s

,

n

n

e

I

is the a gle f i cid e ce at the u pper mos t the lowes t S ubs t i t uti g f we have z



n



,

an

d

z

AT

M O S P H ER IC R E F R ACTI O N

or as t he re frac t io is sm all n

,

,

n

+

1

5 n p)

(z

tan

.

we i t ro duce the values f p d use d i s h oul d fi d as t he a ppro i m a t e for m ula If

o

n

an

,

u

.

.

,

,

x

n



(z

59 tan

p

4 p)

.

We correct t his for m ula so as t o make it e act f k ow re frac t io s a t t a d ard te m perature d pressure e a m ple we t ake x

ca n

two

or

an

n

s

n

n

n

we

Ex 2 p 1 29

n

If

,

fo r

x

z

69 36 ‘

p

d

an

z

2 14 1 0

p

f m see ree wich T ables we ge t t he fi al r G ) ( n

n

,

ta n

p

o

(z

4 0 9p) '

.

t his for m ula all re frac t io n s u p to the z e n i t h dis t a n ce o f 8 0 c a n be de t er mi n ed a ppro x i m at ely B ra d ley s for m ulae is s ui t ed fo r observa t io n s n ear t he hori z o n °

By

.



because t approaches

(

an

Ex

C

1

.

a i i ss n

v iz

,

z

90

S

.

4 09p) d °

oes

beco m e i d efi itel y large as

n ot

n

,

z

n

°

h w that

r ula

fo m

the

o

r fracti

fo r

e

on

g

i ve

by B

n

rad ley

an

d

.

= 58 p

and



3 61 t a n

tan

p

(z

4 09p) '

-

ta n 3 2 ,

z

r ctically qui vale t u ti l t h e ith d i ta ce b ec me very large E 2 upp iti that t h ( + 1)t h p wer f t h i dex f O th refracti f th atm ph er var i i v r ly th d i ta c e fr m t h ce tre f t h earth pr ve B rad l y appr xi mate f rm ula f a tr m ical r fr cti p = t ( —5 p) O x f rd Se i r S ch lar hi p 190 3 E 3 I f i t h a tm phere t h i d ex f re fracti vary i ver ely t h arth ce tre b i g p at t h earth urface quare f t h d i ta ce fr m t h d u ity a t t h l i m it h w that t h c rre p d i g f t h at m ph re c rrecti f refr cti i g i e b y i ( + 5p) = J p i Math m atic l T ri p 1906 a re

p

a

e

x

on

e

o

o

n

a

.

s

a

an

e

n

or

e

45 5 r e fr a c

E ff e c

ti o n

t

o

f

a

e

s

tm o

as

se

v

n

s

os

o

e

e

o

n

e n

,

S

,

o

s

s

on

.

as



e

o

on o

s

e

o

e

,

n

r

o

n

n

s

or

n o

o

e

.

o

o

s



e e

S n

"

e



e

o

on

n

s

o

o

o

a

o

n

n

.

os

e

on

es

e

n

e

s

n

o

2

n

.

e

o

,

s

on

os

os

e

o

an

s

e

on

x

e

n

.

.

e z n

n

n

o

e

s s

s

on

n

n

z

0 s n 2

s ph e r i c

pr e s s

a

e

.

ure

an

d

o s,

.

t e m pe r a tu r e

on

.

or mula ( ii ) f the re frac t io already obtai ed 4 3) w assu me d t ha t t he baro m eter s t o d a t 30 i ches d t he e t er al air at the " te mpera t ure 5 0 F We have w to fi d t he f r m ula w t be used whe ressur te m era t ure have other k o e d p y p values I n t he f

or

n

n

e

.

o

°

.

n

n o

an

n

n

x o



o

~

.

n

an

an

n

n

4 5 — 4 6]

AT

M O S P H E R IC

R E F R AQ TI O N

W e assu m e t hat t he re frac t io n i s propor t i o n al t o t he de n s i t y o f the air a t the e a r t h s surface so t hat i f p be t he re fra c tion fo r m t an d f n h e re t e era t ure t he re ractio a t and t ss ure p p p p s t an dard pre s sure 30 i n ches a n d t e mperature we ob t ai n fro m t h e pro per t ies o f g a s es ’

,

0

1 719

4 0 0 5 6 + p

p

I t r duci g the value f p already fou d 4 2 ) w e b t ai t he a ppro i m ate f rm ula f a t m o pheric re fra t i at pressure p t h a ppare t e ith d i t a e d t e m perature t f n

o

n

o

P

n

or

e

l 7p 4 60 + t

8 5 (

an

°

t he a ppe n di x to t he

In

ta

2 94

c

n

z

n

o

s

or

o

x

n

0

s

on

nc

z

.

0

n z

.

Gr e en wi ch Obse r v a ti o n s

f

1 8 98

or

Mr

,

owell has arra ged tabl es f re fra t io which are use d i T hese t ables c t ai t he m ea re frac t io G ree w i h observa t ory every m i u t e d t e m pera t ure 5 0 F f t he pressure 30 i he f Th orrecti s whi h f e i t h d i t a ce fro m 0 to 8 8 d pressure are give m ust be a pplie d f c h a ges i t e m pera t ure i a dd i t io al t ables P H C n

c

nc

z

n

n

n

46

n

n

or

.

°

on

c

an

n

n

n

c

e

n s

n

.

O n th

.

n

°

°

n

s

n

s an

or

o

on

.

or

o

c

o

n

.

.

t

b se rv a i o n

ete r m i

d

e

ti o

n a

n

o

f

a

tm

o s ph e r i c r e

t

fr a c i o n fr o m

.

We d escribe t hree f t he m e t h ds by whi h t he oe ff cie t t he e pre sio f the re frac t io A t A d B i +B t be d e t er m i e d by observatio f m eri dia e i t h d is t a ce T h firs t be carrie d ou t at a si gle d m etho d s d se observa t ory pr vi de d i t s la t i t u de is ei t her very great very m all f two b T h t hir d m e t h d requires t h coopera t io t i i t h s u t her h e i ph i t he or t her do f F i r t M e th o d elec t e d such t ha t i t will be ab ve A s t ar i t h h ri b t h a t u pper d a t lower cul mi atio I f be th appare t e i t h dis t a ces a t lower d u pper cul m i atio respec t ively or t h f t he e i t h t h e d p si t ive t o t he t he t rue e i t h d is t a ces will be + A t a + B t d A t e i t h dista ces B t Th m ea f t he e t w o

o

an

s

x

n

ca n

or

n

n

n

n

e

o

va

o r e s, o n e

o

n

zo n

z

z



o

an

z

i i

ri

o ds o f g me b e d b y Si r D a v d G

l S o ci e t y , V o l

.

v

1

.

i

p 32 5 .

n

O b se

ill

.

o

rn

s

se r

e re

n

z, z

.

an

e

th

r e ma n n

f L o e wy d e sc

n

.

ri

v n

i n th e

o

z

.

n z

s

r r cti



n

o

z

.

o

n

o

n



.

o

n

3

z

s

s

n

n

°

n

n

n

e

n

n e

o

an z

n o mi c a

s

n

'

T Of th e

an

s

n or

an

an

z

n an

n

o

n

z

e

.

e

n

o

s

e

an z

,

n

e

.

n

i

n

o

s

c

ca n

co n

an

c

o

n

n

,

an

z

n

°

z

n

an

n

i

th t

o n s we m a y m e n t o n a g ef a M o n t h l y N o t i c e s o f t h e R o y a l A s tr o

AT

.

e

[

o

f

n

,

}{

z

z

1



A (ta n

'

ta n

z

n

o

z

B

)

o

n

n

n

.

.

z

v1

ca

course t he dista ce fro m t he e i t h t t he or t h t he cola t i t u de H e ce we obtai t he equatio

i s, i

M O S P H E R I C R E F R ACTI O N

p

le

,

n

(t a n

3

tan

z

90

3

°

ubs titu t i g t he observe d values f nd we ob t ai a li ear equati be t wee the three qua ti t ies A B d d each star O t her s t ars are also observe d i t he a m e way gives equa t io i t he sam e t hree u k ow s T h ree f such equa t io s will su ffice to d e t er m i e A B T h e resul t will h w ever be m uch more accura t e i f we Ob erve m a y star d t he t rea t the resul t i g equa t io s by t he m e t ho d f leas t quares t o be subseque tly d e cribe d w e shall t ake a case i whi h t he A s a si m ple illus t ra t io la titu de is k o w d i which as ei t her f t he e ith d ista es is e cessive we m y assu m e t hat t he re frac t io is e pre se d by t he si gle t er m I t A t D u si k i N lati t u d e 5 3 2 3 1 3 t h e star C e phei is h serve d t o have the appare t e ith dis t a ce 8 4 8 37 at u pper cul m i a t io A t l w e cul mi a t io 1 2 hours la t er i t s a ppare t e ith dista ce is 64 2 2 T h e true e i t h d i t a ces will be S

o

n

n

on

z a

n

n

s

n

n

,

n

n

n

n

s

s an

o

n

x

.

an

n

n

n

n

n

z

°

n

8

4 8 37

k

"

su

m

t he s e

f

o

w hen ce

'

m

s

r

o

m



°



8 48

( 64

2 2 47 °

( 36

o

7 3 13

[c ( 0 1 5 5

73 11 2 4 f

°

u t be d uble the cola t i t u d e



°

n

ta n

[0 t a n

64 2 2 4 7

Th e

n

n



°





s

°

n

o

°

n

n

z

r

n

s

a

.

o

z

nc

n

x



°

n

.

n

z

.

n

n

o

n

,

n

an z

t

c

n

a

,

n

s

n

n

o

,

s

n

o

.

,

,

n

n

an

n

n

n

a n

,

n

an

z



which

°



k

th o d T h e co s t a ts f re fractio also be f t he ls t itial e i t h dista ces f d e t er m i e d by observatio the be t he a ppare t meri di al e i t h d ist ce f t he L t a t the solstices L t p d p be t he corre po di g re fractio s A m T he the true e i t h d is t a ce are d ssu i g p p that the su s la t i t u d e m y be eglecte d or i o t her words tha t t he su s ce tre is actually i t he ecli ptic as is al w ays very early true w e obtai f the m ea f these e i t h dista ce the arc fro m the e ith t o the equa t or t the latitu de H e ce w e have Se c o n d M

e

n

.

n

su n

z

ca n

n

n

o

.

z 1 , z2

e

n

so

o

n

o

n

o n

n

su n

e

.

n

z

n

1

an

n

n



z

n

s

,

s

1 an

z1

n

a

an

n

z2

s

n

,

n

n

.

n

,

o

,



n

n

n

n

n

,

z

or

n

n

z

o

,

= zi 2< > l

.

e

.

.

P1 + P2

n

n

°

s

n

.

AT

M O SP H E R IC

RE

FRA CTIO N

[

OH

VI

.

e i t h di ta ce is A where A = k t We a su m e tha t w t ha t A g! 0 d as t he a i m u t h d es t t h latitu d e i k al t er by re frac tio A 0 d e li atio we w ri t e t he f r m ula T fi d t he e ffec t

z

an z

z

z

z

n

s

n

s

.

,

s

e

n

n

n

on

i g A d , A d) A z

n e ct n

,

AS

co s

an

,

z

o

n o

.

n

o

)

so

no

AS

,

n

c

n

o

co n

35

,

n Az

co s

sin

b A cp

h

cos ¢ A

a

0,

which with t he sub t i t u t io A 0 A 4 0 A k t gives cos 7 t e i f 8 i t he bserve d d ecli a t io t he k ta AS 8 [ t 7 is t he true d e c li a t io hour a gle we have 35 T fi d t he e ff ec t n

s

n z

1

on

Az

co s a

z

,

o

s

.

n

n

n

o

;

,

a n z co s 7

0

f

.

,

a

an z

n

n

n

.

n

A c[>

co s

nAB

si n a

co s

Ah

0,

ro m w hich by the sa me substi t utio s n

sec 3 aralla t ic a gle we use p k s i n 7; t a n

Ah

Fo r

the e ffec t

on

cos

A 77

d fin d

an

.

SA IL

si n

si n a s i n

k s i n 77 t a n 8 t a n

A 7;

35

n

c

z Aa

z

z

q

5

0,

.

resul t s just obtai ed m y be o t herwise prove d as follows Fig 4 6 N is t he N or t h P le Z t h e i t h P t he t rue place f t he star as raised the star d P t he a ppare t place Th e

In

n

a

o

.

of

e

,



an

,

.

z

n

F IG

t owar ds t he z e n ith by re frac t i o n

,

o

46

.

n

.

d P P = k t a n ZP = k t a n ’

'

,

an

z

.

er pe dicular to P N d p i d d t h 4 P N P is s m all as will be t he case u less P is ear t he pole t he ha ge i polar d is t a e is P P cos ; cos PQ [ t T h observe d d e li a t io is 90 N Q b t t he real d ecli a t io i — 0 NP H e ce t h e observe d d ecli atio is t oo large 9 d

P

'

Q

'

is p

ro v

an

n

e

e

n

n



,

c

,

n

n

n c



7

e

c

n

n

0

an z

°

u

,

n

n

°

.

n

n

n

,

an

s

4 7— 4 8 ]

AT

M O S P H E R IC R E F R A CT I O N

co seque t ly t he correc t io A 8 t be a pplie d t o t he bserve d b t ai t he t rue d ecli a t io i give by d ecli a t io t — kt A8 cos 7 We have also i 7 cose c P N kt kt Ah P NQ i 7 sec 8 A i 7 cos 8 is u altere d by re frac t io we m us t have 8 i i cos 8 A 8 A 7 7 7 whe ce by substitu t i g f A 8 we fi d n

n

n

o

n

n

o

o

n

n

o

n

an z



7

an z s n 7

.

n

n

cos 7

n

.



an z s n 7

s s n 7

n

s

s n 7

7

,

n

or

n

s n

k si n 77 t a n 8 t a n

A77

z

.

t o f r e fr a c t i o n o t h e a ppa r e n t d i t a n c e b e tw e e n ti a l p o i n t t w o n e i gh b o u r i n g c e l We shall firs t sho w that i f the re frac t io be take as k t t he the c r e ti t o be a dd e d t o the a ppare t dista ce D i seco ds f e be t wee t w o eighbouri g s t ars is i seco ds f arc kD ( 1 cos 6 t ) i l w here is t he e ith d is t ce f the pri cipal star d 6 is t he a gle betwee t he arc j oi i g t he t w o s t ars d t he e fro m the ri ci al star t o t he e i t h p p L t Z be the e i t h Z A = w Z B = y A B = D é A ZB T h e ff ec t f ZA B 0 is t o m ove the arc frac t io A B where t AB p 48

E ff e c

.

n

s

es

s

.

n

n

n

o

n

r

c

on

n

n

ar

o

n

n

2

z

z

an

n

n

n

n

n

z

e

n

o



s n

z

n

,

n

an

n

an

ar

.

a

z

,

,

,

,

,

re

o

e

.

an

n

n

o

n

z

n

2

a n z,

n



o

u

AA an

BB

d T

he





k



[6 t a n y

tan w .

F IG

.

n

cos D cos cos y D i ff ere tiati g w i t h as co sta t n

n

a,

n

fin d

— si n D

.

n

,

an

cos a

k

ta n

a:

Ay

h

t an

y

co s

y tan

co s x si n

a

y

.

n

Ax

A D = k si n w c o s y t a n w + k

10

cos d m aki g

si n no s i n

a:

we

47

.

z

,

w si n —

k

y ta

eos

n

!

3

a si n

w co s y

tan

y

sec y i y %a i the e i t h A both t hese t er m are m all we m y p t y tar i t he e pressio s sec sec y d ista ce f ei t her d i i y A lso si ce D are s m all we m y p t = i D=D d i ( s 9 y) D k s i n ( a:

y)

2

n

s n ac s n

s

o

n

.

s n

as s e e

s

s

s

,

a

2 i 4k s n

a

n

z,

as

u

x

n

a:

a

.

an

s n a: s n

s n

2

x

2

co

u

2



.

z

n

an

AT M O S P

also

4 si n

we t h us obtai

d

an

at

2

D

2

a

kD ( l

or i f k

si n

2

t he d e c rease

fo r

n

H E R IC R EF R A CTIO N

co s

2

2

in

[

c ec D d to re frac t io 6

?

os

0 tan

.

VI

z

u e

2

OH

n

)

z

are e presse d i eco d s f [ D (1 cos 9 t ) i 1 give t he ec ds by w h i h D h bee lesse e d by re frac t io ; t his is c seque t ly the orrec t i t t he m easure d d ista ce be t wee t wo eighb uri g stars to clear fr m the e ffect f re frac t io We have e t t o show t ha t 9 t he a gle which t he li e j i i g the t w star m akes wi t h t he ver t i al i i crea e d by re frac t i to t he exte t k i 0 (9 t T aki g the logari t h m i c d i ff ere tial f t he equatio ,

D, AD

s

n

x

2

C

c

on

s

s

o

z

n

n

n

co s

an

z

n

s

,

on

s

.

D Mn 6 = §

n

o

n

n

Mn y

n a

AD /D w e have co t HA G cot y Ay w hich beco m es by sub s ti t u t ion

cos

.

o n n

n

n

c

s n

n

o

,

2

n

n

s

n

s n

o

x

n

2

o

o n

n

o

n

an

a rc

o

as

c

n

on

n

,

cot GA G k whe e A0 k i 9 9 ta ub t racted f o m t h e a d this is t he q ua tity which m u t be appare t a gle B A Z t o g t t he t rue a gle B A Z T h e d e for m a t io or m oo f the ircular dis f the by re frac t io is b t ai e d follows L t S ( Fig 4 8 ) be the su s ce t re a i t s ra diu P a poi t o its li m b d Z t he e i t h d let Z S = L e t k be t h coe fficie t f re frac t io which d is places P t o P d le t P Q d P Q be d Z er e iculars Fro m wha t we have S p p j ust see n P Q is d isplace d by re fra t io t P Q I f we t a ke S as origin S Z as a is f d d y t he coord i a t es f P the k (l

0 ta n

2

n c

2

z

)

s n

n

,

co s

n

n



n

n

2

z,



r

s

s

e

n

.

'

n

n

c

o

n

o

n

su n

o

c

as



e

n

.

,

an

n

z

e

n

n

an

,

z

o

n

an

an

.

,

a: a n





on

.

n

'

,

n

s,

,

n



o



c

n

o

x

o

x, a n

'

.

n

,



k) s in 0

.

A

ls

w=

SQ = a

co s

9+

a co s

d + k tan

a co s

0+k(

QQ — z (

ta n z

'

a

—a

by eli mi a t i g 9 we have f t he re frac t e d figure f t he

an o

o



d

n

n

o

co

s

co s

fo r

0) 9



se c z

)

,

t he equa t io n

su n

FIG

.

48

.

n

AT

k

(1

a

1r

cos

2

at right a gl n

i

e

.

at

.

6

ec n

an

R A CTI O N

arith m tic

t he

e

RE F

me

e

d 6

is

n

It

(l

a

a

o

rad ii mea u r d = ) 5D wh c

f t he

s

2 i t ta n 2 g

e

en

,

e

2 k a n h t (1 + + §

=D

2a

H

6 ta n 2

e s,

M O SP H E RI C

ect o f r e fr a ct i o t h e m e a u r e m e t o f th e ta p o i t i n a g le o f a d o u b l e L t A B be re pec t ively the pri i pal s t ar d t he sec d ary s t ar d let P be t he r t h pole f t he pair which for m t he d ouble s t ar I magi e a circle wi t h e t re A t he cele t ial s phere d gradua t e d t ha t the bserver is t h ole d t ha t A P T h p i t i which A B m ee t s t he gra d ua t e d cu t t he circle at circle is sai d to be t he p si ti B w i th e p c t t A g l e of th e t T h m o d e i whi h t he p siti a gle is m easure d m y be further illus t rated as f llows S u ppose t he d ouble s t ar is or ear t he m eri d ia d at its u pper c l m i a t io d t he sec d ary s t ar is d east f the pri ci pal star T he t he posi t io a g le is abou t If however the ec d ary s t ar h d bee d wes t whe t h e t h e m eri d ia its posi t io a gle woul d be pri ci pal s t ar w ab u t 2 7 f i each case the d irec t io f m easure m e t fr m t he t t he p le i t h e a m e A s t ro o m ers ge erally d raw k ow this as the d irecti f t he m easure m e t pr cee d s fr m the th poi t towar d t he par t f the sky w hich is f l l o w i g fro m t he d iur al m ove m e t r u d by t he d the back t o th t he o th by t he p ce di g par t f t he sky I f P be t he pole Z t he e i t h d A t he pri ci pal t ar f t h d ouble A B ( Fig the the po i t io a gle as w e have j us t d efi ed i t is A P A B T h re frac t io ha ge t he posi t i a gle i t o P A B T hus the re fractio cha ges the p itio a gle i t wo ways firs t by al t eri g t he parallac t ic a gle P A Z 7 d seco dly by alteri g B A Z B oth these a gles are al t ere d by re fractio d th correc t i t o a pply t o b erve d a gle i t he ase re prese t e d i po i tio t h fi gure m us t be eg a tive We d e o t e th t rue posi t io a gle by p F 4 9 — = We have A B A Z p 7 d he ce *

49

E ff

.

n

o

s

on

e

n

s

r

s

,

s

n

.

n c

an

on

an

o

n

c

so

e

e

o n

on

o

e

n

c

o

o

n

u e

n

or

n

n

o

s

n

s

r

re

o

n

'

c

n

,

os

s

on

n

n

n

n

n

,

n

n

7

n

.

n

n

e

on

an

n

n

c

e

n

e

n

48 > A A

o

,

an

s

n

n

n

n

.

.

7

s

s

.

n

n

,

an

IG

n

cos ( p —

B A Z = p — 77 + k si n ( p — 77) P A Z = 77 + k t a n z t a n 8 s i n 77 ’



n

n

n

n

n

n

an

an

s

.

s

o

'

n

an

o

.

n

.

n

n

sou

n

z

o

n

n

o

.

n

o

.

n

n

,

e

n

or

,

n

o

n

.

n

n

s

n

n or

o

u e

,

n

o

n

n

a

o n

e

n

n

on

e

on

an

,

n

n

s

a

n

n

n

r

n

o n

as

o

an

s ar

.

s

,

an

on

n

a re

n

a n

u

o

s

.

o

.

n

on

an

,

o n

n

o

s

n o

'

.

)

77

ta a

'



,

o

4 9]

AT

M O SP H E R I C RE F RA CTIO N

there fore p be the posi t io a gle as a ff ec t e d by re frac t io — — = cos t a t 8 i i k t k + 7 7 7 ) ( ( ) p p p p d p be t he corres po di g qua t i t ies w ith res pec t t o If p a other s t ar with re fere ce t t he sa m e pri m ary 8 i k i ( p 7) kt t 7) t 7 (p S ub t rac t i g w ea ily fi d If

an z

r



s n 7

an

s n



an

,

n





p

=

p

pr





.

,



s n



co s

7

an

7

2

z

.

n

s

e

z

n

o

s n 7

an

an z

,

2

n

7

7

n

n

n

n

n

n

n

,

k ta w

pr

w





si n

p)

co s

— — 2 ( 7 p p

'

)

t rue posi t ion an gle p o f t he d irec t i o n i n which A m oves by t he diurn al m o t i o n is I f t here fore p be t he observe d osi t io n a n gle fo r t h e m ove m e n t o f A whe n c arrie d by t he d iur n al p mo ti o n ’

The



,

,

p

=

p

2 70

.

,



°

p



[0 t a n

,

2

z c o s p si n

2 ( 77

p)

-

.

Fro m the last article d t he prese t we obtain t he f llowi g resul t f t he correc t io f the observed d is t a ce d f osi t i a gle f a d ouble star f re racti o p L t D be the dista ce f the t wo s t ars e pres ed i seco d s f arc t he e ith d is t a ce p t he posi t i a gle 7 t he parallactic a gle d k t he coe fficie t f refractio i se o ds f t he t he corre t i t be dde d t o the pp e t di s ta ce t o ob t ai t he true dis a ce is i 1 kD {1 t cos (p a d t he correc t io t o be ad de d t t he m e a s e d po i ti o a g l e t o obtai the true positio a gle is kt cos p i ( 2 7 p ) E I f t h d e cl i ati f L yr e i 38 40 d t h p iti a gle f adja e t tar i 1 5 0 fi d t h c rr cti f refracti t b appli ed t th a gle wh e t h h u r a gle i 7 h r we t t h latitude p iti i 53 23 d t h c ffi ci t f refracti i It i fir t ce ary t c mpute t h e ith d i ta ce 67 36 d th w he c t h th c rrecti f r m ula g i ve parallactic a gle 38 t b ad ded t t h b erv d p iti a gle t cl ar it fr m t h effe t f refracti S u mm a r y on

z

,

n

n

c

on

n

o n t

x

,

an

n

o

a

a

o

an

on

o

n

z

n

n

o

or

n

e

,

n

or

n

o

n

an

.

n

n

ar

s

n

n

o

a re

n

,

n

n

n

o

7

,

c

n

n

an

-

2

2

z

s n



n

o

n

n

an

x

e

.

an

c

o

n

e

°

s

s

os

on

s

s

n

e

ne

o

e

1 For No ti ce s

f

o

o

°

o

on

oe

ss

n

e

s

e

e

o

en

o

e

7

n

n

o

.

°

s



e

e

os

on

e

ou

s

s

o

o

n

e

e

,

s

z n

s

o

°

n

as

s

o

n

on

os

on

s

on

e

an

or

on

e

n

o

n

o

a

a

n

n

an

s n

z

o

°

s

'

on

n

s

n

n

2

u r

o

e



an

e

o

e

e

on

c

o

.

t bl a

es

to

fa

cilit t

a e

th e

lic ti

a pp

a

on

t h e R o y a l A s t r o n o mi c a l S o c i e t y , V o l

o .

f

th

XL I

.

e se

p

.

c r ct i or e

4 45

.

on s

se e

M o n t hl y

A TM O SP

H E R IC R E F RACT IO N

MI SC E LLA N E O US Q UE STI O N S O N R E F R A C T I O N red uce t h i e f t h ith d i ta ce f 1 S h w th at refracti E f (l l ) l wh er h i t h c ffici e t f refracti bj ect i t h rati rth decl i ati f A qui l i 8 37 39 Sh w that i t 2 Th E e ith d i t a c e a t cu l m i a ti a t G ree w ich la t t 5 1 2 8 38 N ) i ( pp d at Cape f G d H pe (lat 33 5 6 4 S ) i 4 2 32 42 50 5 I f t h h ri tal refracti b h w th at t h f rm la f t h E 3 h u r a gle h f t h u c tre at ri i g tti g wh e i t decl i ti i 8 i .

x

n

o

x

x



e

co s

Ex

4

.

o

co s

2

n

o

oe

ae

n

on

o



s n

o r se

S

n

e

on

n

e

e

[ 2 0 5 6] s e e

%h

o

s

u

na

"

or

e

s

s

on

i d)

l7 5

at r i i g b y parallax h w th at i f h b t h h u r

ss e d

is d p

on

e

( 45

o

s

°

s



e

e re

mo o n



'

°

s

n

s

.

o

sin

the

.

o

.

e

an

o

.

.

en

th at

'

°

'

on

n

on

n

°

s

o

°

s

8 co s

g

e ze n

el vated b y r fracti th r ugh d c l i ati w h ave a t G re w ich

d

d 8 the

an

n

an

n s

1

u i

th r ugh 5 9



( ) se c

A ss m

.

oo

e

a

zo n

e s

= se c h 4

2

'

a gle

o

o

o

n

o

n

on

n

an

.

.

o

s

z n

s

e

n

e s n

s

o

e n o

.

.



°

o o

e

a ren

a

on

o

.

.

s n

e

o

e

o

en

8 c o s ( 19

$8) s i n ( 19

°

°

u r i se at G r e wich (l t 5 1 2 8 38 1) F b 8 th 18 94 t h i 14 3 9 S Fi d i t appar t h ur a gle a u mi g that d c l i ati su tal refracti i t h h ri Ex 5 .



n

s

e

°

s

on

n

e

n s

e

At

.

a



n

.

on

zo n

o

n

°



'

on

.

s

en

e

n

o

e

,

,

.

ss

n

s

appar t path f a tar t f fr m t h p le pr j ected f t h h ri i ell i p e f exce tr icity wh ere 1 i t h t h pla latitude Sh w that i f t h e ith d i ta c f t h t r i t v ry gr at t h ame will b t h ca e f t h appare t path l tered by refra ti [ C IL E xam ] rth d cl i ati f Cyg i bei g 4 4 5 7 17 h w Th E 7 that i t appare t e ith d i ta ce at u pp r d l wer cul m i ati at t h re p cti vely 8 2 5 4 9 a umi g d 81 latitude 5 3 2 3 13 that t h refr cti m y b take Ex 6 .

The

.

e

o

n e

e

en

zo n

o

o

.

s

,

e

or

s

e

e

s

s

o

an

s

o

n

s

n

z

o

e

n

e

o

o

,

co s

o

n

e

ar

n o

e

s

a

s

on

()

n o

e

as a

c

e

on

x

e

.

.

s

°

n

z n





n

on

s

a re

o

n

s

e

n

e

e

=

th e

a

pp a r e n t

ze n

an



s

o

"



.

n

e

on

°

an

o

ss

n

as

”’

O O66S2 t a n 3 z,

2

ith d i ta c s

n

e

°

ta n

wh re

n

a

s

e

a

on

a

e

e

n o

°

e

,

.

O

'

e

s

n

e

.

r ve that i f at a cer tai i ta t t h decl i ati f a tar i u aff cted b y refracti t h tar cul m i at b twe t h p le d t h ith tar i a m ax i m um at t h i ta t c id r d d t h a i m uth f t h [ Math T r ip I ] e ith t t uch t h mall circl de crib ed A g rea t ci r cle d raw fr m t h tar r u d t h p le w ill g ive t h p i t i which t h e ith d i t ce f by th th t r i at r ight a gle t i t p lar d i ta ce It i b vi u that t h tar ev r hav a im uth g reat r tha wh e ituated at t h p i t f c tact Ex 8 .

n

P

.

an

e

o

z

n

e s

on

e

n

ns

n

o

es

e

en

e

n s

e

s

e s

n

e

on

s

an

o

n

o

ons

e

e ze n

e

o

e s

e

ca n

on

o

s a

e

n

s

n

e

.

an

e

z

s

o

s

o

o

z n

o

n

e

e

n

o n

o

s

e

n

e s

n

s o

.

n

s

.

e

e

.

s

s an

z n

o

,

.

.

n

s

s

o

e s

e

o n

o

142

AT

i er tiati g tar i th b t

D ff

Az

n

en

e s

as

u

M O SP H E R I C R E F R A C T I O N

h ri

the

s on

o

0 = co s t=

8 si n

1

co s ( ) co s

(

I f Az = Az = r

(

Az

n

h ex pre ed e

A t = 15 n

” ,

in

ss

se

wh e c e



co

co s

co s

n

ds

1

in(j)

d

s in

8+ cos

d

8

cos

t

2

8

sin

) co s

2

an

2

(

co s

2

8

si n 2 (

2

8

si n

1

8 c o s t,

2

) p L



l

,

'

.

an

n

n

o

n

o

n

a

2 77

'

n

s

71:

0

x

n

2 7r t0/P

2 7r t0/p

2 7r ( to

)/P

L



l

2 7r ( to

(13

n

,

,

n

'

x

) /p

L

'

l

'

,

w he n ce by subtrac t i n g P p /(p

a:

If

one

o

P)

.

t he plan ets is the earth the year

f

,

u it

the

n

o

t im e

f

,

the ear t h s m ea di ta ce the u it f le gth d a t h e m ea dis t a ce f t he ther pla e t fr m t he s the fro m Ke pler s t hird law we have fo a outer pla e t ’

n

n

s

o

n

n

,

n

an



n

o

o

n

r

,

n

d fo r

an

=

i er pla et nn

n

as

Ex 1 .

92 9

.

(t h e

u i g u it b i g Ass m

n

e n

n

t o b e 0 168 , fi n d t h e

r d i v ct r a

us

N B .

o

e

.

o

The s

the

m

ea

n

a

d

g l /(

i t ce s an

o

iles) d t h s i de f a quare equal t m

o

an

s

e

o

ar th fr m t h t b e ce tr icity f t h arth rb it t h ar a w pt ver d ai l y b y t h

f th e c

e

o

e

e

o

n

e

s

e

m

ea

e

su n

o

e



s o

e

e

o

.

y ar m e

therwi e ta te d s

n

,

n

ao

an

u n

o

.

ay

al way

s

be

take

n

t o be

n

so

lar day u le s

n

ss

§

5 0]

AND

Ex

2

.

If

.

r pectivel y

an

es

v1 , v2

be t he

d if

be t he

e

T

H EI R

A PP L I C A TI O N

v l citie f a pla et a t p rihel i ecce t ricity f i t rb it h w th at e o

s o

n

o

n

e

s o

—e u = l +e 1 ( ) l ( )

v

2

an

aphel i

d

on

o

s

,

on

.

h w th at t h vel city f a pla et at y m m e t m y b res lv d i t a c mp e t h/p p rpe d icular t t h rad iu v ct r d a c mp e t rb it f th h /p pe rp d icu lar t t h m aj r ax i Ex 3 .

n

o

en

e

e

o

e

n

o

on

o

o

n

S

.

o

n

o

e

o

an

e

s o

o

s

e o

n

e

o

a

an

e

o

e

o

on

n

.

h w fr m Kepler 2 d d 3 d law th a t t w pla t y tem de cri b e areas i a g i ve ti m e which i t h ra ti f th r ts f th i r latera r cta Ex 4 .

s

S

.



o

o

o

oo

e

e

r

s

a re

o

n

e

n e

o

o

i n th e

s

e

sq

uare

.

i ta ce f J upiter fr m t h i 5 2 03 w h th u it f le gth i t h mea d i ta ce f t h earth fr m t h Th e per i d ic h ti me f J upiter i 1 1 8 62 ye r d f Mercury years sh w th at t h m ea d i ta ce f Mercur y fr m t h e i 0 38 7 Ex 5

n

Th e m

.

.

n

o

ea

an

n

n

n

s

s

s

d

n

O

o

s an

a

e

su n

o

s

en

e su n

o

.

:

su n

s

e

o

e

.

rb it f Mar i 0 0 933 d i t m e i 1 5 2 3 7 ti m e th at f th earth fr m t h d i ta ce fr m t h d i t c fr m t h A u m i g th a t t h e r th i m i le d th at t h ecce tricity f i t rb it m y b eglect ed de t rm i e t h g r ate t ib le d i ta ce f Mar fr m t h earth d lea t p E I f t h p r i d ic ti m e Of a pla t b P le g th f i t 7 d th emi ax i m aj r b h w th at a m all ch a ge A i t h em i ax i maj r will pr d uce a ch a ge 3P A /2 i t h p ri d ic ti me 8 S h w th a t i t h m ti f a pla e t i ell i ptical rb it ab ut E acc rd i g t t h l w f ature t h a gular vel city r u d t h th th u ccupi ed f cu var ie i e f t h a gle b twe quare f t h rad iu vect r d t h ta ge t th eleme tary arc f t h ell i p e at a d i ta ce fr m t h L t l b L t p p b t h perpe d icu lar fr m t h d fr m t h u ccu pi ed f cu L t 6 b t h a gle which e ith er f cal r d iu m ake t h t a ge t a t d f ci with t h ta g t F r m Kepler ec d l w it f ll w i mm ed iately th at p i i ver el y l i ear vel city f t h pla et d h e ce t h ti me f pr p rti al t t h a gle de cri b ed ab ut t h u ccupied f cu i d cri b i g d Th pd d i d/ d h ce t h a g ular vel city r u d t h u ccu pi ed f cu The

Ex 6

.

.

an

x

e

n

s

o ss

.

e

o

s

o

x

e

as

e



on

on

es

s s n

r

s

e

s oc



an

rm pr ved

s

is

o

.

o

e

an

e

s

a

e

n

e

n

s

o

s

s

-

o

n

e

n

e

s n

an

o

o

o

o

o

e

n

n

e

e

en

e



e

n

e

e

,

e

s

s

r

o

n

n

e su n

s

o

a

o

e

s

s

e

o

o

o

n

o

sin

d s s i n d/r p d s '

f the

an

,

o

o

n

o

e

s

n

ell ip

se

n

s

s

O

o

e

r perty

p

a

e

n

o

o

no

o

no

' 2 = r p s i n d/p p

d/

e

n

e

s

s

s

s





p p is

c

ons

t

.

an

.

d

thu

s

the

th rem eo

.

i f cu t h ell i ptical rb it f a pla t a b ut t h h d t u are e cc e t r icity e le ct e h w th a t a u lar vel city m b f t h g g y q th er f cu f t h pla et i u i f r m a b ut t h 10 P r ve b y m ea f th a exed tab le ex tracted fr m t h E Ex 9

s

on

.

en

the

o

n

.

.

e

n

at

Bu t f

su n

.

o

.

e

.

e

s

an

n

o

s

an

.

o

n

n

o

s

o

n

n

o

e

e

o

s

e

s

.



o

on

an

,

n

e

s

s

e

e

o

e

e

s

su n

n

o

n

n

n

o

o

a

as

an

en

n

e

a

o

n o

n

e

e

s

e

s

e

e

s

e

an

o

o

o

o

o

o

o

a

a

s

s

e

o

s

n

o

r

a

s

n e

n

o

o

e

o

s

n

o

o

.

.

n o

an

s

e

,

s an

s

n

su n

e

a

e

o

s



s

.

f t he

o

s

o

e

-

su n

e

n

ss

s

n

o

n

s

ecce tricity

e

o

o

o

n

s

o

n

s

s

n

o

n

e

s

n

s

If i n

.

o

*

x

.

n

s

.

a

o

o

e

n

,

e o

o

n s

o

o

ne

O

o

n

e

n

e

an

o

e

nn

s

s

e su n

o

e

n

one

o

n

s

e

o

.

,

o

e

a s

K E PL E R S ’

autical A l ma c f appr xi m at l y N

e

o

N E WTO N s L A ws

A ND

that t h e ec e tricity

1 8 90 ,

or

na



c

n

o

[C H

f the E

arth rb it i ’

s o

V II

.

0 1 68

s

.

[C OIL

xam ] rb it f a m i r pla et b a m d t b a ci rcle i t h If th E 11 ecl iptic pr ve that t w b ervati f t h di ff re ce f l g itude f t h pla et with a k wled ge f t h elap ed ti m e ffi ci e t t d t r m i e d th S h w al that th re uch b ervati wi l l determ i t h rb it t h rad iu i f it b a u med t b pa ab l ic [ Math T ri p I ] f t h d i ffere c b rvati A i gl f l g itude h w th at t h pla et a k w trai ght l i e i t h l i e th r u gh t h earth c t r t mu t l i b erved d i ta c e fr m t h t h p i t f t h e cli ptic a t t h Wh t w k w a ci rcle w ith ce t re at t h wi ll t ach f th e e such l i e l i e i t w p i t If a p i t f i ter ecti li e d a p i t f th i t r ecti th er ub te d t h a gle at t h u c tre which f that radiu gi v t h b r d ti me i t rval t h pr b lem i lved T ri al will thu determi t h rad iu A equati c l d al b f u d f t h rad iu b t thi agai c uld ly b lved b y t i l E 12 P r v th at i a y d ic peri d i feri r pla et cr th meri d i a t h ame umb r f ti m th b t th at a u per i r pla e t c r e it ce fte er [ Math T r i p I 190 2 ] E Th f urth a t ll it rb ital p ri d f 13 f J pi t h *

x

o O

o

,

e su n

an

s n

n

s

e

s

n

on

ne

s

s

*

s

u

x

.

e

n

o ss

s

*

o

x

.

e

s

n

e

e

so

o

es

o

an

e

su n

as

so

o

u

.

s

e o

e

o

o

o

s

o

o n

or

s

so

e

o

.

or

e

n

o s se s

e

s

o

.

as a n o

cr

u

e

en

.

e

.

o

en

s

n

.

n

,

n

en

o

r a

n o

n s

ou

.

an



s

e

e

su n

n

o

e

ou

on e

on

on

e

e

n

e

.



su n

n

n

e e

s

o

on

n

.

o

e

e

o

e

n

e

s

n

s

e

n

o

s

n

on

n

n

.

e

.

s

o

s

o

n

O

e

ve

se

e

s

on

.

n

e

n

.

,

o

s

O

o

n e

on

n

e

on

ons

e o

n

o n

es

n

.

n

o

o

.

e

o

a re s u

s

O

e

n

s

e

.

e

on

ss u

e

e

n

s

e

.

s

n o

s

e

e

o n

o

s

o

r

e

n

on s o

o

on o

no

a re

n

e s

e

se

o

o n

e

n

O

e on

s

n

o

e

no

so

o

ss

e

s

no

,

s.

e

o

e o

.

.

E

.

o

e

n

o

1 6d 1 8 h 5 m

Fi d while t h fifth at ll it h a peri d f 0 1 1 5 7 f th e e t w atell it fr m K e pl r thi rd l w t h rati f t h m ea d i ta c e fr m t h pr i m ary tell ite f Mar re lve E 14 A u m i g th at D ei m d Ph b s t h i cir cular rb it 1 90 9 t h b rved d th a t at t h f S ept pp iti h w fr m fr m t h ce t re f Mar i 1 g rea te t d i ta ce f D ei m i K epler thi rd law th at t h g r a t t apparen t d i ta c f Ph b it be i g g i ve th at t h per i d ic ti me f Ph b i 7 39 13 8 5 d f e



e

o

*

x

.

.

ss

s

s

n

e O

os

o

s

n

os

o

e

n

im

s

n

os an

n

s an

o

De

e

o o

e

m

h

d

o

o

as

n

o s

s

s o

n

es

.

n



e

a

s

e

o

e

s

30b

e

o

os

on o

n

e

e

s

o

es

s

o

o

o

os

'

s

n

e



s

s

o

o

00

se

e O

,

.

vo

s,

s o

e sa

o ,

o

os

o

s

8

an

o

5 48 8 6

.

t o f th e Su n Th rev lutio o f the ear t h ab u t the s causes cha ges both as see d the a ppare t i e f t he i n the a ppare t place We have w t o sh w t ha t the phe m e a wi t h fr m t he earth whi h w e are co cer ed i t his cha pter w oul d be e actly e 51

t

A pp a r e n

.

e

o

mo ion

n

an

c

n

n o

.

n

n

n

n

u n

o

n

o

.

o

s z

o

su n

no

n

n

x

r

K E PL E R S ’



[

N E W TO N s L A W S

A ND

OH

.

VII

t o f e l li p t i c m o t i o n ce tre d OP O the elli pse with L t F be t he ear t h w h ich t h F as focus i appears to m ake i t s a ual rev l u t io 0 0 is t he m ajor a is f t he elli pse d 0 its ce t re Th e circle O Q O has its ce t re at C d its r dius Th e li e 00 $0 0 a QP H is per pe dicular t 0 0 52

Calcu la i o n

.

.



,

su n

e

n

,

an

n

s

e



nn



n

o

.

an

o

x



n

.

an

n

a

n

.

n

an

d PP

=

r



o

L e t A OFP

.

v,

hus v are t he polar coordi ates o f P with res pect t o the origi T h e a gles F d a is F 0 F m 55 are called res pectively d v the t e o m ly d t he e cce t i c a o m l y d 0 be i g t he e tre m i t ies f the m aj or a is T h poi ts 0 h s s o f orbit hat o f t h e elli pse are t er m e d the e t T p pse 0 which is eare t t h e earth is t er m ed the pe i g e e Th e o t her apse 0 is called the p g e T h e ti m e is to be m easure d fro m t hat m o m e n t k ow as t he ep o ch at w hich the s passes through t he perigee 0 I f we had bee co sideri g the t rue f the ear t h rou d t he s t he t he p i ts 0 d 0 m o t io woul d h ave bee n t er m ed t he pe i h li o d the phe li o p ly We shoul d also ote that CE e CO e ti We have o w t o sho w h o w the polar coordi a t es o f the s are to be fou d w he t he t i m e is give It is t i deed possible t o O b t ai fi i t e values f d v i t er m s f t We ho w ever with t he hel p f the ecce t ric a o m aly btai e pres io s d v t be calcula t e d to i series w hich e able the values O f y d esired a ppro i m a t ion Fr m Ke pler s seco d law we see t ha t i f t be t he ti m e i w hich t he d i f T be t he perio d ic t i m e f t he m oves fro m O t P rbi t area OF P area f elli pse T t I t roduci g to sig i fy t he me a m o ti o i e t he circula m easure f t he average value f the a gle s w e pt over by t he ra d ius vec t or an

d

00Q = u

£

T

.

r

,

n

n

x

an

n

.

,

.

u

an

an

r u

an

a

n

e

n



an

r

n

a

x

n

o

a

n

.

x

e

a

.

s

r

.



a

n

o

e

.

n

u n

,

n

.

n

o

u n

n

r

ve

n

n

,

an

n

e

a

a

n

n

n

n

or

n

an

u

r an

can

n

O

x

,

an

O

,

o

n

n

o

n

n

,

.

.

.

n

an

n

o

n

s

o

n

su n

n

,

.

o

o

n

.

,

ec

u n

o

n

n



n

re s

.

n o

.

n

n

x

o

r

o

,

n

n

n

n



an

o n

n

.

n

r

§

5 2]

AND

T

H EI R

A P P L I CA T I O N

the u it o f t i m e we have = 2 /T d a s t he area f t he ellipse is a b w e have t = 2 area OF P /a b o m ly Th e a gle t is f m uch i m por t a ce ; i t is calle d the m e d is usually de ote d by m Fro m t he pro per t ies f the elli pse P H QH b/ whe ce i cos ) area OH P b GH Q/ b ( O CQ H CQ)/ a b (

in

n

u

,

7r

o

an

,

n

n

n

.

n

an

an an

n

o

n

a

.

a

o

a

a

.

n

,

u

, a

s n it

u

e si are F H P b QH F H /2 J; a b ( s i cos ) w he ce P HP OH P OF P } a b (u e i ) m e sin a d fi ally d we e press T hus m is e pressed i n ter m s O f ter m s o f u as follo w s Fro m the elli pse w e see a t o ce —ae c s v = a cos a

it

n

a

.

n

n

it

.

,

,

u

u

.

n u

s n u

1

n

,

u

x

v

x

an

,

:

n

a

o

r

b si n

r si n v

w he n ce squari n g ,

an

d

2r

si n

§

v

=

r

n

=

,

a

(l

cos v)

(1

,

addi g w e obtai r

2

u

,

a

n

— e co s u

(1

)



2r

cos

2

%

v

=r

(l

+

cos v)

a

(1

e

d

fi ally

+

u

— a an

(l +

a

cos

cos



e co s u

e

cos

+

u

e

)

— 1 (

)

u

e

co s u

)

,

)

(l

n

O

O

O

O

O

O

O

O

O

O

O

O

O

O O

O

O

O

H EO RE M I f we coul d eli mi ate fro m ( i ) d ( iii ) we shoul d have the relatio bet w ee m d bu t o w i g to the tra sce de tal ature f the equation s such eli m i ati i fi i t e ter m s is i m possible W i t h t he hel p o f L agra ge s t heore m w e m y however e press v i ter m s f m by a series asce di g i powers f which fo give values O f m a d e w ill e able us t c m pute v wi t h d egree f accuracy required y L agra ge s theore m m y be t hu s t a t e d — I f we are give *

A P P LI A T I N F L C O O A C RANG E [

it



s T

n

.

an

n

an

n

n

n

n

on

n

n

n

n

an

v,

O

n





n

a

n

n

n

o

n

,

o

o

,

x

n

r

e

an

o

n

n

o

.



n

a

s

n

K EPLER S ’

which fu c t io o f

in

an

93

2

n

n

d y

NE WT O N

AND



are i d e pe de t variables n

n

n

[

S L AWS

d if F

an

,

OH

.

be

(z )

V II

an

t he n

,

y

j in

which

di

as usual d e otes



n

v

apply this t o t he case be fore us w e see that i f w e wri t e f m f i m f we ake equatio e f d s i 4 ( ) ( ) y I f fur t her w e w rite ( iii ) i is ide tical wi t h equa t io the f r m v = F ( ) the w e have fro m equa t io ( A ) To

,

o r as,

or z,

u

or

an

,

n

n

,

n

u

o

F

v

n u

u

;

(u )

n

n

= E

a

n

( m)

e si n

mF

3 d l

i

si {

2 d m |

z

n

2

!

+

d

6

( m) +



n

2

{S i n

e tc

3

.

_

ro m equa t io ( iii ) w e fi d by a w ell k ow m etrical e pa sio which is proved O p 1 60 Bu t f

x

where

n

c

an

d

{

2

u

u

1 {

N/ I

E ( m)

n

m

0

e

2

si n

fl/

e

{

h

e

u

H

.

sin

.

2u

t rigon o

n

,

§

c si n

3u

3

e ce n

$0 s i n

m

0 sin

?

n

-

n

( )

E

v

n

n

si n

2m

2

3m

t here fore

cos m 0 cos 2 m + c cos 3m t he right ha d si de f equa t io ( B ) m y be H e ce all ter m s evaluated d t hu m y be b t ai e d w ith y required degree f accuracy S e for m ula ( vii) p KE PL E R S PRO B LE M T e ff ect t he solu t io o f equa t io ( i ) i e t o d e t er m i e whe m is k ow n is ft e called Ke pler s proble m is a ppr i m a t e value f w hich has bee S u ppose arrive d at by esti ma t io or other w ise d le t ’

F (m)

1

{0

2

n

2

on

,

an

o

a

,



it

n

n

u 0

an

ox

a

an

.

n

o

.

n

n

n

O

e

O

n

-

s v

.

3

o

n

,

,

.

.

'

.

o

n

n

u

n

,

an

e si n n o

t he t rue value O f we have a ppro xi m a t ely If

u

be

u 0

Au

o,

t he n by subs t i t u t ion 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

in

i( )

K E PL E R S ’

15 8



Fro m the esse tial proper ty t hat t he arc A U is equal t o UT but

to FT

n

.

[ OH

N E W T O N S LA W S

A ND

f

o

.

V II

i volute it follo w s

an

n

,

UT

w he n ce

which

F CU=

a e si n

we

if

,

m

CF si n F O U =

:

ake

4

FCU

(4

a

F0 U

u

m=

,

rawi g perpe diculars UR we have

e si n u

on

u

F V co s A M E V = C U co s u

F O U, ’

A OF )

ly

mp

Si

.

UR fro m U

n

n

A

beco m es

'

D

a e sin

CF

on

CF

cos

a

:

an



u

r

QV

d

f

om

Q

a o,

— b i si d t he i volu t e A TJ have bee T h us whe t he t hree circles draw t he solutio f Ke pler s proble m m y be su mm ari e d as follows T ake a poi t M o t he m aj or circle so tha t A A CM = m f GM wi t h t he focal circle d ra w Fro m F t he i t ersec t i the ta ge t F T t o the i volu t e d through 0 d raw OQ U parallel d mi or ircles i U d Q t F T cu tt i g t he m aj or respec t ively T he 4 A OM = m ; é M F V = v ; £ M C U = ; F V = d t he proble m is solve d hi g such as t h se f B l greatly facilitate the solutio o f t he proble m f fi di g w he m d e are give W e illus t ra t e their use i t he follo w i g questio B ei g give t he f llowi g assu m e d ele m e t s f t he orbit f H alley s C m et E cce t ricity e 0 9 61 7 33 T i m e f P erihelio P a sage 1 91 0 M y 2 4 P eriod P 7 6 08 5 year fi d t he ec e tric d t rue a om alies f the co m et 1 9 00

F V s i n L M F V = CQ

n u

an

n

n

n

o

z

a

.

on

o

,

n

n

'

an

,

an

n

,

n

n

n

o

.

n



n

n

s n u

c

n

n

an

.

n

u

an

r

,

.

o

o

n

n

a u sc

o

n

n

n



an

n

u

n

n

n

n

er



n

n

o

n

.

.

or

o



o

,

n

o

n

,

,

s

a

,

s,

,

n

-

Ma y 2 4

c

n

,

an

,

n

on

o

,

.

We have t he m ea m o t io equal to to periheli is 10 years we have n

3 GO /P , °

n

an

d

i ce the ti m e

S n

on

=

10

x

3 60

x

60

x

60

7 60 8 5 l A s tr o n o mi c a l T a b l e s b y B a u

‘ ‘

sch i n

1 7 0335 s = 4 7

u li h

ge r , p b

s

ed

18

l

s

.

i i

b y E n g e m a n n , L e pz g

.

AND

eri g B s argu m e t s m o f t he ecce tric a En t

au

n

chin

n

n o

m

T

e r s g

d

fin

u ,

log cosec 1 log e i s n u ,

e si n u

9 9 9 1 4 98 4 99 8 30 5 4 7 5 3 14 4 2 5 1

Lo g

5 2 8 8 97 8 2

1

, °

2 54 1 0 1 18

v,

m



'

m,

182

co s n

9 2 92 1 4 9 9 8 305

,

e c

s u ,

)

u

,

2 2 600 7 0 0 7 4 96 21 85 11

15 3 15 2 33 1 5 0 = 1 0 1 18

Au ,

'

0

-

,

u ,

z

his m ust be very early the true value o f u proceed t o a seco d a ppro i m ation T

n

n

'

°

u

n

11 8 8 4

,

m, )

o log A

lo g ( l

'

as follows

Au ,

log ( m

6 2 0 0 ‘

'

m

x

e co s u

47 15 5 3 8 4 7 18 5 5 8

m, =

n

,

hen fro m for m ula ( iv ) we calcu l a t e

L o g si n Lo g 6

ouble e t ry wi t h the d the a ppro i m a t e value d

Of

aly u

T

159

A P P LIC ATI O N

ables e = 0 9 6 we



an

n

HE IR

T

.

~

10 1 2 0

To

33 1 5

veri fy it w e

x

Lo g Sin Lo g e

u

9 9 9 14 338 9 9 8 30 5 4 7 5 3 14 4 2 5 1

,

log cosec 1

lo g

e Si n u

,

e si n u

,

54

m



°

u ,

1 10 1 2 0 33 1 5

m, m

4 7 18 5 5 8 4 4 7 18 5 5 8 0

m,

0 04



his s m all d i ffere ce is quite egligible but i f i t w ere to be at t e d e d to w e re m ark t ha t 1 e c s will o t d i ffer se sibly fro m c s al eady calculate d d w e have 1 T

n

n

o

n

e

,

o

r

u ,

,

m — ml 1—

e co s u

,

n

,

n

an

m l —

u

_

c

m1

oos

a ,

= 10 1 2 0 33 12 hus fi ally = 1 0 1 2 0 33 1 2 we H avi g fou d the ec e tric a m aly subs t i t u t e t his i equatio ( iii ) t o fi d v For this pur pose it is co ve ie t t o write equa t io ( iii ) i t he for m =t ta é t v § w here S 4

an

d t

n

u

n

n

n

n

an

)

n o

n

n

in

'

.

c

n

n



°

n

n

°

an

u

.

n

n

u

,





K E PL E R S ’



[

N E W T O N S LA W S

AN D

OH

V II

.

T ables are u e ful as e abli g us at l t h ugh B s hi g o ce t o b t ai a go d a ppro xi ma t io to t h require d value t hey are t i dispe sable A y f the graphic l m e t ho ds woul d rea dily deter mi e t o withi t hree four d egree f t he true value We m y t he b t ai a value as accura t e as tha t f t he tabl es by t he hel p f f ur pl ce l gari t h m s I f fo e a m ple w e have fou d = 1 0 5 by a graphical process the e x t s t e p m y be co ducted as follows A

n

u

O

n

e

a

n

o

-

n

o

u

a

.

n

.

n

n

s

n

n

n

n o

er s

n

o

n

O

n

c

au

o



or

o

s

n

o

o

a

o

.

r

,

x

,

°

n

,

a

n

L o g s in

99 8 4 9 5 2 97 5

it,

log e cosec 1 log e i s n u

n

99 8 3 1 n

,

e sin u



19 1 600 ° 53 13 3 105 00

,

u ,

m —

m

o

51

46 7

m

47

18 9

mo

— 4

log ( m log ( 1 log A

m, )

n

cos

e

u

,

)

00 96 6

u ,

n

Au

278

=

o

u ,

10 5 0

u

10 14

,

roble ms which arise i the m aj ori ty f cases are t hose i w hich the ecce tricity is very s m all ; fo e xa mple i the m t io o f t he ear t h about the su the ecce tricity is m ore tha For such ca ses i t is best t o obtai appro i mate e pressi f the su s true a o m aly i te m s f m i the form o f a series which eed n o t f m st pur poses be carried beyo d Writi g si I i s t ead o f e we have fro m 5 2 ( iii ) Th e p

n

o

r

n

n



n

n ()

n

ta n

whe ce n

if

an

d

a c

f“

(1

= u + 2 (t a n

e press x

or

n

1 ( n w/

ta n

a

kt)

7

a ieria logari t h m

f N p

n

,

s,

)

6

e

4



o

f

w

1 e/<

ta n

ta n

s

a n(

f“

m e

ta n

bo t h sides

) si n u

3d

7

+

t an g y

2

5 ¢ si n

2u +

or m ula i t er m s O f t h ecce trici ty e we have

t he f

ya

by sub titutio s

on

—t u /z

n

tan

d

o

(1

ta n

ta n

u

by t aki g logari t h m s TO

an

%

1 ( %

ta n

v

m e n(

v

x

n

e

s

n

x

o

n

n

e



an

r

o

n o

o

be the base

e

n

v

or

n

n

n

n

n

n

n

1 (

VI

e

n

,

w

n 3 1 — 2 u + 1 7 e 8in

3u

( v)

.

K E PL E R S ’

N E WT O N S L A W S

A ND

be the i crease

If d m

t he

in

n

[



m

ea a o m aly n

V II

.

the t i m e

in

n

OH

dt

t he n w he n ce

equa t io

dm

r

dv

a n

(1

dv

(1

he ce

e

2

% )

cos

e

v

)

2

n

m an

b

be w ri t te t hus

n

dm w

2

d

(1

(1

2e

3e

co s v

4e



2

cos v

3

cos

3

v

) dv

,

by i tegratio n n

si + Qe w here po w ers f e above the third are eglected E T f a l his series be obtai ed as ollo w s G e er n s i on c [ p We h a ve fro m ( viii ) m=v

2e

.



n v

3 — i s n 2v ge s in 3v r

o

*

n

x

n

a

f

dv If

we

m

ake

v .

si n

d

a

1 + si n

f 1 + si n ¢ c o s v

>

whe r e

e



4”

Sl n

cos kv

22

{1

he ce

t a n lflt

1

4)

tan ta n

d

¢> c os v ¢

.

it is easy to verify that

=

s i n c>

an

n

an

.

dm

.

tan

.

.

"

n

4 )

{T

22

1

2 7O

h e ce l < 4 n

h ce

°

c

T

.

hu

s

Ir > 2

en

,

the

on

an

i teger n

A

.

l

.

so

ly adm i ib le ss

n

o

I t i al ea y t h w that so

s

s

o s

o

L I + si n L 2 + si n L 3

si n

si n

L 4 + si n L I si n L 2 s i n L 3

s in

L I si n L3 s i n L,

L 1 s i n L 2 si n L 4

si n

L I si n L 2 si n L 3

si n

0

:

.

th c i e f t h ecce tr icity f t h earth rb it b b li quity d t h l i e f equi xe b t ake p rpe d ic l ar t t h m aj r ax i f th rb it pr ve that t h l gitude f t h u wh e t h equa ti u mericall y a max im um f ti m e d t b th ca u e c j i tl y i a gl e wh e i e appr xi mat ly 0 6 17 d [ Math T r i p I ] Th equati f ti me b ei g

Ex 4 .

If th e

.

an

o

s o

o

on

n

e

s

os

s n

s o

n o

s

e

on

o

,

o

e

o

n

e

o

u e

o

o

n



s

o

s are

o

n

e

as

e

s

os n

n

e s

s o

on o n

s

e

e

u

n

c

me s

o

e

n

n

a re

an

e

.

a m ax i m u m f

or

w)

m = 9o

wh e

°

n

2 — L t a n 5 0:

co s

I tr d uci g t h g i ve c ta t t h equati w b tai a qu adratic f i L wh r t o

e O

n

n

e

.

ta n 2 1 l§ w s i n 2 L ,

(L

«as i n

n

e

n

on o

2 c si n

be

e

o

.

e

o

n

on s

n

or s n

s

e

o se

on

2L = O

is

o o s a re

.

1 sin 36

th e g

L

£5

cos

i ve

n

n

2L

um b r e

s

O, .

wh e c n

e

RE NT



S U N s A P PA

TH E

f ti me ccu r tatio ry val ue f t h quati wh e t h f th u rad iu vect r th f th pla e equat r i ( 1 )?f ( 05 ti m t h m ea di ta ce wh re i t h ce tricity f t h rb it t h b l iquity f t h ecl i ptic the i f 8 b t h u decl i ati L t p b t h pr j ecti

Ex 1 .

th at pr j cti

UA L M O TI O N

ANN

S

.

n

2

e

o

=a

bu t

r

o

wh at h

m

j us t

as

e

8

(

(

?

e

2

o

n

2

6) +

w h e ce n

co s

c

1+e

2

on

n

a

,

2

n s

e

e

,

o

n

e

e

s

ec

e

n

on

,

( 6)

si n

a)

o

.



co s

o

2

8 C) ) o

e d, 2

a) s i n



w

(1

a

p

co s

on

e

+e

6)



os

s

e s

) co s

e

o

O

co s

e

n

n

,

o

s

e

ee pr v

b

co s

n s

o

(1

cos

d f

s

e

on

o



es

a)

,

p

an

e

o

o

s

na

s

co s «

e

e

e

on

e

s

o

th e

w

o

o e

e

n

h

( )

(l

i (c o s )

?

e

° 0

co s 0

fi u path r lati v f cu d a ec m

e eral upp i g t h t t h ear th t b xact elli p e with t h earth i t h d ell i p e t b tructed b y pr j cti g t h f rm r th e f t h quat r the t h pl r cti h u iti w h e h u a ti f ti m i rea t e t t f t g p q p j ec d ell ip e w ith a ci rcle wh e ce tre i at t h f th t h i ter ecti earth d wh e area i equal t t h ar a f t h i ell ip e [ Math T r i p I t h ge eral ca e h w th at w hatever b t h e cc e t r icity t h E 3 m m m i u a ti h c e t r a ax i u w h e ra iu v ct r a e etr ic f t i m h d t g q d m i r axe m a b etwee t h m aj r Ex 2 .

an

In g

.

n

os n

n

o e

s

n

e

o

on s

o e



o

os

n s

s

e

os

an

,

e

ons o

s

e

e

s

e

e

s

,

n s

n

e

e

o n

e

n

e

on

on

s

s



e

o

s, a n

o

e

s

o

e

e

o

s

s

,

s

n

e

o

on

e

s

n

e

n

.

.

s

e

o

s

e

e

n

n

e

an

o

n

,

,

n o

s

s

are e

.

n

e

e

-

o

s

o

e

s

e

e

.

.

x

n

s

n

os

e

e co n

o

o

e

e

s

o

e

s

o

on

e

o

on

s

an

e

.

use o f th e e a o n s ual pa t h f the i the heave s is divided T h e appare t a i to f ur quad ra ts by the equi oc t ial d sols t i t ial p i ts T h corre po di g i t erval f t i m e are called t he seaso s Sp i g A t m d Wi te Sp i g c mm e ces whe t he S m me e t ers t he si g f A rie t hat is to say whe i t s lo gi t u d e is s ero Whe t he reaches the solsti t ial poi t ( lo gi t u de o m m e ces whe t he e ters L i bra A t m S m m er begi s d Wi ter c m m e ci g w h e the su s lo gi ( lo gi t u d e tu d e i 2 70 c ti ue u t il the ver al equi o is regai ed T h changes i t h e m eteorological co d i t io s f t he ear t h s a t m osphere which co s t itute t h phe m e o k ow as the variatio f t he seaso are d eter m i ed chie fly by t h cha ges i the a m ou t f hea t receive d fro m the as the year ad va ces T h e a m ou t f heat re eive d fro m the at y place O t he sur face f t he earth d e pe ds u po the u m ber o f hours duri g whi h t he is above t he hori o d i t s e ith d ista ce a t oo A t a pla e situa t e d i la t i t u d e 4 t he i terval from su rise t 78

Th

.

e

ca

s

nn

n

r

u

u

u

,

s

n

n

n

r

n

r n

.

o

u

n

an

°

on

n

c

n

n

s

n

n

n

n

n s,

o

n

n

n

o

su n

su n

z

n

n

;

.

n

n

n

n

n

c

n

n

o

e

n





su n

o

c

no

o

n

c

e

n

n

n

n

n

,

n

x

n

n

e

n

n

n

n

n

an

z

n

,

n

su n

n

o

,

r n

,

n

n

n

u

e

.

n

s,

o

.

n

s

o n

an

su n

n

u

n

n

o

an

,

n

.

su n

n

n

n

u n

z

n

n

s

.

o

n

o

n

s

.

n

an

n

n

n

n

n

n

.

o

7 7—78]

TH E



S U N s A P PA

R E NT

AN N

U A L M O T IO N

su set is equal to 2 4h/ where h i t he a gle e pressed i radia s give by t he equa t io 8 cos h t i t S ( ) q is I 8 8 bei g the d ecli atio d t he e ith d ista n ce at o o f t he s m oves alo g t he ecli pt ic fro m t he first poi t f A s the is posi t ive ( see Fig 68 ) d i creases t o a A ries i t s d ecli a t i is a t t he first m a i m u m at t he su m m er sols t ice w he t he d oi t the ecli atio bei g o f C a cer m arke d by t he sy m bol p s

7r,

n

n

u n

n

n

z

on

,

()

n

,

n

n

.

n

su n

n

n

on

an

.

x

n

,

su n

n

F IG

.

68

o

n

n

n

n

an

an

an

x

,

n

n

,

n

n

n

.

t he n equal to t he obliqui t y o f t h e eclipt ic v i z 2 3 Fro m t his poi n t t he s o lar d ecli n a t io n di m i n i s hes u n t il i t va n ishes a t t he au t u m n al equi n o x fro m which the d ecli n a t io n b eco m es n ega t ive dim is reac he d a t the win ter in ishi n g u n t il a m i n i m u m 2 3 sol s t ice i n C a pricor n us m arke d by t he sy m bol a ft er w hich i t begi n s o n ce m ore to i n crease a n d va n ishes agai n at t he followi n g °

.

,

°

,

equi

n ox

.

co sideri g t he sea o al cha ges t he earth i t five o es which are b u the equa t or i la t itu des i 2 3 2 7 d clu de d betwee the parallels f 2 3 2 7 In

n

n

n

o

s

z

n

n

n

o

°

n

n

o



n

an

°



n

it

ve ie t to divide de d by circles parallel t Th e o e i i 66 or t h d sou t h is calle d is

co n

n

n

o

°

z

n

an

16

-

2

n

R EN T



TH E S U N s A P P A

ANN

UAL M O TIO N

d souther bou di g circles the To r r i d Zo e d i t s or t her are ter m ed t he Tropics f C a cer d C apricorn respec t ively orth d south are called t he T h e parallels f lati t u d e 66 33 Th o e i clu de d b d A t c ti c C ircles respectively A c ti c twee t he A rctic C ircle d t he Tropic Of C a cer is k ow as the N or t h T e mperate Z o e w hile t ha t bou d ed by t he T pi o f d t he A n tarctic C ircle is t he S outh T e m pera t e Z o e C a pric r d S outh P oles bou d e d by L astly t h e regio s rou d t he N orth the A rctic d A t arctic C ircles res pectively are k o w a s t he N orth a d S outh F i g i d Z o es 23 27 d w e have A t t h ti m e o f the su m m er olstice 8 A t t he f oi t the rctic C ircle n c t an 8 = 1 d er U p yp these circu m s t a ces the hour a gle f t he a t risi g or setti g is a T hat is t o say t he diur al course o f the n is the circle parallel to the equator t ouchin g t he hori o at t he orth m f f d oi t so tha t at i igh t hal its isc w oul be visible w e d o d ( p are n t here taki g t he e ff ec t o f re frac t io i to accou t ) Withi the frigid o e t he s will rem ai above t he hori o without setti g f r a co ti n ually i creasi g u mber o f d ays as the observer approaches t he pole To observer at t he pole it sel f the s w oul d appear to m ove rou d the hori o at t he equi o a ft er which i t will describe a spiral rou d d rou d the sky gradually i creasi g its height above the hori o u t il at t he solstice i t s d iur al track will be very early a rcle parallel t o the hori o a t altitu de o f 2 3 A fter the solstice it will retur i a si m ilar spiral curve t o w ard t he hori o w hich it reaches a t the autu m al equi ox I t h e w i t er hal f o f the year t he s will be co ti uously belo w the hori o m i m he o e a the south t e erate south rigi Th d f d p p o es w ill be si milar t o those i the correspo d i g orthern o es but they w ill occur a t o pposite e pochs o f the year T hus the spri g o f the souther he m i phere coi ci des i poi t f ti m e with autu m i the orther he m i phere t he su m m er o f the d i c e ve s a N orth wi t h t he W i ter f the S outh I the torrid o e t he co ditio s are as follows O t h e equa t or si ce 0 whatever m y be 0 we ha e fr m ( i ) cos h be t he value o f 8 H e nce h = $ or t he le gth o f the d y is 12 hours all t he year rou d e ith dista ce f T h e m eri d ia t he will ho w ever vary fro m d y to day A t the vern al n

°

n



e

n

n

rO

an

n

,

n

r

n

'

°

s

an

n

n

n

u n

n

o

n

,

n

n

n

n

Ci

s

n

n

u n

z

,

°

an

n

z

n

.

n

,

n

n

n

n

x,

n

z n

n

n

n

an

n

n

z

n

z

n

e

n

an

u n

n

n

.

z

n

n

.

n

n

o

-

n

n

n

n

z

n

z

n

su

,

n e

n

n

n

o

an

.

su n

o

n

n

,

n

a

on

n

.

.

e

n

c

n

n

n

z

n

n

n

,

n

an

n

e

n

,

n

n

an

n

or

n

z

an

o

n

.

.

n

n

an

n

ar

n

n

an

o

an

n

n

o

r

an

n

n

an

,

z

n

n

.

an

n

n

n

n

,

.

n

n

n

n

,

,

n

n

v

n

o

,

r

v

.

n

.

n

a

7

n

an

n

o

.

su n

s

o

z

n

n

n

n

n

,

s

n

a

n

,

n

.

a

z

.

n

n

o

2 46

TH E S

UN S ’

APP A

RENT

tu des by the fac t or fo the or t her he m i phere No

f da

o

.

y

s

UA L M O T I O N

Wri t i g K fo t his factor we have n

r

s

n

n

r

A NN

in

r g K ( L L ) 9 1 3 10 2 e K ( i cos 2 eK ( i w cos ) L ) 9 1 3 10 S u m m er K ( L K ( L L ) 9 1 3 10 2 e K ( i Au tu m ) cos w ) K ( L L ) 9 1 3 1 0 2 e K ( si W i t er d m as give i § 7 3 w e O b t ai T aki g t he values f e 1 9 1 0 days 2 eK i 2 e K cos 0 37 9 d f t he four seaso s as follo w s fro m which we d educe t h l g t h D y Hu 2 02 92 S pri g co tai s 14 4 93 S u m m er 89 18 7 A u tum W i t er 89 05 d su mmer seas s toge t her las t fo T hus we see tha t t he s pri g whereas t h e au t u m d w i ter together 1 8 6 days 1 0 6 hrs co t ai o ly 1 7 8 d ays 1 92 hrs Th e reverse f t his is t he case i t he souther h e m i phere t he su mm er hal f f the sou t her year las t i g f 1 7 8 days 1 9 2 h s w hereas the souther w i t er las t s f 1 8 6 days 1 0 6 hrs E 1 A um i g th a t w i c r a u i f r ml y h w th at i t h c ur e f ti me t h le gt h f t h f u r ea wi ll h ave thei r extreme l i m it Sp i n

1

O

s n a

2

1

s n

3

2

s n ca

n

0

'



n

an

o

n

n a

3

4

a

.

,

n

n

n

s n a

an

co s a

,

or

'

n

s o

en

e

a

n

s

o

rs

n

n

n

n

.

n

an

an

n

n

n

n

n

n

s

r

n

ss

e

s o

n

o

th a

If P b e t h e

.

ri

n

sp

ay

n

r it

se s

o

n

so n s

s

um b r

g by Q d s a n t ri c i ty o f t h e o b a n d the n

e

n

9 1 3 10 .

n

n

,

.

e

Ex 2

n

o

or

.

.

o

,

or

x

n

.

n

r

on

s

o

n

e

x

365 2 4

s

o

s

as

72

o

/

x e rr

.

ay i t h year d i f ummer i l g r d l ger th a autu m b y It day fi d t h c ce l gitude f p ri gee e

o

f d

n

s

on

an

e

n

o

on

n

e

s

s

s,

n

e

on

e

e

n

.

I

E XE RC S E S O N C H A P TER X

.

a u mpti that t h earth rb it i a arl y ci rcu lar ellip e d th at t h ap idal d l titial l i e h ave t h ame l gitude pr ve th at t h ecc t ricity i appr x i m at l y qu al t Ex s

1

.

On t h e

.

an

e

o

e

wher E E d ap g e e

an

1,

o

e

,

d

s

en

2 are

an

on

ss

w

an

e

so s

n

o

s

e

s

o

s

s

e

ons

e o

o

e

n e

e

s

on

,

o

h o url y variati i t h e equati th b l i quity f t h e cl i ptic

the

is



n

.

on

o

[ Math

f

.

ti me at peri gee

ri I

T p

.

.

5 78 ]



S U N s A P P AR EN T A NN

TH E

UA L M O TI O N

cl ck a t C am b r idge keep G ree w ich me ti me Fi d wha t ti me it i d icated wh e t h u preced i g l i m b arr i v d t h m er i d ia 6 1 8 7 5 h av i g g i ve J L g itud e f C amb r i dg E Ti me f em i d i am t r pa i g meridia 1m 10 62 E qu ati f ti m e 2 88 6 E 3 S h w th a t t h c l u m i th N l A lm which gi ve t h e ti f th V ar i ati u right a ce i i h ur d t h Ti m e f t h e emi diam t r pa i g t h meri dia i crea e d d im i i h t geth r t h e f rm er qu a tity b i g practic ll y pr p r ti al t t h qu are f t h latter [ Math T r i p I ] 4 d i f th li e f rb it b e E If t h ecc e t r icity f t h ear th equi x b pe rpe d icular t t h ax i m aj r f t h rb it h w th at t h umb er f day d i ffere ce i t h ti m e tak b y t h earth i m vi g fro m fl T t T i 4 65 very earl y t d fr m d E 5 S h w th a t t h great t eq u ati f t h ce t re i 2 + l l /48 th at wh e thi i t h ca e Ex 2 .

A

.

o

s

n

an

.

,

n

,



s

-

o

ss n

e

n

,

.

o

ns



s

n s

e e

ss n

n

e n

s

e

n

n s on n

e

a

o

n



on e

n

o

ca

a u

a nac



o

s

an

an

on

o



e

n

o

s

e s

o

e

o

.

no

n

es

e

s

an

x

.

o



n

o

e

n

s

s

e

o

o

e

s

s

s

e

n

o

o

.

e

o

n

o

o

n

e

.



e

.

en

e

s

n

e

n

.

on

o

s

n

e

e

e3

s

m

{

gr



fi fl

e — gz

g

o

o

o

n

e

n

es

e

,

.

.

an

o

e

o

,

e

.

x

,

'

o

e

on



e

o

n

e

.

e

-

o

on

on

e

e

s s

on

.

n

n s

o

o

.

s

n

.

n

on

x

e

n



an

n

e

it







i

e

— 37

3§ I

e3

an

C H APT E R xi

.

I

I

T H E A BE RRA T O N O F L G H T

.

I tr duct ry Relati ve V el city t A b rrati A ppl icati f a c ele ti al b d y Effect f A b errati t h c rd i at e D i ffere t ki d f Ab rrati d D ec li ati o A b rrati i Ri ght A ce i A b errati i L g itu de d L atitu de Th G m et ry f a ual A b rrati A b rrati Effect f t h E ll i ptic M ti f t h E ar th D et er m i ati f th c ta t f A b errati D iu r al A b rra ti P la tary A b rrati F rm ulae f reducti fr m mea t appare t place f Star E xer ci e C h apter XI o

o

n

o

on

s

e

o

on

o

n

n

e

s

on

n

on

n

n s on

o

e

n

e

o

o

e

on

.

n

n

on s

on

O

0 11

e

o

n

on

.

on

on

o

o

on

s s

s

on

e

ne

on

o

on

an

e

n n

e

n

o

s

an

on

o

o

n

on

e

o

oo

e

on

s

eo

e

on

o

n

s

s o

n

.

tr o d u c t o r y W e have alrea dy lear ed tha t i co seque ce f at m os pheric re fractio there is ge erally a differe ce bet w ee t he true place o f a celestial bo dy d t he place w hi h t ha t body see m s to occu py W e have here to co sid er a other d e a ge m e t f t he place o f a celestial body w hich is d e t o the fact t hat the velocity o f light though doub t e tre m ely grea t is still t i co m parably grea t er tha t he vel city w i t h which the observer is him sel f m ovi g A y a ppare t cha ge i n the place o f a celes t ial body arisi g fro m t his cause is k ow as a be ti T h true ordi a t es o f a celestial bo dy ca o t t here fore be ascer t ai ed u t il certai correc t io s f aberra t io have bee applie d t o the appare t coordi a t es as i dica t e d by direc t b e t i l Th e a t ure f these correctio s is w t be i ves t iga t e d r d th w h di c 1 T h t t hi m u t b t h p rc i d b y B m r wh f l i gh t i 1 67 5 T hi l t r h wr t t H uyg g du l pr p g ti pp r i mp le d 0 H yg T m p T h ugh (O g i p ri dic h f t h P l S t r r ll y d t h pl u c d i 168 0 b y t b rr ti w P ic rd t h cr d it f di c ri g t h g r l ph m f b rr ti i d t B r dl y wh l g t h c r ct xpl ti f it 79

In

.

.

n

n

n

n

n

n

n

n

an

o

c

n

.

n

n

r

n

o

u

no

x

n

n

,

n

n

n

n

n

n

n

n

n

n

or

n

a

s

o

a

a

,

e

on

tes

o

e

s

a

eu v r e s c o

a ce

n

e

e

e c a se

e

o

n

e

a

,

s o ve

o a so

a ve

n o

as

.

ea

u e

n

e

e

oe

s a

o re

v

.

o

a

en e a e

ea

s

on

e

en

,

et e

on

en o

an a

on

o e

e

n

as an n o

,

en o n

o

.

.

o

a

e

e

s o ve e

e

e

a

o

a

‘ '

.

n a

.

e

r va

s

n

o

e ve

e

.

en s ,

u

.

o e

o

n

o

n

a

a

co

e

.

n

n

o

e

on

r ra

n n

n

ra

n

o

n

.

n o

,

o

an

c

e

n

u e

o

n

e

a

en s

o

on

s

TH E A B E

RRATI O N

OF

L IG

HT

[

GEL x 1

hus although the real direc t io f t he s t ar 0 is B C ( Fig yet i t s appare t d irec t io will be A C i f the observer m ves u i for m ly al g A B wi t h a vel ci t y which bears to the veloci ty T h e a gle A OB is calle d t he ber ti o f ligh t t he ra t io A B /B O while A C the a ppare t d irec t io f the s t a d is d e o t e d by f t he bserver s m o t io a gle m akes with A B the d irec t io T h poi t 0 t he celes t ial GA O which we shall d e o t e by i sphere t oward s w hich t he observer m o t io is directe d is t er m e d t he pe L t v be t he vel ci t y o f t he bserver t he veloci t y f d ligh t t he whe n ce i = pf i lw whic h i t h e f fu da m e t al equati aberra t io Th e a gle i t he i cli a t i be t wee n the actual directio o f the t elescope whe p i ted by t he m ovi g bserver t o view the star n d t he t r e directio i w hich the telesc pe w u l d hav to be poi t ed i f the observer h d bee a t re t A is always s m all we m y use its circular m easure i s t ead f its si e We have t ake 1 to b e t he a gle be t wee the pp e t place f t h e s t ar d the a pe A s however i l is m ulti plie d i the e qua tio by /n w hich is a s m all qua tity we m y o ft e wi t hout se sible error i the value f use i s t ead f l t he a gle betwee t he t e place f t he s t ar d t he ape E 1 S h w th at t h ab rrati f a tar S re lved i y d i re cti = / S S (F i g i AS where A i t h apex d p T

n

,

on

o

,

n

.

n

o

,

'

an

.

n

n

n

o

a

n

6,

r

o

n



n

,

o

o

n

«f

n

an

,

n

on

n

e

.

on

ra



n

s

x

a

.

e

o

O

n

,

n

s n s

n

or

o n

n

s

6

a

n

n

n

n

,

an

n

n

n

n

s

n

an

x

.

n

n

x

.

o

ru



s

.

x

on

o



co s

co s x

A S = si n A S

po n

i:

e ti

n

n

Ex 2 .

S 1 S2 ,

an

.

si n

ab errati

A S i s t he

the d

irecti

S 1 S2 b y 2 K S i n

ap x

é Sn ‘



e

,

an

70

d m

co s

n

,

.

n

on

an

an

x

v

.

9,

co s

9

.

.

ul ti pl i ed

by

co s

9

it gi ve

s

th e

co

m

SS

on

Le t S I , S 2 b e t h e

d A the

on

.

xr

,

AS

si n

co s

so

,

e



FIG

Bu t

x

s

s

,

n

o

an

e

e

n

,

o

o

.

O

n

a

,

5

.

n

n

,

n

ar

a

n

s n xr

,

6

o

n

,

s

.

n

e

o

o

a

v

o

n

a



s

,

on

n

n

s n i

.

o n

u

n

l

v

o

u.

,

of

CO S

t rue place f t w tar 0 b e t h p i t b i cti ear th way Sh w that ab e rrati d i mi i h

th e

0A

.

s o



s

o s

.

o

s,

e

o n

on

se n

n

s

g

es

8 1 8 2]

TH E

-

On t h e g T

reat ci rcl

he it f ll w fr o

n

x

o

(c o s A S 1

s

'

RR ATI O N

r d uc

S I S2 p

e

m Ex 1

o

AB E

.

o

d,

e

OF

take p i t o n

th at t h ch a ge i e



si n

co s

n

O Sl

'

sin



OA

s

th at

so

S 1 S2

n

HT

L IG

wi

ab rrati

g to ’ OG A = 2 x sin

co s

o

e

n

is

on

é Sl Sz c o s

0A

.

h w that tar ci rcu m f r ce f a g r at ci rcle w i ll b e th appar tly c veyed by ab errati t t h ci r cu mfer ce f adj ace t m all ci rcl f t h t w ci r cle d th at t h pla e parallel Ex 3 .

S

.

o

s

e

e

E ffe c

.

e

on

e , an

b o dy

on

on

en

82

s

n

ts

e

en

o

ti o n

O

e

o

e

a b e rr a

f

o

s o

e n

o

s a re

th e

on

n

an

s

.

c o o r di n a

te

s o

f

l ti a l

a

ce es

.

be t h veloci ty o f ligh t 7 C the t rue oor di ates f th s t ar the celestial s phere ; we are to eek t he a pp re t coor di ates f the s t r as a ff ec t e d by aberratio L t 7 { be t he coor d i a t es f t he ape x to w ard s which the observer is m ovi g w ith a veloci ty v L e t t t be the m m e t s a t w hich a ray f ligh t co m i g fro m a s t ar su pposed at res t passes t hrough first t he object gl ss d seco dly t h e eye piece f a telescope su pposed to be i m o t io parallel to itsel f o f t he Le t be the rec t a gular coordi a t e f t he ce tre y eye piece a t t he ti m e t re ferred to a es + X Y Z t hrough the earth s ce tre d towards t he poi t s whose s pherical o di ates are res pectively A t the t i m e t t he coor di ates f t he eye piece will t h ere fore be — t c os — i i v t c t c s t s t t + ( + + 7 7 ) g ( ) { ( ) y L e t l be t he le gth o f t he t elesco pe i e the le g t h f the li e fro m the ce tre f the eye piece to the ce t re f t he O bj ec t glass the celestial sphere t o L) t he coor di ates f t h e p i t w hich this li e is d irecte d or t h a ppare t d irectio o f the s t ar T here fore a t t he ti m e t w+ l + l si r r cos n y + l os C s i n are the co r di ates o f t he ce t re f the obj ec t glass I t he t i m e ( t — t) the ray f light has m oved over the d ista ce fro m the obj ec t glass at the ti m e t t o the eye piece a t the ti m e t ; t his le gth is n ( t t ) d i t co mpo e t s parallel to the a es are t ) cos ) cos f t) si C t) i ; cos C 7 (t P (t (t B t these qua tities whe a dde d t o t he correspo d i g o or di ates f the ce t re o f the eye piece m us t give t he coordi a t es Le t p

e

.

7

,

on

e

a

o

n

7 0,

0

n

,

an

a

,

n

o

-

n

,

o

n

o

,

n

.

n

z

n

,



n

n

s o

x

-

r

e

.

n

O

.

x,

a

n



n

o

s

n

-

n

c

,

,

,

an

co

n

n

.



n

-

'

'



as

o

o s 7 0,

,

os

v

n

n

n

n

e

'

e

,

n

n

n

o

o

-

,

n



co s

n

.

n

v

z

on

o n

o



0,

n

-



o

.

,

o

n 7

0

n

.





n

n

z

,

o

-

.

'

n

o

n

-



-



n

,

an

n

s

n

x

'

7

u

n

,

n

o





n

s n 7

u.

,



,

n

7

n

n

-

.

n

c

n

252

TH E

AB E

RR ATI O N

OF

L IG

HT

[

XI

OH

the ce t re f t he bject glass H e ce i f we wri t e p l /( t — t) we btai t he equa t io s o cos C cos 1 + ( ; p cos C cos 7 cos t i 7 cos { i 7 ) i cos 5 i — v si — + i s + u si § f u { d sub t ract i t fro m ( 1) m ulti plie d by M ulti ply ( 2 ) by 7 d we h ave si n v c n) p cos Cs i ( 7 { in ( 7 n ) d dd i t t o ( 1 ) m ul t i plied by M ul t i ply ( 2 ) by s i l w n ) d d a d the ivi e by cos d w e have ; n n 7 1 ) ( ( } sec cos cos c s v cos ; l é ] ( 5( 7 l p p m ulti plyi g ( 3 ) b y c s 4 d subtrac t i g it fro m ( 5 ) A gai m ul t i plie d by i l we have siu g c s é si Q) cos { i 4 cos {n 8 07 sec d ( 6) be m uch si m plified by taki g E qua t io s ( 4 ) adva tage o f t he fac t t ha t /p i a very s m all qua ti ty T his sho w s t hat 0 — 7 is s m all d co seque tly we m y re place 7 by 7 i the righ t ha d m e mber o f d t hus b t ai t he e ff ec t the coor di ate 7 i t h e f r m o f aber a t io vi c 7 7 ( sec g i ( n n ) We thus fi d n — n d the ce w i t h su fficie t accuracy f I f a fur t her a ppr i m a t io be require d as m ight m s t pur p ses e a mple be the case i f Cwere early we i t ro duce the f appr i ma t e value f 7 fou d fro m t his equatio i t o the righ t ha d side f d t hus obtai gai i ( n firs t fi d é like m a er we Th I g f om appro i m atio qui t e u fficie t i m os t c se is obtai e d by re placi g r d by r d 7 i the righ t ha d side We thus ob t ai — 4 C v u { i { cos C cos { s i ( cos ( 7 I f further a ppro i m atio is require d , the a ppro x i m ate values f d n b t ai e d i ( 7 ) d m y be i tro d uce d i t o t he L right ha d si d e o f gle w hose cosi e is If 9 be the — si the vi si 9 is t he dis ta ce { i C c { cos Ccos ( 7 tha t aberra t io has appare tly moved the s t ar o

f

O

o

n

.

:

n

n

o

n

-

'

f

. c u ,

co s 7

s

7

.

"

f

s n 1

t

,





u

n

n

cos 7

0

7 0

v

0

s n 1 ,



'



s n 7

,

,



v

n

,

0

an

'

n

an

,

'

n

.

os

1

o

.

n

,

0

s n



o

an

ca n v

n

,

7

o

n

7



os

an

,

n

7

o

nn

n

n

x

,

a

n

ca n

,

s n

n

,

n

n





n

n

s

,

can n

an

or

n

n

7

n

o

n

o

7

n

,

n

O

s n

ox

ox

,

a

n

,

.

o

0

.

x

or

i

'

o

n

n

an

,

n

n

s

.

n

on 7

n

an

,

-

n

n

"

o

n

r

an

,

v

n

1

"

v

7



o

n



7

l

,

,

n

an

,



s n

u.

o

a

«

,



7

'

"



.

an

n

n

7

1

s

0

'

n

co s



r

n

e

s,

a

n

'

an

n

an

7

n

n

-

.

n

"

l

s n

x

"

'

an

,

0

n

s n

n

7 0

n

o

n

an

a

n

-

n

O

0

0

n

n

n

an

os n

1 o

0

n

n

i

1

n

.

n

RRA TI O N

A BE

THE

O F L IG -

HT

[

OH

x1

.

m tio Of t h e ear t h i i t s orbi t is o f t hese eriodic ove p as a ual aberra t io d i t pr d uces wha t is k ow me ts f t he t her aberra t io al e ffect arises fr om t he ro t a t i A d t his cause wha t i ear t h i t s a is k ow as diur l aber a t io ; f these the fir t is by f t he m ore i mpor t a t d whe ever the word aberratio is use d wi t hou t the prefi ual aberra t io which is t o be i t is always t he a d iur al u ders t ood mo

n

o ne

n

n ,

n

o

an

n

n

nn

n

n o

x

on

n

x

n n

,

an

,



n



n

na

n

ar



n

n

s

s

n



s

o

n

r

o

on

an

,

.

n

.

i

t a c e n s i o n a n d d e c l i n a ti o n We shall o w apply t he ge eral f r m ulae ( 7 ) a d ( 8 ) f 8 2 t o ob t ai t he e pressio f t he aberratio f a star i t ho e m ar i ular coordi ates w hich w e t er righ t asce sio d d ecli a t p t io be T i f be t hat poi t t he I f t he poi t celestial equator f which the R A is be the d if or t h celes t ial pole t he 7 i t he righ t asce sio d C is the d ecli a t io 8 d we have cos 8 sec 8 i ( y ) i 8 8 i cos cos 8 s 8c ( 8 8 )l i { t he e ffec t f aberration fro m which we ob t ai t he R A d d ecli atio res pec t ively W e assu m e f the prese t t hat t he orbit o f t he eart h is a circle I o t her wor d s we t ake the veloci t y f t he earth as co s t a n t d equal t o t he m ea veloci ty i the ac t ual ellipt ic orbi t T h ra t io f aberra t i d is d v/u is called the co s t a t t d by be fore L e t (9 be t he lo gi t u d e f t he s ; t he si ce the eart h is m ovi g i t he d irectio f the t a ge t t o t he orbi t d lo gitu des i crease i t he directio f t he su s a ppare t m o t io it follo w s t ha t (D 90 is t he lo gi t de f t h a pe while its la t i t u d e is ero T illus t ra t e this su ppose the t im e to be oo at the su m m er ols t ice A t he a ppare t a ual m o t io carries the a mo g t he stars fro m wes t to eas t t he t rue m otio o f t he ear t h to w h ich t his appare t solar m otio is d m us t be fro m eas t t o wes t A t oo i t he su mm er sols t ice T i i t he w es t erly T oi t the hori o his is the a e d i t s lo gi t ude is ero o f p p while the lo gitude o f t he s is L e t T ( Fig 7 1 ) be the first poi t f A ries A the a pe x a d S the T he T S = G) a d T A L t fall a per pe d icular G) 84

t

Ab e rra i o n i n

.

gh

r

s

n

n

o

n

,

a

,



a



v

n

—1

n

a0

d

.

an

.

.

o

n

n

n

n

o

n

n

°

O

o

n

o



n

n

nn

n

n

.

z

n

n

u e

n

s

x, a n

n

n

z

u n

n

n

.

n

n

n

n

.

,

n

,

n

n

o

as

n

n

n

n

1c

x,

e

s

.

e

an

,

s

e

n

,

n

n

u

en o

u n

n

o

n

an

on

n o

n

an

.

n

.

.

os

n

n

su n

s n

on

,

su n

an

.

n

.

a,

n

o

or

n

on

a

0

0

n

n

a ()

s n

0

.

v i

n

n

an



n

an

an

.

s

7

s

n

.

n

n

n

,

o

n

n

n

n

.

o

o

n

n

c

z

n

or

ns

x

n

n

.

,

e

n

n

,

8 3 8 4]

TH E

-

AB E

RR AT I O N

HT

L IG

OF

the equator T P T he A P 8 d T P righ t a gle d t ria gle T A P we have cos G) i i 8 si cos 8 cos G) cos 8 s i cos G) cos we see t ha t M aki g these subs t itutio s i t he t rue R A d d ecl o f a s t ar the co sta t

AP

on

n

-

n

.

n

s n (0

0

0

a,

0

n a0

n

n

an

,

,

o

n

.

the

,

s n

.

Fro m

an

0

n

if

n

.

FIG

71

.

n

1c

,

a

of

n

be aberratio d 8

an

n

.

the lo gitu d e f t he s the the appare t R A a d ecli a t io as a ffecte d by aberratio are res pec t ively i G) sec 8 ( si cos cos cos i (D s i 8 s i 8 c cos cos E 1 If t h ab errati f a tar i i tati ary pr ve th at t h f th tar equal th at f t h d th at i f b th f t h ap x ; d G)

a n

n

n

u n

o

n

,

n

n a s n

1c

a

osa s n

o

.

s

on o

e

.

e s

s

R A .

s s

.

an

ta n

a

n a

e

cos

2

co

on

o

R A

n

n

.

n

su n a

tan

e

ex

,

i

ta

le tha

n o

p

=

a

ss

.

e

.

0 0

n

an

o

a n

d

wh e

n

the



ab errati

h ave al

so

1

w he c e w n

80 c o s

( to

co s

80 s i n

a

e e as

6) = c o s

(

in

6)

s

equati

by

n

m

a

R A

e

en

s

c o s to

R A .

.

is

s

—s i n

)

,

1



tati ary t

Co s ai c o t

ame ca

on

C) o

0 0 8 60

ng

.

ut

to

d d

an

.

be t he

s

ze

R A .

ecl i ati n

(

co s

an a

:

C) o

ta n

— c o s2

co s a

o

co s a

2 i (s n

a /J 2 s i n a /J ( s i n a 2 2 c o s ca /J ( s i n a

co s co s

cos

2

o

2

2

0

co s

(1

co s

a

co s

e

co s

ec m e

a) .

i l y v r ify th at 80

b

se

c o s a c o s a) s i n w

o

si n

e

,

r

o

o

f t he

o

f the

t he

c o s a) s i n

a

o

n

.

cot

s i n 80 co s

e

s

on

i n t he

on

s

— t a n (9

We

s

s

.

,

s

a re

—t a n

o

.

= 0,

which h w th at tar I g eral t h re pecti vel y

c o s c»

f the

d 80 ,

.

.

e

o

(9

n

e R A

.

.

si n a co s

w he c

d

e R A

o

,

e

ao

ao

e

o

e

en

n

a)

on

l i quity f t h ec l i ptic If t h i ab rrati i tati ary th e d i ffer ti al c effici e t f ( 3) w h ave ob

i s the

w

.

a)

n

n

e su n

o

ta n

where

.

n

a

x

n

80 t a n

(a o

(1

) cos

ao

tan

a)

1

.

2 2

2

s

.

on

256

TH E ABE

Ex 2 .

tude

o

If

.

f t he

ab rrati e

8 be t h e

a,

su n a n

d

o n In

d

ecl i ati

ha s

si n

(0

(

ap x

i f A be the

HT

LIG

a tar

of

on

s

e e

s

,

s

[O H

an

l

d i f G) b e t h e

o

the

n

XI

.

on

s

g

ta

i ’

r s

e,

c o s a) s i n

8

cos

8 si n

a

= sin 8 )

co s a

.

ecl i ati f S ( F i g 7 1) i AS If A S i a pa e th r u g h t h p le P th ecl iptic at A d p rpe d icular fr m S t th p l f t h e cl i ptic w h e c e t h re u l t f ll w

d

an

e

o

s

ab errati

.

n

OF

l i uity f t h cl i ptic h w th at whe i t g rea te t val u

b q

o

cl i ati

d de

an

.

on

n

8 1 , E x 1, t h e

By

.

t he

co

t a n 6)

R A

RR AT IO N

in d

on

on

n

ss

s

o

s

.

o

e

n

'

co s

,



o

s

.

i i m um it m u t b t h m u t th eref re c ta i K fr m t h t r i a gle S K P P r ve th a t w he t h ab errati 3 attai i t gre te t E i de c l i ati um rical val e f t h year t h arc tar t h cele ti al phere j i i g t h at ri ght a gl d t t h p le f t h e eq u a t r t th 4 P r ve th at f a g i ve p iti f t h E t h ab e r ati o i ri ght a ce i f a tar t h quat r wi ll b lea t whe = t a 6) t f th tar 6) t h u l g itude a d t h b e i g t h r i ght a c e i b l i quity f t h ec l i ptic 5 P ro ve th at all tar wh ab rrati i R A i a maxi mum at E ame ti m e th at t h ab errati i d cl i ati va i he l i eith r th c e f t h c d rder wh e ci rcular ecti ecl ipti e parallel t o t h l titi al c l u re th d equat r [ Math T r i p ] i d ec l i ati o i er w hav A t h e ab errati = ta 8 = t t i 8 ) ( wh c e =t t 8 8 i ta ) /( ta t t t 8 =t 8 8 2t 8 si +t /(t a i R A i a m ax i m u m w h ave (E 1) B t a s t h e ab errati m

e

o

x

.

n

or

on

s

o

os

n

e e

s

e

n

o

o

x

e

e

se

o

an

on

e

s

s

es

.

e

r

n

n

n

,

e

,

o se

on

e

n



s

n s

on

e

os

n

on

o

n

.

on

s

e so s

n

on

s

n

an

n

,

(o

co s

an

n ao

s,

s

n

e

e

o n s ar

ao

a

n (o

on

e

o,

s z

n

a

e

.

e

a n a) s n a o ,

0

0

on

e

l i mi ati n

n

(

2

ta n

g

d o,

I t i s mpo ss b

or

.

hu th ere d iti I f w t ra s

on

.

n s fo

e

s

w e Ob

ta i

n

x2

i t n

8

r co s

2

+ y + yz t a n

s

the

equati

on

o

f

1,

.

e

.

the

equat r o

an

d t he

ao

2 an

a)

—a

an

+ ta

a

)

n

2

tai

o

on

d f

n

x

8) ( l + t a n s

n

d t a n 8 = si n

=O ,

2

2

y

+y +

ecl iptic

an

=

r co s

—z

.

d

t a n 8 si n

a

)

=o

.

(0 .

o

8 si n

ay

— ( y z

n

be

s

a

z

;

z

co

y ta n

a)

th e

si n

)

8

s

= O,

s



=r

n

tan

s

g

wr itte thu

os

0

1,

ss

a c e wh e ci rcular ecti on

.

l titial c l ure which ati fy

which m 2 z

(0

ta n

a

so s

o

;

w=

ta n

n

n

act r b y m aki

CO S a

an

a)

e

c o s a ,,

ob

g, w e

the

on

z=

i

n

an

s

a)

x

which i

(

o

= i

e s

=

,

,

ta n 8 sin

rm t h ec

x

a

fi r t fact r t va i h u le

the

t w o po

a re

2

s n

s

.

reduci

d

(0

si n a

T

n

80 c o s 80 t a n

an

2 ta n

cu

i le f

i

80

co s a

n

si n

an

= o,

o n s a re

arallel t

p

o

a

c

.

n

co s

an

an (0

u

d

e

s

.

en

an

s

e s

.

an

s

o

a

o n n

su n

s

se c (0

s

s,

o

or on

,

s

on o

n

e

e

e

o

n s

n

e

o

s

O

s

.

s

on

e

on

a re

o

ns on

.

.

an

n

n

e

o

o

or

n

s on

an a

a

e

,

on

e

o

e

o

ns on

e

e

e

o

.

o e o

o

.

u

x

o

'

e su n a n

o

n

e

,

o

.

e

n

e

n

n

.

e

on

o

s

s

e

s

n

'

co n

T H E AB E

RR AT I O N

OF

LIG

HT

[

a gre t ci rcle three p i t R R R b t ff at d i ta ce p t h ci r c le re p ctivel y fr m r i gi d if ; y y R re p cti vel y fr m t h ce t r f R R c i b t h d i recti ph ere th e If

on

e

e

s

,

os n es

on

o

2,

1,

e

2,

xl

an

,

I,

e se

3

s

3

,

e

o

s

x2 ,

1, 21

o

.

n

s

2, 22

n

e

l

,

.

XI

p2 , p3

x3 ,

y3 , 2 3 o f the

e

n

at , s i n

sin 2 1 si n

To

n

an o

o

e

s

s

o n

a

on

CH

apply thi

(P2 (P2 ( p2

P3) +

4 2 si n

P3

re e t ca e

t o the p — =x Z 3 p p

s

(P3 ( P3 — (p3 p1) + z3

) + 9 2 si n z2 S i n + 3 ) p

-

n

s

si n

s

9;

,

p3

we m



si n

ake



p1

= P2) 0 ,

) + 303 s i n (PI PI ) + 9 3 s i n (PI PI

"

9;



pl

(pl

P2

= ) 0,

= p2 ) O

-

.

— I< S i n 9 = 9 p2

.

tr y o f a n n u a l a b e r r a ti o n W e w i vestiga t e t he sha pe f t he sm all closed curve which t he star a ppears t o d escribe t he celes t ial s ph ere i co seque ce ual aberra t io f a L e t S T be t h per pe d icular fro m S the true place f the where A is t he a pe x ( Fig s t ar t o t he eclipt ic d 86

.

T h e ge o m e

.

o

n

n o

on

n

n n

o

n

n

n

.

e

n

o

,

an

.

,

o +

F IG

produce

.

90

°

72

.

to T so t ha t S T = L t S be the poi t to w hich t he s t ar is dis place d b y aberra tio the n si ce SS i s m all w e m y regard the locus o f S as a f I d o S la e curve the recta gular coor i ates as f x b e p y i dica t e d i the figure we have 8 1) e

n

T







n



n

,

s



a



n

n

.

n

n

n

,

,

x

i

x s n 2

x

S A si n A S T = 2

y

cosec B 2

1c x

cos ( CD

2 .

A) ,

8 5 87]

TH E

-

A BE

RRA TI O N

OF

L IG

HT

We t hus obtai the followi g resul t s with regard t o the e ff ect f a ual aberra t io the appare t p sitio f a s t ar I co seque ce f a ual aberra t i t he a ppare t place f each star describes elli pse k ow as the elli pse f aberra t io i the course o f a y d t he ce t re o f t he elli pse is t he true place f t he s t ar Th a is m i or f the elli pse is per pe d icular to the ecli ptic T h se m i a is m aj or f t he elli pse is t he co t a t f aberratio l l stars d is t h ere fore the sa m e fo For a star o the ecli pt ic the elli pse beco m es a straigh t li e For a s t ar a t the pole f t he ecli ptic the elli pse beco m es a circle d i ge eral t he se m i a is m i or o f the elli pse is the pro d uc t f the si e f t he s t ar s la t i t u d e d the co sta t o f aberra t io E 1 A u m i g th a t t h u m ti i u if rm h w th at at f ur c cuti v ep ch at i terval f th ree m th t h appar t pl ce f t h tar w i ll ccupy ucce i v l y t h f ur ex tr m itie f a pa i r f c j ugate d ia m eter f th ll i p e f ab rrati 2 E L t A b t h l g itud e f a t r d 8 i t latitude hwg wi ll b t di plac t h tar b y a m et ricall y th at t h e ffect f ab er ati d i ta c w hich i t h qu are r t f n

n

n

nn

on

n

n

n

n

o

x

.

n

n

n

o

o

n

n

,

o

.

n

o

x

-

o

n

n

e

n

on

,

earan

e

o

nn

an

o

-

.

o

ns

r a

an

n

o

n

.

n

n

.

o

n

an

,

n

x

-

n



o

o

n

x

.

an

n

ss

.

e

o n se

s

o

x

s

o

e

s

n

on

oo

.

S

.

h w th at

the

o

s

,

o

e

s

o

en

a

o

o

o

e

on

s

an

e

,

s

o

e

s

e

o

eo

s

o

5x {1 Ex 3

s,

on

?

1

o

n

.

.

s a

r

s

e

s

e

o

on

e

o

s

e

on

o

e

e

s

o

on

e

e

o

e

e

.

.

ss

e

n s

s

s o

n

s

o

s

e



n

n

n

3 co s 2 ( G)

elli p

of

se

aberrati

rth g al pr jecti ta ge t pla e t uchi g t h

i s t he

on

o

o

on

o

on

a ci rcl i t h pla f t h ec l iptic t h cel ti al ph e i t h t rue place f t h tar ual ab errati up t h app r t place E 4 S h w th at t h eff ct f f t h fi xed tar w u ld b pr d uced i f each tar actuall y rev lved i a mall ci rcular rb it parallel t t h pla e f t h ec li ptic d i f t h earth were at re t E ff e c t o f th e e l l i p t i c m o t i o n o f th e e a r t h o n a b e r r a t i o n 87 We have o w t c si d er the i flue ce f the ecce n trici t y f t he ear t h s orbi t t he a ual aberratio L t G) be as usual t he su s geoce t ric lo gi t u d e the 1 8 0 G) is t he ear t h s helioce tric lo g itu d e the lo gitu d e f perihelio Th e ear t h s d 9 the t r ue a o m aly s t ha t G) ra dius vec t or is ha e t he s i g i fic t i o alre a dy d if v 8 give to the m w e m ust have o

f

er

s

es

e

n

e

o

ne

on

e

e

n

o

e

e

s

n

n

o

n

n

e

.

.

x

o

.

e

o

.

s

e

s

o

e

o

e

o

o

o

a

e

e

en

s

n

o

s

n

e

on

on

an n

o

s

s

e

an

.

*

.

.

n

o



on

on

n

n

n n

n

n

e



o

o

.

n

n

°

n

,



n

a n

n

n

r

,

an

,

a

o

n

:

n



o

0,

,

010

v

n

a

n s

n

v

cos 8 cos a

v co s

0

g

“ t

,,

cos

i

80 s i n

a0

v si n

80

_

dt 1 7— 2

2 60

TH E

ABE

RRATI O N

OF

LIG

HT

first o f t hese equatio s is obtai e d by i d e t i fyi g tw o e fl T ressio s the velo i t y f t he ear t h arallel to the li e f p p T h t hir d equatio is ob t ai ed from ide t i fyi g e pressi s f d t he veloci t y f the ear t h parallel t o t he ear t h s polar a is the seco d equa t io is obtain ed i like m a er fro m the a xis d m er e icular to t hose alrea y e t io ed d p p T o m ake use o f equa t i ( i ) w e m us t b t ai fro m the elli pt ic d of Ke pler s m o t io the values f d /d t seco d law ho w s t ha t d9/d t 1 / ( § d hen ce fro m the = a 1 i olar equa t io t he elli se c s w e f e + ( p p ob t ai Th e

n

n

n

n

n

n

e

n

o

c

or

x

n

n

n

x

o

n

n

n

o

oc

o

n





r

s

n

n

o

an

r

an

.

ons

n

,

n n

n

n

or

on

x



n

.

r

v z

,

an

o

r

.

n

r

d9/dt

C (l

e cos

where C is a co sta t ; by substi t u t i g t his i the logari t h m ic di ffere tial o f t he polar equatio f t he elli pse w e fi d n

n

n

n

n

d r /dt

a di g ( i )

E xp

n

n

an

v co s

8o c o s

a,

v co s

8o si n

a0

v si n

80

d m

n

,

Ce si n 9

.

n

on

Oo s w

C si n

_

o

aki g these subs t ituti s C {—

= C

n

w

9 c o s G) + si n G)

e si n

1 e + (

— e s i n 9 s i n G) { — e s i n 9 s i n G) {

whe ce re m e m beri g that 18 0 G 9 w e obtai 8 cos 0 ( s i n G) e si ) i C o s w ( — cos CD + e cos v cos 8 n

°

n

,

v co s

a ,

0

a,

0

s n a,

80

v si n

n a

n

ns

x,

a



—a

u se c Ic e

— 8 8= ’

1c

(

a

C sin

ubstitu t in g i equatio which is cal le d t he C/n S

8 ( — si n

sec 8 (

c o s w s in a si n

w

(



( i)

co s

G) +

d

ii ( )

an

co n s ta n a si n

t

f

a

o

e co s w an

be r r a ti o n

G) — c o s

a co s

cos cos

s i n a si n c :

0:

8 c o s G) — si n

w co s

a

®

(+

si n w c o s w c o s

8 + si n

d m

aki g n

,

co s w

cos

co

)

)

,

8 c o s G)

cos xe

n

,

c



cos

w c o s a si n f

a si n

8 s i n (9 )

8

cos si i A e is o ly about it is plai t hat t he ecce trici t y o f t he ear t h s orbi t h a s but a very s mall e ffec t o the aberratio Th e f t ha t e ff ect is ho w ever wor t hy f otice peculiar character T h ter m s i a d 8 t co t ai G) 8 which co tai e d C o seque tly t hese t er m s d o t cha ge duri g the course o f t he c o s co

s

n

n

a

n a s n

n



n

n

o

e

n

n

n



o

.

n

.

'

a

an

n

o n

n

o n o

n

n

n

n

.

TH E A B E

RRAT I O N

OF

L IG

HT

[

OH

xI

.

l ossible at t he e i t h a i tt le or t h t he o t her a li tt le d p south f t he e i t h T h s t ars are t o be chose so that their righ t as ce sio s d i ff er by abou t 1 2 hours Th fi s t observatio s e i t h d is t ce o f b th s t ars are to be m a de a d y w he S of has i t u ppe r cul mi a t io a t 6 A M d S will o t he sa m e d y have i t u pper cul m i a t io a t GP M These are to be co mbi e d with observa t io m ad e i m o t hs la t er whe S cu l mi ates a t T h ese co d i t io s d S at 6 A M har d ly be e a tly 6P M reali e d but they i di a t e t he m os t per fec t sche m e f ac ura t e resul t whe o ly tw o s t ars are use d Th e reaso s f t hese require m e ts will prese t ly be m ad e clear L t values f t he righ t asce sio d 8 be t he m ea decli atio f S fo the begi i g f the year take fro m so m e s t a d ard catalogue E ve t h mos t e celle t d e t er m i a t io s o f s t ar places m us t be presu m e d t o be i som e d egree erro eous f t he coor d i ates are very s m all N d oubt t he error d fo m s t pur poses they m y be quite overlooked B t such m i ute errors as are u avoi dable i t he d ecli a t io s ad o pte d f t he stars w oul d be quite large e ough t o vi t ia t e a d eterm i a tio f t he coe fficie t f aberra t io which depe d e d the decli a t io I t he prese t m ethod t h e observa t io s are so co m bi e d tha t t he d ecli a t io s d isappear fro m the resul t d co seque tly their errors are void f e ff ect We sh ll assu m e fo t he m o m e t that a value o f the co s ta t o f aberratio is a ppro i m ately k ow We m y f e a mple t ake t he co sta t t o be where is som e very s m all frac t io f a seco d f Th deter m i atio is the the obj ect f the i ves t igatio B y this d evice w e secure the co ve ie ce t hat t he qua n t ity sought is very m all i c mpariso with the t otal a m ou t f aberra t io d co se que tly i com puti g t he is to be m ultiplie d we are per m i t ted to use e ffi i e n t s by w hich m f ro i ate m etho d s that would be vali d i f t hese coe ficie ts t pp w ere to be m ul t i plied by y qua t i t y o t her tha a very s mall n

z

n

.

d

e

l

n

n

n

,

n

n

n

ca n

x

or an

c

n

or

o

n

r

n n

n

.

n

n

o

n

e

x

o

s

o

n

n

n

n

n

n

n

n

or

n

n

n

o

n

n

n

an

n

r

x

n

n

o

n

K]

n

n

n

n

O

n

,

or

x

,

n

o

n

x,

o

n

n

o

n

an

n

n

n

n

co

n

n

xl

x

n

no

an

on e

,

.

c

a

a

.

x,

s

n

n

n

,

n

e

.

n

n

.

a

n

.

n

n

n

n

n

on

n

O

o

n

n

n

n

r

u

.

.

an

,

a

n

an

n

n

O

c

.

1

n

a

I

.

I

I

n

n

o

n

.

n

,

a

c

n

n

n

2

n

.

n

,

.

s x

ns

2

an

.

n

n

r

on

n

s

an

e

o

n

z

n

.

an

n

.

an

e

.

s

.

n

n

n

z

n

z

o

on e

,

n

n

.

fir t o peratio is t o de duce the appare t places f S d S f the d ays f observatio W e m ust by the k ow processe co mpu t e t he preces io W e m us t fur t her calcula t e d utatio the aberratio usin g the appro i m a t e value f the e ffi i e t T h e correctio thus ob t ai e d fo the d ecli a t io o f S Th e

2

n

s

or

o

n

s

n

c

n

.

o

n

n

an

n

n

n

s

.

cO

or

x

,

an

n

n

.

I

n

r

n

n

1

§

8 8]

T H E AB E R

RA TI O N

or

LI G

HT

t he firs t da y o f observati o n w e de n o t e by p I t is a com ple t e corr ec t io n e x ce pt i n so fa r as we have use d a n i n correc t value o f t he co n s t a n t o f aberra tion W e m ust t here fore i n crease p by A x w here A is the coe fficie n t o f vp as give n i n equa t io n 84 T hus we see that the a ppare n t d ecli n atio n o f S o n the first d a y o f observa t io n i s 8 + We a ssu m e however as above p + A 1c e xplai n e d t hat there m a y be a n u n k n o w n error i n 8 L e t 2 be t he observed z e n ith d is t a n ce w hich we shall su ppo s e cleare d fro m re fractio n ( Cha p T he n si n ce t he latitu d e gb is t he s u m o f t he z e n it h di st an ce ( i n this case su pposed t o be south ) a n d the d ecli n a t io n we have on

,

.

l

1

.

l ,



I

.

.

I

1

1

1

1.

,

,

1

,

1

.

,

.

,

=

¢

81 + pl + A 1 K 1

+

Zl

t he sam e day abou t 1 2 hours la t er we O bserve the s eco n d star a n d as i n t hat ti m e th e latitude will n o t have chan ged On

,

,

,

a ppreciably we have also ,

,

where by t he chan ges i t he su ffi ces we i dica t e that this for m ula rela t e t t he seco d star S i x m o t hs la t er t he bserva t io s are t o be re pea t ed t he sa m e star a d we m ust the su ppose the la t i t u d e h cha ge d t o p w hi h ge erally diff ers fro m p Th a cou t f cer t ai m i u t e perio dic al t era t io s e ith d is t a ces are di ff ere t at t he seco d e poch o f observatio d so are also p p A A but 8 n d 8 bei g the m ea values o f t he d ecli ati s a t the begi i g f t he year are the sam e a t bo t h e pochs Usin g acce ted let t ers to disti gu i sh the qua tities relati g to t he seco d epoch we thus have n

s

o

n

n

n

.

on

as

c

n

o

n

c

n

n

2

,

1

,

1

on

nn

ro m

(4 ) 32

,

2

1

,

32

n

o



z,





81 + p1



8,

'

n

x,

n

.

p2

Al



lc ,l

A ge

,

p

— 2

p

'

i

d d

+ 192

,

fo r

n

n

— 7 +1 1

n

n

we easily obtai the followi g equatio n

t here fore the aberra t io n is

u m era t or a he ce is fou d

Th e

an

,

z,

f

n

z

n

n

2

,

n

p

d

n

n

c

an

a

n

n

ZI

n

n

,

.

e

n

n

on

c

n

n

l

n

n

c

,

n

n

s,



O

,

(A xl

I

,

A2

AI

,

A2

1

)K

n

O

I

,

w here

e o mi a t or are both k ow qua tities n

x,

n

n

n

,

an

d

TH E

AB E

RRA TI O N

OF

HT

L IG

[

OH

.

x1

fp p o allowan ce had bee co m pu t a t i p aberra t io the f rm ula j us t give would have a ff rd e d m ad e f appro i m a t e value f the aberratio d the a ppro i m a t e m y be egar de d as havi g bee t hus value we h ve use d ob t ai e d We are t o o t ice t hat 8 d 8 have bo t h disappeare d If t here fore t h ese qua t itie h d bee a ff ec t ed by s m all errors as f course will ge erally be t he case t hose errors will t have i m par t ed y i a ccuracy to e ce pt i so f as A p St A s 4) d 95 have al o bo t h d e pe d o t he ado pt ed values f 8 d u cer t ai t y as t o the la t i t u e a t either the d i a ppeared y firs t e p ch or the las t will also have very li t tle i flue ce I t is by the obs erve d qua ti t ies t hat errors f observatio are i t ro d uce d i to t h e pression f H w f d e pe ds u po t hese err rs will i flue ce t he value f t he de o m i a t or A — A Th e larger t his d e o m i a t r t h e larger will be t he qua ti t y by which t he errors will be d ivide d d co seque t ly t he s m aller will be the i flue ce f the errors o f bserva t i the resul t Th observa t io s are there fore to be arr ge d so as to m ake t his d e om i a t or as grea t as circu m s t ces w ill per m it To dete m i e t he m s t suitable arra ge m e t w e m y appro x i mate value f A A A A though f course the t rue values m ust be use d i the actual d e t er m i a t io f our prese t A t he stars cul m i ate ear t he e i t h we m y f obj ect su ppose t ha t t heir d ecli a t io s are equal t o t he la t i t u d e d 84) d t hus w e have A si 8 cos p cos 8 i 4 cos ( ) cos A cos 8 si si n 8 cos t 8 ( q A cos 8 si 4; {cos ( cos ( A 2 cos 8 i < i i ( ) 4( 4 1 I like m a er A A; 2 cos 8 i p i } ( ) si } ( w here f the a pe at t he t i m e f the seco d 8 is t h e positio observa t io A s the a pe x is t he eclipt ic cos 8 d cos 8 have as e t re m e d li mi t s W e shall t here fore t ake w ith su fficie t If i n t h e

,

,,

,

n

2

o

x

a

n

n

o

n

an

n

o

on

or

'

n

a

,

o

an

,

x

r

n

.

n

o

2

a

s

.

n

,

n

,

an

n

an

,

n

n

an

n

x

x, ,

o

,

n o

,

n

s

ar ’

an

.

,,

n

n

n

n

a,,

n

e

2

z,

2,

x

n

n

o

.

It

.



o

or

o

n

x,

o

.

n

,

ar

n

n

2

,

e

,

n

n

n

,

s

o

n

n

n

o

n

an

,

n

n

n

O

on

on

e

.

n

a

n

o

s

u se

n

'

or

,,

2,

2 ,

n

o

n

n

n

r

.

o

n

n

an

an

n

o

x,

.

n

s

n

n

z

a

or

n

n

n

),

an

,

,

n

(

0

2

0

2

0

n

s n

0

n

a,

)

) s n

do

,

a2 .

a,

s n

0

0

a,

012

a,

s n

a,

a2

n n

n





,

0



n

0

n

s n c



s n

1

a,

a?

a,

n 1

x

o

a,

o

n

.

on

an

,

0

an

'

0

x

n

T H E AB E

RRA TI ON

[

O F L IG H T '

GH

xi

.

the la t itude p t he veloci t y f the observe r arisi g from t he earth s rota t io is 4 63 s p m etres p seco d d as t h veloci t y f ligh t is abou t kilo m e t res pe sec o d we t hat t he coe ffi cie t f d iur al aber atio is 4 63 cosec 1 cos gb/30000000 0 cos (p m y al w ay T his coe fficie n t is so s m all tha t d iur al aberratio be eglecte d e ce pt whe grea t refi e m e t is require d carries the bserver toward s t he eas t T h e diur al ro t a t io — h oi t the hori o H e ce d 0 h w here f 9 + p is t he w est hour a gle f t he star M aki g t hese substitu t io f t he s t ar w he d decli atio i § 8 4 w e fi d t h a t the R A ff ected by d iur al aberratio beco m e cos cos h sec 8 8 cos 4 si h i 8 Whe a star is o the m eridia h 0 n d the e ff ect o f diur al aberratio i d e cli a tio va ishes w hile the t ra si t is d elayed by t he a m ou t cos 4 sec 8 For lower m erid ia tra si t s d the tra sit is accelera t e d by 0 0 2 1 h= cpsec 8 the e ith dist a n e T fi d the e ff ect f d iur al berra t io t he m eri d ia w e di ff ere tiate t h e t f a s t ar which is equa t io i 4 i 8 cos cos gt cos 8 cos h d d 8 the values d substi t ute f dh co s h se 8 p cos gb i h si 8 res pec t ively d obtai d d cos 4 cos 8 i h cot E 1 S h w th at t b erver i latitude p a tar f decl i ati 8 wi ll wi g t d iur al ab errati appear t m ve i ellip e wh e em i axe m 1 dm a i 8 wh re m i t h rati f t h ci r cu mfere c e f t h earth t th d i ta ce d c r i b d b y l i ght i a d y d t h a gle i ci rcular mea ure [C ll E xam ] E 2 S h w th at t h effect f d iu r al ab rra ti th b er ed e ith d i ta c e f a tar m y b all wed f b y u b t ra cti g t ec d f m t h ti me f b ervati w here t i t h ti m e i ec d th at l i ght w uld tak t t ravel a d i t a ce equ al t t h ear th rad iu [ Math T ri p I ] P l a n e t a ry a b e r r a ti o n 90 Up to the prese n t w e have assu m e d t ha t the s t ar w hos e aberratio w as u d er co sidera t io w as itsel f at res t B t i f At



n

o

(

co

n

er

c

n

,

an

e

n

se e

r

o

r

n

o

n

n

"

.

n

x

n

n

n

z

o

n

n

an

o

.

.

a

an

,

n s

n

o

n

n

,

n

)

n

n

n

n

n

n

n

n

s n

.

a

,

n

n

,

)

an

o

:

n

a

n

°

n

n

a

s

.

a,

.

n

,

a

O

n

.

n

n

n

n

n

n

n

.

8

n

o

n

n

n o

o

a

n

on

n

n

co s

o n

z

.

n

c

n

,

n

s n

z

or

an

,

an

s n

an

) s n

c

n

,

z

x

,

.

o

o

n

e

a re

an

n

o

co s

e

n

O

s

s

; s n

(

o

,

es

o

n

e

.

s

,

e

s

e

,

n

2

n

s

on

c o s , 8 + \lf

to t he be g

ri ght a ce i

n

g

of

be th e the

c rre

year

o

.

s

po n

d

i

n

g m

ea c rdi ate whe reduced n

oo

n

s

n

RR AT I O N O F L IG H T tar b ec m e 8 + \i w ith ut y ch a ge i t h p iti f t h c rd i ate th at p d d b ei g fu cti 2 74

TH E

o

s

on s o

n

n

z

an

o

r

an

(

[O H

AB E

n

e

n

oo

e

n

os

the

o n Of

s

xr

tar s h w o

,

s

B,

i



as

gg f % f

8

se c

Fr m E adjace t star x

o

3 we

.

s

n

dD=D

is g

c o s2

t a n 8 = O,

+ co s 8

~

aa

the

ch a ge

? (s

ta n a

2g

”)

z

sin

i

p

d

dD m

as

a t c e b ta i on

O

u t b e er wh atever s

sin

p

val u

he t h e

o

z

n ed

i s ta ce

of

D

n

)

t



+D an

d B in th e d

n

t wo

by

n

p

r

th at th at

se e

ive

d

-

(

co s p

e

se c

f p the

o

8

a

8

ao

a¢ ,

requi red r l t

is

e su

.

h w th at i f a um b er f t r l i a ci rcle f which t h ar cual radiu i very mall t h eff ct f ab errati th e e tar i t c vey th em adj ac t ci rcle (B ii w ) t t h ci r cu m fere c e f ce f p fr m equati E 3 T hi f ll w fr m t h ab d B b tw tar which appear t b e co veyed b y a be r L t A E 6 rati t A d B t ward ap x C S h w that t h ab rrati o cha g — t A l a t A i t th g § i p w here i t h arc A B a d p i t h AB perp d icu lar fr m C tar at B d A b at d i ta ce L t th tw b re pecti vel y fr m 0 i th Th ph er ical t r i a gle w h ave b C= i b t i C ot A d i ffere ti ati g a d maki g *

Ex 5 .

s

S

.

s

n

o

s

e

e

o

n

s

*

x



o

'

an

e

e

we

ob

t ai it

n

.

s

.

n

e

e

c

e

n

e

n

n

es

s

e

n

s

s a

s

,

o

.

e

n

n

n

x

o

.

on

.

on s

c s n

an

co s

co s

o

.

s

e s

n

s

s

o

e

an

nno

s

s

an

s

on

s

o

o s

x

o

en

en

o

s

o

e

o

on

r

o

e

o

n

e

an

on

se n

an ’

e on

s

en

e

e

s a

o

e

an

o

s

.

.

on

e

o

o

o

o

s n

co

s n

a

o

,

n

i

Ab

i

x s n a ,

x s n

A C = O,

b,

n

si n

b

c ec os

a

(

si n a s i n

w he c e

b co s 0 + co s a

co s

b

l)=

si n

C c o se c 2 A A A ,

n

AA = -

tar pr d uct i s very

A s i n b,

tan

x

ta n 4 5 0 si n p

.

all that whe mul tipl i d b y t h m all d A A b ec me i appreci ab le E Fr m t h tar defi ed b y ( = 5 9 t h d i t a ce 7 d p iti a gle 2 0 7 14 f adj ace t tar were mea ured t b appl i e d t 1880 S h w tha t t h c rr cti th d i ta c e 6t h J d p iti a gle t reduc them t t h date 18 7 9 0 d 0 6 6 re pecti vel y If th e

s

x

.

os

.

n

e

s

m

°

s

n

n

e

e

a

o

an

o

n

on s

e

e

x

.

°



e

so

,

n

s

o

.

is

o

n

on

c

an

,

o

.

an

an

a

s

o

*

a re

s

adj ce t

) c s in

x

o

s

s

n

s

e

o

e

o n

s

n



an

os

on

s

o

n

.

e

o

e

are

an

§

9 1]

TH E AB E

Fr

o

lo g g A be

Co

G = 343

=

utati rrecti f

on

t wo

s

n

s

on

8

S

.

6,

.

1 3 0 7 9, H

34 5

e

effect

the

be

s

s

in

on

o

ab errati

f

D / 10000

vel city r t ti b f rm la

v, a n

o

o a

e rth b upp d t h vel city f th e t h ab rrati

If the

.

on

e

a

e

e n v,

os

9 2 68

on

.

an

o

e

e

o bs

i ta c e

D be

n

s

twee

n

.

on o

ve r u

.

a ci rcle with erv r t h earth u rface d t i t f i accu rat el y g i ve b y t h y tar

t o mo

o se d

s

o

n v .

'

t he d

on

on

I

.

term p iti

2n d

og

E XERC SE S O N C H A P TER X I Ex 1

Lo g i

°

e ss o n

s

o

e

o

,



h w th at tars m u t alway .

HT

s

o

,

os

n

or on

on

L IG

L i ta ce L g 1 t term = L g ab rrati i 9 0 36 p iti e y ar i prec

in d

on

n

*E x

lo g

h=

OF

1 8 80 Ja n

or

.

.

°

rrati

Lo g

have f

m N A 18 80 , p 30 3, w e .

RR AT I O N

o

e

on

e

an

s

0

n

d the

su n



in

u e

s

s

s

s

o

e

n

u

o

1r

wher 0 i a equat r d i fferi d h t h rati

sin

00 + 2n

00

s i n (T E c o s

ecl i ptic

ehi

0 0 E + n 2 s i n 2 o E )’f '

a

i t o th b y t h c m plem e t f t h h ur a gle R A fr m t h g i f t h vel city f t h earth c e t r t t h vel city f l i ght [ Math T r ip ] 0 0 f le gth b e d raw fro m t h vertex If i a ph r ical tr i a gle egme t B 0 = l d A 0 = m the d iv i di g t h b a e i t t w po

s

e

o

an

(

si n 2

i t

n

n

o

.

.

e

o

e

o o

e

the

on

n

-

90

b

°

su n

o

d th e

n

e

o



e

su n

s

E

,

o

e

n

e

o

o

n

n

po

e

o

n

o

0

e

s

n

sin

2

e

3 sin

2

a n a re

n

m)

(l

o

n

s

o s

o

n

n

s

an

2 2 i i s n b s n l + 2 si n

.

n

8

,

.

.

n

e

n

e

n

,

5 s i n l s i n m c o s 0 + si n 2 m s i n 2 a

a si n

.

tar b at C d i f B b e t h apex f t h r tati al m tio d A th at rb ital d i f x b t h r ul ta t ab rrati th u i x = p i ( — x ) o f th where p i t h re ul ta t vel city f t h e b erv r d p t h vel city f l ight d w h ave c cl c ec m p c ec ( l If t h e

e o

e

an

,

e

s

an

an

e

s

e

e

n

s

es

o

n

r

o

o

on

on

e

o

s

e

en

,

an

s n

an

,

n

o

s n

o

e

s

,

o

,

e

os

f

e

o

o

m

which

v

3:

co s 3 co s

e

(

cos

si n 3 si n

l = co s a 4

»

m

n cos

r u la ab ve pr ve

fo m

,

8 si n

m= e os b

co s 3 co s co s 8

os

.

si n

n

n v

( l + m) l + lc c o s 8 s m ( l + m )

[c s i n

tan

wh e ce which with t h

o se

o

s

o

s in 8 si n

m l

l ) = co s b

the

0,

co s co s

0,

n co s a

th e rem o

,

.

h w th at t h l cu f all tar wh e e ith d i ta ce at a g i v d a g iv i ta t u al t red b y ab rrati i elli ptic c e pl c e i h ri f w h e ci r cular ecti tal d t h ther i perpe d icular t t h ecl i ptic Ex 2 .

a

o

.

S

an

.

o

s o

a re

n

e

en

os

e

o

ns

n

s

ons

s

o

s

s

,

an

s

z n

e

e

zo n

os

on

e

o

n

en

on

s an

,

n

s

[C o ll

.

E

xam ] .

18 — 2

one o

2 76

TH E

thi ca

In

m

s

utb s

Ex 3 .

on

a

e

or

on

o

n

s

.

HT

LI G

OF

e

n

s

n

e

es

es

z n

s

[O H

an

s

or

s

e

e

so

o

H

.

n

s

si n

s

z

A sin

z

n

.

n

n

o

e

on

an

e s

s

on

n

on

os

s

on

e

o

s

o

.

iti f r fr cti d i ta c e f

po s

RRATIO N

a gle ub te ded b y t h e ith d t h apex at t h tar fr m w hich t h d i red r u l t i ea i l y b ta i ed Pr ve th at at every plac e th ere i alway a t a g i ve i ta t a tar f which t h ab rrati i e ti rely c u t r ct d b y t h th at at m id i ght th h rte t d y t h e ith S h w al thi p iti i gi ve by equati f t h f rm the

se

o

e

AB E

o

s

o

e

e

n

ns

one

e

a

a

s

n

e

e

z n

o

1,

2

c rrecti f r fracti b a u m ed pr p rti al t t h ta g t f e ith d i ta ce d t h earth rb it b ass um d t b ci rcular th [ Math T rip I 1 900 ] E 4 If b y th equat r t h e c rd i ate 8 f y m all ch a ge i each po i t t h cele tial ph re b c m 8 + d h w th at w m u t h ave

i f t he

o

on

s

z n

e

or

n

an

,

e

on

e

ss



e

s

o

o

on

o

e

e

o

o

x

an

.

.

n

on

e

s

n

d

d

z

h re A thi t ra e

s

,

B, C

n s fo

a re

rmati

c

on

o

G+ A s i n

(u

e

>=

w

e

s

s

n

=A

o

e

e

s

n

s

s

.

s

n

a,

e

o

o

s

co s

n

e

.

+ B ) t a n 8,

ta t i depe de t f t h c rd i ate leave t h d i ta c e b etwe ev ry pai r

on s

o

.

oo

r,

en

e

.

*

n

e

n

s

n

n

o

e

en

oo e

n

v ri fy that tar u al tered

s, a n Of s

d

e

s

n

.

TH E

G EO C E N T

R IC

PA

RA L L AX

MO ON

TH E

OF

[O IL

XI I

geoce tric parall a o f the s is t he a gle OS O w here S is t he ce tre f the d C C p is t he earth s ra d ius re prese t t he a gles S O Z d S OZ respec t ively The the e ff ect f paralla m y be sai d to throw t he a ppare t place f t he obj ect away fro m the directio 0 0 by the a gle C — C which w e hall re prese t by t he sy m bol 4 O f course i f the earth were regar d e d as s phere the C a d C woul d be the appare t d real e i t h d the i flue ce o f paralla would m erely depress d ista ce t he a ppa e t place o f the bj ec t fur t her fr m t he e i t h A t he earth is t s pherical t he e ff e c t f paralla is t o d epress the b dy e i t h but fro m t he poi t i which t he o t e ac t l y fro m the earth s radius whe co t i ued will m eet t he celestial sphere Th e bet w ee this poi t d t h t rue e ith is o f course t he qua t ity already co si d ere d i 15 Fro m t he tria gle OS O we have Th e

x

n

an

n



n

77

a

n

,

an

s

n



,

.

n

n

n

s

.

x

o

z

n

z

n

z

o

,

x

an

x

O

n o

n

s

n

n

r

o



n

n

,

n

.

a

x

o



an

,



n

n

n



su n

o

n

u n



o

n

n

n



n

ar

e

n

n

n

.

n

n

an

n

e

n

z

n

.

'

n

sin W

We an

d

n o

w

i troduce the a gle n

n

he ce fro m ( i ) n

C/r ’

p si n

; 7r

d

¢

efi e d by t h e equatio n

n

p/

s i n 7 4,

H

r

,

si n

C ’

s i n 77 4» s i n

.

hus we see that m, is t he greates t value o f w ; d this w ill be attai e d w he C is 90 which i f re fractio w ere t co sidere d w oul d m ea that the ce t re f t he su w as o the hori o We accord i gly t erm 1, the ho i o t l p l la x A s the hori o tal par llax d e pe ds show ii s i d p ( ) as p is o t the sa m e f all latitudes o wi g to the s pheroi dal for m o f t he ea t h it follo ws t ha t the hori o tal paralla m ust vary w ith t he latitude o f the observer Its m ax i m u m value is a t t ai ed whe the observer is the equa t or d as (p is the ero w e e press by what is k o w as the e q to i l ho i o ta l l f f d a l a x so that i is the equa t orial ra ius o the earth w e have p p T

an



°

n

n

n

,

n

n

n

z

n

o

r z

71

a

n

n

no

a

n

on

or

,

n

ara

n

n

z

n

.

.

a

n

an

n

n



r

z

,

n

x

.

n

n

on

x

z

ar

,

n

qr ,

n

n

an

u a

r z n

r a

0

,

si n 7 0

p/ o

r

.

the u n be t its m ea dis t a ce so tha t equals a t h se m i is a is m aj or o f the su s appare t orbi t the t he qua t i t y defi ed t o be the me a e q to i a l ho i o ta l p a l l a x of the s d is gi v e by t he equatio If

s

a



x

n

n

u a

r

W e shall a l w ays take

r z

W .,

pO/a

.

n

n

,

n

s i n vr a

e

r

n

n

n

an

n

n

n

ra

7 rd

u n

,

§

92 ]

R

TH E

G EO C E NT I C P A

RA L L A X

MO O N

TH E

OF

sy mb ls already g ive apply to t he geoce t ric paralla f B y t he addi t i t he o f a d sh t o we d e ote the c rre s po di g qua t ities f the m oo thus i l h t he i l m a e o en t c o t e o o i the a gle w hich c e g g p f t he ce tre o f t he ear t h d the positio f t he O b erver sub t e d a t the ce t re f t he m oo is t he a gle whose si e is t he ra t io f t he d ista ces o f the f the earth obs i d t he m oo s ce t re fr m the ce t re l i T his is t he h o i o t l p ll h e m o o t a t t de t f t he equator is t he value o f W t w he the bser ver is t his is the e q to i l h o i o t l pa ll x of the mo o w he t he m o is a t its m ea d is t ce is t he value f T his is t he m e We eq t o i a l h or i o n t l p a ll a x of the m o o shall t ake m T h e m oo is here regar d e d as a s phere d the se m i vertical a gle f the co e w h ich this sphere subte ds at t he earth s ce t re i e the a ppare t se m i d ia m eter o f t h m oo varies fro m 1 6 4 7 to 14 d has a m ea value f 1 5 From the for m u l a ( ii ) w e ob t ai p cosec T h radius f the ear t h is a k ow qua t i t y is also d if k o w t he i t his equa t io t he right ha d side is k ow d T hus w e ob t ai the i mporta t result that t here fore is k o w t he dis t a ce f a celestial body be de t erm i ed whe its hori o tal paralla is k o w I t is i fact o ly by deter m i i g t he parallax f a celestial bo dy by observa t io that w e c ce t ai its dista ce d a s the de t er m i a t io f these d is t a ces is f the ut m os t i m por t a ce i A stro o m y it is bvious t hat t he subj ect f paral l a m eri t s care ful atte tio too T h e g e o e t i c paralla O f a st r pro perly so calle d is f the case o f eve the eares t star m i u t e to be se sible I d ( C e t auri ) t he hori o tal paralla w ould be o ly could be d etected by our m easure m e ts w hich was o paralla o t m ore tha a t housa d tim es grea t er tha t his qua t ity I t is there fore i mpossible to determ i e t he dis t a ce o f a s t ar by i t s geoce t ric paralla For such i vestiga t io we have t resort to al p a l la x d the co sideratio f this is de ferred t o m rese t roble is t hat f geoce tric paralla C h p XV O p p Th e

su n

n

a

n

or

n

s

7r

n

o

ver

n

n

r z

,

an

a

,

o

n a

o

on

a

,

n

.

n

o

z

.

u

O

ra

r

o

a

n

n

77 0

u a

n

n

r z n



n

n

o

ax

a ra

r a

s

o

n



u a

n

.

.



n a

.

,

o

n

an

o

,

n

n

n o

77

an

n

x o

n

'

ax

ar

r

n

e

n

on

.

n



n

o

an

n

ar

a

n

.

.



,

an

n

-



n

n

.

.



n

n

n

o

e

n

n

n

-

an

n

,





,



o

n

r

o

e

n

n

n

n

,

n

n

r

n

z

n

n

,

n

n

-

can

x

n

n

n

an

,

o

n

ar

n

n

n

n

n

x

a

.

ar

.

ur

an

.

,

an

n

n

n

n

.

n

n

an nu

an

n

x

x

n

n

n

n

r

.

n

.

z

n

a

x

n

as

O

n

n r

n

n

o

n

x

n

a

n

n

n

n

an

n

o

c

n

n

o

n

an

n

n

n

.

n

n

n

.

o

n

an

n

n

n

o

o

o

n

x

RIC

G EO C E NT

TH E

R AL L A X

PA

M O ON

TH E

OF

[O H

.

M I

es pecially i its a pplica t io t o t h m o the m ea equato ial I C ha pt ers X I I I d XI V hori o tal paralla o f w hich is 5 7 d other we shall co sid er the geoce n t ric paralla f t he s bodies i the solar sys t e m S h w th at 1 E d

an

on

e

n

n

'

n

x

n

z

x

.

mo o n i n

f

r

o

90

m the

°

Fr

le

o

si n



¢

n

C/( l

s i n 7r



C)

co s

¢

.

o s n

s n

ss

o

ses

n

e



e s

e

s

e

s

e

e

n

s n

n

o

z n

n

s

e

.

zo n

o

e

s

su

o

s

os

o

o

s r

m

35

(1)

we

o

b

tai

A 8 + OO S

re e t ca e s

n

Az =

s

A8 =

'

1r 0

if

n

be t he

z

q

co s



1r 0



i

= 0,

Aa

1r 0 s n z,

s 7; s i n z + c o s

( co

si n

an

4) s i n

h

cos ( ) s n

[ Co ll

e ith d i ta ce

h A cp

s

o

e s se

s

a s se e n

s

n

z n

o

s

s

,

os

n

7r 0

en

s

) co s



.

In th e p

e

-

h o w that i f t h h ri tal parallax b e a qu a tity w h e eglected t h appar t dai ly path f a cele ti al b d y y b earth rface ( upp ed ph erical ) i a m all circle f rad iu i (1 8 de c i b ed ab ut a p i t depr d 1 i 8 b el w ’

8+

t h e po

4

S

.

ma

sq

s i n 7r

o

s

3

uare

S

.

e

d the .



,

h w th at parallax i crea t h appare t emi d iamet r f t h e i (C where C i t h appare t e ith d i ta c i C t h rati eart h i a umed t b ph rical

Ex 2

Ex

an

o

tan

an

u n

o

.

.

.

an

.

x

n

n

r

n

,

.

E

o

xam ] .

n

co s

a =0 A ¢

d i f A d)

.



1r O c o s

8 c o s h)



1r 0

si n

< { 1 xc o s a

an

d the

rati

o of

thi

s

t o 2 m i s t he q

ua tity requi r n

ed

.

l c ul a ti o o f a n e c l i p e T o illustra t e the for m ulae w e hall co m pute the total ecli pse f the m oo w hich oc urre d Feb 8 t h 1 906 follo w i g are the d ata ( see N a ti c a l A l m a Th 1 906 c 119

.

Ca

n

s

.

S

o

n

c

on

.

n

e

.

,

u

na

,

,

4 83) p .

Th e

ep ch or G ree wich m ea ti m e f co j u c t io f m oo d ce tre f sha d o w i R A is o

n

o

n

n

n

n

o

n

n

.

.

an

o

n

11

19

49

In

59

3

1 1 8 — 11 9]

MOON

E CL I P S ES O F T H E

ight asce sio f m oo t epoch M oo s decli a t io at e poch 8 D ecli atio f shadow a t f ce tre e poch 8 H ourly m otio O f m oo i R A d H ourly m otio o f sha d o w i R A H ourly m otio f m oo i d ecl = 8 H ourly m o t io o f sha d o w i d ecl M oo s equatorial hori o tal paralla x S u s equa t orial hori o tal paralla M oo s a gular se m i dia m eter S u s a gular se m i d ia m e t er e R

n

n

o

n

=

a

h



n

n

n

n

14

n

o

n

n

n

n

.

n

n

o



n



n



n

.

D

28

2

29

7

42

48 1

9

r,

r

-

in

18 3000

2

34

x

t hese values 34 8 ) we ob t ai n

(p

24

.

n

S ubstituti n g

given

16

55

.

-

n



n

z

z

14

.

.

n



n

48

.

n

n

n

n

°

22



o



n

28

9

a

m

15

47

16

13

t he e xpression s fo r A

3 5 4 0 00 t



,

B , C a l r e a dy

36100 0 09 ,

w here D is the d istan ce i n seco n ds o f a r e between the ce n tre o f t he m o on a n d t he ce n t re o f the S ha d o w w here t is the ti m e i n hours si n ce the e poch a n d w here n o t m ore t han t hree Sign ificant figures are re t ain ed S olvi n g this equa t io n fo r t w e have ,

,

.

0 4 91 i

we

If

m ake

cos 9

4 1 8 /D ‘

wfi

t his beco m es

,

049 1

i

2 1 98 t a n 9,

that the ce tres f the m oo the d ista ce D at the G ree w ich m ea ti mes m m h 19 4 7 1 i 13 2 t a 9

an

d

e

n

d

n

o

n

n

n

an

n

.

d

the shado w are at

n

'

°

shor t est dista ce D is 4 18 f 9 w ould o t herwise be i m agi ary d the corres po di g ti m e i the m iddle f the m ecli pse is 1 9 4 7 1 T fi d the first d last co tacts with the pe u mbra we m ake The n

,

an

n

h

n

e

o

.

.

n

an

D

n

n

( p, + po

ro

)

r,

cos 9 0 7 60 d d accordi gly the required t i m es are m m m l 6 54 19 47 i 2 5 3 an

an

.

,

'

,

o

or

n

5 4 99,

ta n 9

1 3 1,

n

h

11

h

an

h

d 2 0 40

m .

23

2

M O ON

E C LI PS E S O F T H E

For the first D

a

h

19 4 7

m

For the first shado w

'

re

1

i

an

d

D

)

ro

1

m

50

last

'

ta n 9

11

17

°

an

o e ts

m m

8 35 ,

( p, + po

f

ro

h

d 2 1 37

m

'

3

.

i t er al co tact with

of

n

n

n

)

n

1 62 0,

r,

2 58 cos 9 t n 9 37 5 n d accordi gly the required ti m es are h m m h m 18 5 7 7 a d 20 19 47 l i 49 4 a

,

a

,

ti m es are

qi i i r e d 11

35 10

r,

1 1 9,

'

n

xv r

a

n

( p, + p ®

cos 9 n d accordi gly t h e

.

last co tacts w i t h the sh d o w

d

an

[

CH

,

n



°

°

h

n

the poi t the m oo s li mb at which first co t ac t with t he S hado w takes place w e have to fi d t he d ecli atio s h m h m T his is 1 5 3 be f re d the sha d o w at 1 7 5 7 0 o f the m oo t he e poch but the m oo is m ovi g southwar d s i decli a t ion a t the rate o f 7 4 2 pe hour H e ce at t he t i m e f first co tact the decli atio f the m oo m ust have bee grea t er tha a t the e poch d there fore it was 1 5 I t his ti m e the s would m ove orth d the shad w there fore south H e ce t he d ecli atio f the ce n t re o f t he sha d o w at the ti m e f first co tac t m ust have bee 14 H e ce fro m p 35 4 we have cos N M T 0 10 2 d the poi t f firs t co tac t is 9 6 fr m the n orth poi t f the moo towards t h e east be T fi d the t errestrial statio n fro m w hich the ecli pse best see w e deter m i e the la t i t u d e d lo gitu d e o f the place the earth w hich w ill lie direc t ly be t wee the ce t res f the earth d m oo at the m i ddle o f the ecli pse h m Th m i dd le f the ecli pse is at G M T 1 9 4 7 1 d there fore 2 9 be fore the co j u ctio i R A w ith the ce t re f t he shado w m m I 2 9 the m oo m ove d 1 7 i R A d i decli atio d there fore the coor di ates f t he m oo at t he m i ddle o f t he eclipse w ere as follo w s ’

To fin d

n

on

n

n

n

n



n

n

r

n

n

°

n

n

o

n

o

an

n

n

n

n

.

an

,

o

.

,

n

n

'

an

n

n

n

n

u n

o

n

.

o

o

°

n

n

n

.

,

an

o

n

°

n

n

o

o

n

.

n

ca n

n

n

an

n

on

n

an

n

n

o

.

e

'

o

11

.

n

n

'

n

o

n

n

.

'

n

n

.

o

n

.

n

a n

.

o

an

.

n

.

n

n

,

an

n

:

R A .

an

d

Th e

11

9 28

.

decl 14 li e j oi i g the ce t re

°

.

n

n

n

n

m

'

3

48 2 of

1

m

'

7

m

h

9 26 14

'

6

,

°

the ear t h t o the ce tre .

n

of

the moo

n

C H A PT ER

XV I I

I

E C L PSES OF T H E

.

S UN

.

I tr d uct ry th O a gle ub te ded at t h c tre f t h earth b y t h ce tr f t h a t t h c m me c me t d th m lar ecl ip e f a E leme t ry th e ry f lar ecl i p e Cl e t appr ach f ear a O d m d Cal culati f t h Be l ia leme t f a partial cl ip e f o

n

o

n

e

n

n

es

o

s

n

o

e

so

o

os s

o

o

on

th e

su n

an

en

e

o

e

oon

e

e

o

n

e

n

e

n

s

a

n

e

o

o

so

s s

an

su n

e

sse

oo n

e

n

n

s

n

or

e

s

o

su n

l icati f t h Be el ia eleme t ecl ip e f a gi ve tati

A pp

on

o

s

or

e

ss

n

n

n

s

cal culati

to the

on

o f an

on

s

tr o d u c to r y I f t h e orbit f the m oo w ere i t he plan e o f the ecliptic t here would be ecli pse o f the a t every w m oo A however the orbit f t he moo is i cli e d to the ecli pt ic at a gle o f about five d egrees i t is plai that at the ti me o f e w m oo the m oo w ill ge erally be t oo m uch above or belo w the s to m ake ecli pse possible B t w he the m oo is ear a o d e f its orbit about the ti m e f e w m oo the eclipse f the s m y be e pec t e d W e have already m e t io ed i g 5 8 that 8 t he m oo s asce di g ode m oves b ackwards alo g t he eclipt ic u der t he I i flue ce f uta t i abou t 1 8} year or m ore accura t ely d o d ays 58 m akes a co m plete circui t o f the ecli ptic accou t f t his m ove m e t t he s i its a ppare t m otio passes through the asce di g o d e o f the m oo s orbi t t i tervals f We thus fi d t hat 19 co mple t e re olutio s f the 34 6 62 d ays w ith res pect t o 83 are per form e d i 65 8 5 8 d ays T h e l ti o u or average i terval be t wee two successive n e w m oo s is 2 95 30 6 d ays so that 2 2 3 lu a t io s a m ou t to 65 8 5 3 d ays Th e close f 2 2 3 lu a tio s a d 1 9 revoluti o s ppro xi m a t io i the d uratio 12 0

In

.

.

o

n

n

an

n

o

n

n

n

u n

S

.

an

n

n

n

,

n

n

n e

su n

n

an

n

u

.

n

n

.

o

n

u n

a

x

n

n

n

n

an

n

,

n

n

n

on

n

.

s,

1

,

,

n

n

o

u n

n

n

n

,



n

n

n

s

n

n

n

n

n

,

o

n

o

n

u na

.

n

n

,

an

n

v

n

n

a

a

n

n

.



n

n

n

o

,

,

o

n

.

n

n

n

o

n

n

n

o

.

n

n

n

n

§

120]

35 9

E C L IP S ES O F T H E S UN

the w ith respec t to 88 is o t a lit t le re markable T hey each d i ffer fro m a perio d f 1 8 years d 1 1 d ays by o m ore tha hal f a day T his curious perio d k o w as the S aros is f m uch Sig ifica ce i co ec t io wi t h solar eclipses S u ppose that at a certai e p ch t h m oo is e w whe t he s is a t 88 d ecli pse f t he t here fore t akes place A fter the lapse f a S aros the s h per for m ed just 1 9 revolutio s w ith regard t o 88 d there fore the s is agai at 88 B t w e w because a also fi d t ha t t h e m oo i agai i tegral u mber d co seque tly t he S aros f lu a t i n s ( 2 23) are co t ai e d i the co di t io s u der which ecli pse is pro duce d will have recurre d O f course t he sa m e would be true with regar d to the m oo de d esce d i g We have see T h S aros is rela t ed to lu ar ecli pses also i C ha pter XV I tha t t here is ecli pse f the m oo when at the ti m e f full m o the is su fficie t ly ear e f the m oo s o des T hu we perceive t ha t ecli pse f the m oo will a ft er t he la pse f a S aros be ge erally followed by a o t her eclipse o f the m oo tha t every ecli pse f either ki d will ge erally be followe d by a ther ecli pse o f the sa m e ki d a ft er i terval o f bo t 1 8 years d 1 1 d ays For i s t a ce there were eclipses i 1 8 90 o J u e 1 6 ( s ) N 2 5 ( m oo ) i accordi gly d D 11 ( d 1 90 8 there ) are eclip es J u e 2 8 ( ) D 7 ( m oo n ) d D 2 2 ( s ) A a other u m erical fa t co ec t ed w i t h the m t io f t he m oo i t Shoul d be o t e d t ha t 235 lu atio s m ake 69 39 0 9 d ays w hile 1 9 year f 365 2 5 d ays a m ou t t o 6939 7 5 d ays T hus w e have t h cycle f M eto co sis t i g f 1 9 years which is early i de tical wi t h 2 3 5 lu atio s H e e we m y ge erally a ffi r m t ha t 1 9 years a fter w m oo we hall have a o t her e w m oo e g 1 8 90 J uly 1 7 a d 1 90 9 J uly 1 7 Whe ecli pse f the s is the poi t o f co mm e ci g or e di g t he circu l ar di c f the m oo as projecte d o the celestial f t he observer is i e x t e al co tact S phere fro m t he posi t io w ith t he proj ec t e d d isc o f t he I t is evide t that a t t his f the observer m om e t a pla e t hrough the posi t io d t he a ppare t poi t f co tact but w hich does t o u t either o f the discs m ust be a co mm o t a ge t pla e t o the s pherical sur faces f t h s It is also obvious that the lin e d m oo of

n

su n

.

an

o

n

.

o

an

an

.

o

n

,

n

s

n

n

n

n

n

an

,

u

.

n

n

an

n

n

n

n e

n

n

o

u n

n

u n

n

n

.

an

n

n

as

u n

o

o

n

e

su n

o

n

,

n

nn

n

n

n

,

n

n

n

.



n s

n

n

n o

.

n

e

n

an

.

o

n

o

n

o

n

,

o

n

ov

n

n

s

S

an

,

on

ec

su n

.

su n

n

n

n

.

,

n

n

an

ec

n

n

n

a

n

n

n

u n

.

n

o

.

O

n

,

.

n

s

one

n

n

n

,

.

n e

n

.

.

n

n

n

an

o

u n

s

,

o n

n

n

n

n

n

o

un

an

n

.

n

n

n

an

n o

n

e

o

,

,

rn

n

.

n

o

n

n

o

su n

n

n

n

O

n

.

n

n

o

u n

o

n

s o

n c

n

n

n n

n

e

n

an

,

ec

,

c

n

n

an

.

n

.

,

n

n

an

n



n

so

u

o

n

n

,

n

on

o

n o

a

n

n

an

s

.

o

su n

n

n

.

n

n

,

TH E

E C LI P S ES O F

[

SU N

OH

v

i

j oi i g t he actual poi ts o f co tact f this ta ge t pla e w i t h t he t wo s pheres m ust pass through the positio o f t he observer f i f it di d t d so t he tw o bo dies w oul d t a ppear to h i m to be i co tact Th geom e t rical co ditio s i volved i s lar ecli pses are t here fore a alogous to those w hich we have already h a d to o sid er i C hapter XIV whe discussi g the tra i t f V e us Whe the partial ph a se f a solar ecli pse is abou t t o comm e ce or abou t to d t he observer m ust t here fore occu py a positio the s u r face f that co mm o ta ge t co e to the u d m oo which h s its verte betwee t he tw o bodies i the parallel ca e f t he lu ar ecli pse § 1 1 5 T his c e is k ow s t he t ge t co e to the d m oo m b a the other co mm o s e p w hich t he ver t e x d the are opposite si des f the i m oo bei g t er m e d the mbr a Th e observer w ho sees t he begi i g or e d f a total ecli pse or a ular ecli pse m ust be Situa t e d o the u mbra I t he for m er t he m oo w ill c m I n the latter a m argi o f t he pl e t e ly hide t he d isc f the s brillia t disc o f the is visible rou d the d ark circular for m o f the m oo n

n

n n

o

n

n

n

n

o

n o

n

or

n o

n

n

n

n

e

.

,

n

o

n

c

n

n

n

n

.

n s

n

o

.

o

n

n

en

n

o

a

x

o

s

a n

an

n n

u

n

n

n

n

an

,

a

n

u n

an

n

o

n n

,

n

n

o

u n

o

n

.

su n

n

n

.

.

n

n

an

on

o

n

12 1

n

su n

n

as

n

on

.

n

,

n

s

,

,

n

n

n

n

n

r

nu

n

n

on

n

.

O n th e

.

an

g

le

su

b

te n d e d

at

th e

cen

tr e

o

f th e

e ar

th

tr e s o f t h e s u n a n d t h e m o o n a t t h e c o mm e n c e m e n t o f a s o l a r e c l i ps e L e t the e t er al co m m o t a ge t TO ( Fig 8 8 ) to the s S d m oo M Q be su pposed to adva ce t ill it j ust tou hes t he ear t h b y th e

cen

.

x

an

n

n

n

n

n

c

n

FIG

.

88

.

at P d let s l p be the r dii f t he r es pec t ively d ES = r E M = r A P E M = 9 the w e have fro m the figure E,

,

u n

.

an

,

,

a

,

o

su n ,

m



an

,

,

n

r eo r



co s

9=p+ l

an

oo

n

an

d

eart h

d A M ES = x

,

TH E

E C L I PS E S o r

[O H

SU N

.

XV I I

celes t ial sphere is so f as s lar eclipses a co cer e d prac t ically the sa m e whe viewe d from n y poi t n the ear t h s surface as whe viewed from t he earth s ce tre Th e paralla f the m oo bei g early 38 9 t i m e that f t he su cau es t he a ppare t la e f t he m o to be shi f te d e t e t which m be early t p y d uble the lu ar dia m eter T hus alth ugh as vie w e d fro m the earth s ce tre the m oo m y pass clear f th e ye t as vie w ed fro m a poi t earth s sur face paralla m y i ter pose t h e th d d t he s m oo w holly or par t ially bet w ee the bserver thus prod uce a s lar ecli pse We have alrea dy ee ( C ha pter XI I ) t hat the e ff ect f parallax is to d epress the m oo fro m t he e ith o f the observer towards the hori o d t hat t he a m ou t o f this de pressio i pro por t io al t o t he si e o f the e i t h d ista ce We about give co j u ctio o w co sid er whe t her at e w m oo i n lo gitu de f d m oo i e at or abou t a give there w ill be ecli pse visible fr m y pl ace t he earth f t he m oo as see fro m I f this is to be t h case t he parallax such a place m ust pr jec t the m oo towar ds the S tha t their li m bs overlap S u ppos e tha t S M is the S hor t e t d ista ce be t w ee the ce tres f s at t he co j u ctio i ques tio as d mo see fro m t he ear t h s ce t re The ecli pse will be visible at lace i f but o ly i f t he aralla f the m o as vie w e ro d f m y p p tha t place appears t o t hrus t t he m oo t owar ds the through a d ista ce e cee d i g A B I t f llows t ha t A R m us t be less tha the m oo s h ri o tal paralla If A B be equal to r grea t er tha the hori o tal paralla the there will be ecli pse T h critical poi t t h earth sur face fro m w hich t he m oo s lim b i f visi b le w oul d j us t appear t o gra e t h e s is de t er mi ed as follo w s Th e m oo is d epressed by paral la alo g the great circle bu t paralla at a y place always d e pre ses the m oo fro m the e ith f t ha t place I t t here fore follows t hat u der the circu m sta ces su ppose d t his e i t h m ust also lie o t he c ti ti A the lo w er li m b o f the grea t circle o f t hi m oo appears t o be o n the h ri o whe its paralla is grea t es t ( w e ee d o t here co si der y questi O f at mos pheric re frac t io ) it f ll ws that the e i t h f the place m ust be d is t a t fro m S by 90 + t he a ppare t se m i dia m eter o f the s T hus the poi t o the celestial Sphere which is the e ith o f t he place f bservatio is ar

,

o

n

re

n

a

n

n

,



o



n

n

n

n

c

s



.

n

n

n

on

o

x

n

n

.

,

an

an ’

n

n

n

,

n

n

.

x

n

n

,

,

o

z

z

x

n

n

n

o

e

n

,

.

n

,

n

,

o

,

n

n o

.





e

on

n

su n

,

x,

n

n

an

o

.



n

n

n

,

n

n

x o

,

.

O

s

on

s

n



x

n

x

n

z

on

z

o

n

n

n

o

n

z

n

an

n

o

z

n

,

x

n

n

on

n

o

°

n

on

s

s

n

n

s

.

n

n u a

n

n

o

n

n

u n

z

.

u n

-

z

n

,

n

su n

,

,

n

n

n

n

.

n

on

o

o

n

n

n

o

u n

n

.

e

an

a

or

an

n

s

.

an

o

an

,

o

n

n

n

su n

o

u n

n

z

n

n

n

an

n

z

n

n

.

an

n

can

,

a

O

n

n

,

su n

o

.

s

n

n

o

,

,

n

a



e

n

s

n

x

a

,

z

n

an

o

n

o

n

o

on

o

x o

.

,

n

.

o

O

,

n

n

,

§

1 2 2]

E C L I PSES

TH E

OF

363

SU N

dete m i e d d the ti m e is also k ow beca se it is tha t at w hich t he true a gular d ista ce f t he ce t res f s d m oo is a m i imu m f the e i t h i t he la t i t d e f t he B t the decli a t io f m la e the right asce sio o t he e ith i us the ree wich d G p sidereal ti m e is t he lo gitu de f t he place I this w ay w e i dicate geo m e t rica lly t he latitu de d t he lo gitu de f t he terrestrial sta t ion a t w hich the ecli pse is j ust a gra i g co tact while at o t her statio is there y eclipse w ha t ever I f t h e ecli pse be larger tha the li m iti g case j ust co si d ered t he the t rack f the m oo Jlf M M m ust pass earer t the I f A B ( Fig 8 9) be equal to t he hori o tal paralla x o f t he m oo the just as be fore a poi t m y be fou d o t he co ti uatio f the grea t circle S M w hich is the e ith o f the terres t rial sta t io from which the t w li mbs are j us t brought i t o co tact by paralla the earth s sur face at which t he phase o f T his is t he poi t o m m f artial ecli se is j ust co e ci g as a gra e t he li bs m o f s p p d m oo er a e ith is deter m i ed alo g S M d i like m a w here t he ecli pse e ds i a sim ilar m a er It is easy to e h w other eclip e proble m s c be ill s trated i this m a er S u pp se fo e a mple i t be require d t o fi d the terrestrial s t atio at w hich the ce t ral phase f a t t al ecli pse shall take place whe the s has t he grea t est possible al t itu de W e plo t as be fore a series o f corres po di g geoce t ric positio s d M M M f the m o about t h t i m e f S S S o f the s co j u ctio w here S M is the m i i mu m geoce tric dis t a ce f t he t w o bodies A the s d m oo are t o have the greates t alti tu de possible at the phase i ques t io i t i plai tha t t he m oo m ust have the leas t pos ible paralla x w hich wil l su ffice t o m ake T his i t ce tre a ppear to coi cide wi t h the ce t re f the sho w s t hat the e ith f t he place required m us t lie the o f t he great circle S M t io d the positio o f the e ith Z ti is defi e d by observi g t ha t the parallax is e actly S M so tha t n

r

an

n

n

n

c

n

o

n

n

u

.

an

z

z

n

u n

O

o

n

n

u

n

n

n

an

s

n

o

u

n

o

n

n

.

an

n

n

n

o

n

z n

n o

an

n

.

n

n

n

o

n

,

,

n

z

.

su n

o

n

n

n

n

n

n

o

n

.

,

o

n

n

z

,

,

,

n

a

n

n

n

,

,

,

,

x

n

,

.



n

n

n

an

n

an

,

nn

n

se

nn

z

nn

o

r

,

x

, ,

,

n

u n

n

n

,

o

u n

.

n

an

S

,

,

,

n

on

an

o

e

n

n

u n

n

n

, o

,

,

,

.

u

o

,

,

,

an

3

,,

n

n

,

n

,

n

n

n

.

s

o

.

u n

o

n

z

n

n

n

n

n

o

n

n

n

n

s

n

s

z

nu a

n

n

su n

o

o

,

,

,

an

x

ZS ,

S, M ,

Si n

c

n

n

si n

.

on

o

n

w here

n

n

n

s

z

,

,

n

n

,

Si n

is the i e o f the m oo s hori t al paralla T hus Z is fou d a d the ti m e bei g k ow the require d s t atio o the earth s sur face beco m es d eter m i e d T h e li e f ce tral ecli pse o the ear t h n also be co struc t e d For i f o t he great circle j oi i g S M pair o f correspo di g m Z ositio s d oo a oi t be chose so that of p p si n 7r ,

n





S n

n

n

,

n

n

n



n

n

o

n

n

su n a n

n

si n

,

Z, S ,

x

n

sin

n

.

ca

n

.

n

,

n

n

n

zo n

,

,

,

S, M ,

,

n

a

.

n

n

si n n o



,

n

3 64

the

[

T HE SUN

E C L I PS E S o r

OH

XV I I

.

will be t h e e i t h o f the place from w hich w he t he d m oo are a t S d M res pectively the ecli pse w ill a ppear ce tral B y taki g o t her pairs f correspo di g po i t io s y u mber f p i t the ce tral li e d thus the terres t rial li e be Co t ructe d o f ce tral ecli pse Z,

n

n

an

n

n

z

an

,

,

o n

o

n

o

s on

n

can

n s

n

su n

,

n

.

n

,

n

n

,

an

n

s

n

an

n

-

.

l o s e t a ppr o a c h o f s u n a n d m o o n n e a r a n o d e L t B be t he l a t itu d e f the m oo M at the ti m e o f a e w m oo which i su pposed to occur whe the m o is i the vici i t y o f it o de N L e t S be the posi t io f the a t the sam e m om e t ( F i g 12 3

C

.

s

.

e

n

s

s

n

o

n

n

n

.

n

n

n

o

n

n

o

su n

.

FIG

90

.

.

be t he posi t io s to which the m oo d s have ad va ced a little later L e t M M x t he SS m cos I w here lo gitu de to the m is t h ra t io o f the su s a ppare t veloci t y i d I is the i cli atio o f m oo s a ppare t velocity i lo gi t ude t he m oo s orbit to the ecli pt ic I t will be appro i mately correct to regar d t h trian gle M N S d he ce i f D d e o t e M S a s a pla e tria gle Le t M



,

S



n

n



n

.



n

,



n

e

n



n

n

n

n

,

an

n

n

.

n

co

ma y

c o se c

n

co s

in

I ( B c o t I — mx

I —

x

co s

I ) ( B c o se c I — x )

)

2

,

the for m

2m c o s I + m ’





n

n

tI

be w rit t e

1 (

e

an

,

2

D

n



n

2

,

n

x

which

u n

x

n

n

an

2





co s

I) +

x

B (1

9

I

2m

1

2

si n

00 5

m)

2



cos

2

I

We observe that t he first part f t he e pressio fo r D ever be egati e d t here fore to ob t ai the s mallest value w e m ake o

n

n

v

,

an

x

n

B si n I

]

n

2

o

ca n

fD



3 66

[OH

E C L IP S ES O F T H E S U N

XV I I

.

d I i t s least value 4 W e thus fi d as value 1 the superior eclipt ic li m it T h i f e i o e c lip ti c li mi t is fou d by taki g the lo w e t possible a d d e a m ely respectively values f I f t he geoce tric la t i t u d e f the m oo at co ju ctio be less tha t he ecli pse o f t he s I5 S 1 539 fro m so m e t errestrial sta t io s m ust t ake place abou t t h e t i m e o f tha t o ju ctio Th m a i m u m value f t h i cli atio o f the orbit to t he ecliptic is 5 1 8 6 I f t he values 1 d m oo 5 1 8 6 be subs t itute d fo B d I i the for m ula ( i ) we fi d = T hus we see tha t whe ever at t he t i m e f e w m oo the su s lo gi t u de is w i t hi o d e t he eclipse o f t he m ust t ake place at t hat co j u ctio o f t he s T h e i ferior ecli ptic li m i t is t here f re Fi ally we see that i f B 1 2 4 7 the ecli pse m ust happe If B 1 the there ca ot be ecli pse I f 1 B 1 t he ecli pse m y happe or it m y o t T decide the ques t io w m us t calcula t e d ther e w ill be eclipse or n o t accor di g as B is less or greater t ha the qua t i ty so fou d E 1 If i F i g 90 S M i t h p rp d ic l ar fr m S MN dS M th h rt e t d i t c b etwee t h ce tre f t h h w th at d m app i m t ly °

°

an

n

.

r

n

e

rD an

o

n

n

r

n

r

n

n

o

n



s

n

n

°

°

.

n

n

an

n

u n

n

_

n

c

n

n

x

e

.

o

n

e

n

n

°



°

n s

an

.

°

r

n

an

x

n

o

n



n

n

n

n

u n

n

an

n

n

n

n

n

n

.

o

°

n

°

n

n an

nn

an

°

n

n

.

n

a

n

e

an

7r ,

an

o

.



n

n

n

x

.

s

e

o

s

,

.

s an

s

n

.

n

.

.

°

a

an

n

e

e

n

en

e

e

s o

n

o

u

e

su n

on

an



an

oon

,

S



o

a e

rox

M M = 2 mB s i n I ’

at ll ite rev lve tim e th d reg rede 9 very rev l uti fa t d it th at ll ite mak r u d i t pri m ary pr ve that there ca t b fewer de th a t h i teger ex t le lar ecl i p e at th a ti Ex 2 .

n s

i feri r ecl i ptic l im it

.

If t h e

.

s

s

as

e

es

se c u

n

as

su n

e

an

,

s

s

n

o

so

ve

o

s s

n o

n o

s

e

(n

s

e

I)

o

e

o

n

n

on

e

s

e

co n

ss

n

e

72 9 + 2 1r

[M ath

ri

T p]

.

.

i l g itu d th e veme t f t h A i th at f th m d — A9/2 th at f t h i d T h d u rati f a l u ati 2 /( l )A d t h ti m e tak e b y t h t pa fr m t h d i ta c de t a d i t a c e ide f t h th th er i d th um b er f e ti re l u ati c tai ed i thi g ive t h requi red a w r E th m c j u cti 3 A t a cer tai f th d m ju t e ib le partial cl ip e at y p i t f t h b t th ere i gra e t h earth urface P r ve th at Le t A b e t h e d

o

oon an

e

n

7r

one n

o

x

z

.



s

n o

n

su n

o

n

s

,

o

o

1r

ons

n

e

n

s

on

6

n

n

s n o

u

n o

e

n

on

e

e

n

.

s

mo

e

e

o

n

n

an

s

iur al

e

n n o

n

2

d i f th e

an

s

o

,

on e

i

s a re

on

s

su n

e

su n

o

e o

n

s

e

ss





0

2

9

O)

n

o

o

e

s

n

s

n

s

s

ns

e

e

d, )2

s

on

e

6

on

e

an

oon

an

su n

-

(

on

n

,

an

s

o

.

7r 0

e,

e

.

on

o

on

n

cos

8m

cos

8,

n s

e

e

o on

o n

.

o

s

e

1 2 3—12 4]

3 67

T H E SU N

E C LIPSES O F

a gular radii f t h d m d th i r 8 d 8 th e i r d ec l i ati at t h i ta t f c j u cti i i d d e cl i a ti d a 8m th i r h url y m ti [ C ll E xam Fi d t h m i im um d i ta ce b etwee t h ce tr which at t h tim e t appr xi matel y t h quare r t f

where o parall ax

e s,

an

d

an

r

r

D

an

,

the

are

n

m

ons

e

R A

n

an

su n

ons

o

o

e

,,

e

o

n

.

ns

oon

o

n

an

.

on

n

on

o

n

is

s

n

e

{ 8m

oo

s

e

o

n

e

1r0

on

n

n

R A .

.

,

.

.

.

es

e

o

(8m

8, + t

e

n

n

o an

n

,



t2

co s

8m

co s

r ve that there m re lar ecl ip e tha lu ar ecl ip e t h average b t th a t t h m fa ce i d i mm d b y t h p u mb ra th u gh t e ce ar i l y e cl i p d rath er m r freque t l y th a t h i e cl i p ed [ C ll E xam ] l u ar ecl ip e wi ll b E 5 P r ve th at at t t i l t ti gi lar m re freque t th a d h ri t al parallaxe f th E Th d em i d i am eter 6 m rb it t fi d t h m ax i m u m i c l i ati f th b i g k w m lar cl ip e every m th t h ec l i ptic which w l d e u re a [ C ll E xam ] Ex 4 .

P

.

e

n

se

ss

o

so



e

u

,

n o

a re

o

oon s

n

e

n

e

e

s

o

,

s s

n

n

en

e su n

a

o

.

.

n

o

x

.

e

.

s

s

s

ou

e

an

s

e

n

n,

s a

e r r es r a

.

n

on

ec

li p

Cal cu l

.

o

se

f th e

a

so

on

n

e

o

s

-

n

ns

ti o n

su n

.

e

s s



e

o

oon s

on

s

o

f th

e

l

B e s se l i a n

e e

su n

e

an

o

o

.

o

12 4

.

.

zo n

o

n o

e n

oon

so

n

ve n

o

,

o

x

on

s s

.

m e n t s fo r

a

.

t

pa r i a l

.

ollo w i g m e t hod o f co mputi g t he circu m sta ces o f eclipse f the a t a give terres t rial s t atio is tha t o w ge erally e mploye d I t is d e t o B e sel f h t h ce tre t he earth a li Th n e is su posed to be g p draw parallel to the li e j oi i g the ce tres f t he d m m o e t W e shall regar d this as the a is o f d m oo n a t y the pla e or mal thereto through t he earth s ce tre is k o w as the fu dam e tal pla e T h e posi t ive si de f the pla e f is that w hi h t he d m on are S i t ua t ed is that w hich co t ai s t he a is o f the ear t h d T h e pla e o f Th positive i d e o f the ax is o f is that w hich co tai s the oi t f the equator w hich the earth s ro t atio is carryi g f ro m the p osi t ive si d e f to t he ega t ive si d e T his cri t erio ever p beco m e ambig ous because the pla e O f ever coi cide w i t h the equator d z d T h pla e o f g is per pe dicular to the pl a es f x the posi t ive si de f g is t ha t w hich co tai s the earth s or t h pol e ot beco m e am big uous T his als ca d d ecli atio o f the celestial L t a d be the righ t asce sio The f

n

n

su n

o

n

n

n

e

s

n

n

n

n

n

o

x



n

n

n

z

an

n

n

an an

n

o

z

.

x

n

n

e

.

n

o

x

n

z

o

.

su n

c

on

su n

.

n

n

n

o

n

an

an

n

u

.

ro u

n

an

x

s

n

n



n

n

o

o

n

z

n

n

.

u

n

z ca n

can

n

n

n

.

n

n

e

n

an

O

an



o

nn

o

e

n

n

.

n

,

Se e

n

al s o

Ch a u



ve n e t s

n

an

P r a c ti ca l

and

n

r

n

Sp h e i c a l As t

r

o n o my

.

.

E CL I P SE S O F

TH E

[ OH

SUN

XV I I

.

which is oi ted at by the ositive irectio the a is d o f p p p d decli a t io T he t he R A f f the poi t s t h e celestial res pec t ively are 90 + a 0 ; Sphere poi ted t o by + x g + d 1 80 + 90 — d ; W e he ce ob t ai the cosi es o f t he a gles betw ee t he poi t 8 d t he t hree poi ts j ust give by t he for m ula ( i ) p 2 8 d thus derive the e pressio s t D

o in

o

z

n

n

.

.

n

an

.

n

n

,

°

°

a

a

,

°

,

n

n

n

an

,

n

x

n

8 si n ( a — a )

co s

=A g

Si n

{ z = A si n {

w here

on

an

a,

.

=A

x

n

n

n

,

o

z

,

.

,

n

n

n

x

8 co s d —

8 si n d c o S( a —

)} d + c o s 8 c o s d c o s ( a — a )}

8 si n

co s

a

are t he coor di ates w i t h respect to t he fu dam en tal g a es o f a bo dy i t he directio 8 d at t he d ista ce A L t a 8 a d a 8 be the R A a d decl o f the ce tres f t h e d t he m oo respec t ively the as the li e j oi i g t hese u n oi ts is arallel to w the e m us t have t h e x coor d i a t es f p p d t he g coor d i ates m us t also be equal w he c e d m oo equal A cos 8 i ( a a) 0 ) A cos 8 i ( A cos 8 i d cos ( A si 8 cos d a) A i 8 cos d A cos 8 s i d cos ( ) 0 Fro m t h e firs t o f t he e t a is fou d This gives two values f a e cee ds the o t her by A S ho w ever the valu e o f w hich f m us t be very early t he right asce sio f the there d oubt as to w hich value o f be is t o be chose T h is sub sti t ute d i t he seco d equatio gives t d d here also there c be am bigui ty as t o w hich o f the t w o values o f d d i ff eri g by 1 8 0 shoul d be chose fo d bei g a d ecli atio m ust lie bet w ee x,

,

n

z

x

n

e

a,

n

n

,

,,

,

,

,

an

n

n

.

.

n

an

s

n

z

an

an

n

,

n

,

o

n

n

n

o

s n

,

a

,

,

,

,

S n

s

,

,

a,

s n

a,

S n

,

,

an

n

n

,

a,

a

or

n

n o

.

.

n

,

n

su n

o

a

n

n

,

,

n

su n

,

x

a

n

n

,

on e

.

.

n

,

n

o

n

n

n

an

,

ca n

.

an

an

n

n o °

90

n

°

an

d

90

n

r

,

n

n

n

°

the p i t D o f w hich d are the coor di ates is So ear t h e ce tre f the d as at the t i m e f eclipse d 8 are very ear to d 8 res pectively the followi g a ppro i m a t e solutio gives a d d w ith all eedful accuracy d the first equa t io w e write t he s m all a gles If i i stead f their si es d i f we m ake cos 8 = cos 8 d a — w e have A A AS

o n

o

n

su n

a,

n

a

,

an

o

an

,

,

o

n

.

n

n

,

an

a,

a

an

,

an

,

,

a,

a

(a

,

the seco d equa t io w e m ake cos ( ) u ity d thus substituti g t he s m all a gles their si es we have In

n

,

x

n

n

n

,

a, an

n

n

n

a

an

,

an

,

n

,

n

an

n

a,

n

n

n

d = s,

a

(s

,

an

8

d

cos ( d

an

a,

d d

a

)

each 8 fo r ’

E C L I PS E S

TH

OF

E SU N

[

ista ce d it is f u d tha t f t he com putatio 6 We he ce ob t ain t h is a gle should be

d

or

n

o

an

n



n

PQ

l

= 7 6 7 00

f

L o g R ta n

radius

VII

n

.

Th e

X

.

ecli pses

of

n

CH

.

t an f

OS)

P ( S

R ta n f

=

a

we

Bu t

.

b where b is the radius f t he m oo have ( R M P ) t f w he ce l = M P t f b I f we take as is m os t co ve ie t the earth s equat rial ra dius a s t he u it o f dista ce f t h m ea ure d 0 2 725 bei g the m oo s hori t al paralla m e n t f l t he t he atio f t he m oo s radius to t he ea t h s equa t orial radius w e have l t cosec 02 72 5 f For e a mple I the a ular ecli pse o f M arch 5 1 905 we have L g R = 99 966 w he ce L g ta f = 9 9 966 7 6 7 39 Th e m oo s hori o tal paralla t his occasio is 5 4 d wi t h the value f f j ust fou d we obtai a

an

an

n



n

.

n

o



n

o

n

7r,

n

o

r

n

o

,



n

n

n

or

n

,

s

e

x, a n

zo n





r

an

x

n

.

o

n n

n

,

o

n



n

.

n

z

,

,

x on

o



n

n

an

n

l = 5 72 8 ‘

.

these qua ti t ies i x g L g ta f L g i d g d it w ill be L g cos d p are k ow a s the B esselia n ele m e t s observed t ha t they rela t e t o the wh le earth ra t her t ha to par t icular t t io s thereo e t part f t h calcula t io hows ho w t he B esselia Th ele m e t s are to be applie d t o deter m i e t he circu m t a ces f ecli pse at y par t icular s t a t io All

n

o

,

,

n

,

v z

.

x

,

,





,

o

,

n

n

n

,

n

n

a

n

e

x

o

e

n

n

an

t

an

n

S

n

t

A ppl i c a i o n

.

,

.

n

12 5

s n

n

o

s

o

,

Of

s

n

an

o

.

th e B e ss e l i

ele

an

m e n ts t o t h e

c al cu

t ti o n ecli pse are prese te d w he t he T h cri t ical phe o m e a f observer is o the pe u m bra or the u mbra I n t he for mer case t he co t ac t f the li m bs o f t he s d m oo is e ter al d t he par t ial eclipse is j us t begi n i g or e di g I t he case f a to t al ecli pse the phase k ow as to t ali t y is just co mm e ci g or e di g w he the observer is o the u m br a ular I the case o f eclipse t he firs t or seco d i ter al co tac t takes place whe t he bserver occu pies t his positio We shall e w s t u dy the case o f the co m m e ce m e t or e di g o f ecli pse It has bee alrea dy stated tha t is the westerly hour a gle

la ion

o

f

an

e cli

ps e f o r

a

n

n

e

n

o

s a

.

an

.

u n

n

n

n

n

n

an

n

n

n

n

a

n

O

n

n

n

n

n

n

an

n

o





n

n

x

n

.

n

n

n

n

n

o

n

gi v e n

n

n

an

n

nn n

n

n

.

an

.

u.

,

n

1 2 4— 1 2 5 ]

37 1

E CL I P SE S O F TH E SU N

r m G ree wich f t he poi t D d t here f re wi t h res pect t o the observer s s t atio K w hi h has easterly lo gitu d e A the w es t hour a gle f D is + A T h e geoce t ric e ith f the bserver has there fore a righ t asce si w here A d a d ecli a t io p is the geoce tric la t i t u de f K I f there fore p be t he d ista ce f K fro m t he ea t h ce t re d f n t t he coor di ates o f K w i t h re pect to t he fu da m e t al a es we have 3 5 p os i cos i cos d cos d 7 7 ( d a 0} t { p g; p { i d) i d cos gb cos d s ( p A)} T h e values f g d n are to be calculated d 7 d also f E f the particular locality d f t he a m e e poch T w hich was sed i calculati g d g H e ce a t the t i m e T + t w h ere t is e presse d i m i u t es o f m ea t i m e d is u derstood to be a f ourse i t w ill be i f T be pro perly hose ) s m all qua tity ( t h e values f g d ; bec m e f + f t d n + n t res pectively W e have w t o fi d 5 d t hat is t o say the rate p m i n ute t which if d 7 are cha gi g about the t i m e w he the eclipse is visible a t t he place i questio A d f t hese t he three firs t are O b 5 d ) d e pe d p g fixe d f a give locali t y d he e the cha ges i f d 7 a t a give place o ly arise t hrough cha ges f d or u or bo t h A s t o d i t i ery early t h d ecli ati o f t h s d t his at m ost ly cha ges at t he rate f a seco d f e p m i u t e T h ha ges f E d 7 which w o cer us are d e to the ha ges i a T his is very early t he w e t hou r a gle o f the su at G ree wi h m i u t e o f m ea ti m e is d i t s varia t io i about m i u t e f sidereal t i m e or e xpressed i radia s f

o

o

n

n

an

o



n

c

o

n

u.

an

n

on

a

s

s

s n c

7

‘ ’

o

,

S n

an

an

7

x

n

an

o



u

an



n

an

er

n

7

n

n

n

s v

o n

c

on

,

n

,

,

,

u

.

,

nc

an

n

e

n

on

n

an

o

n o

7

n

c

n

on e

n

n

o

er

n

e

.

n

c

u

n

n

one

n

an

ar

s

an

c

u n

n

n

.

7

.

e

n

o

an

n

o

n

n

n

n

.



n

can

.

an

n

n

n



o

7

an

or

n

C



an

n

an

c

n o

7



n

.

o

a

.

s

or

n

as

‘ ‘

co

o

n

n

s n



an

n



)

or

an

o

n

,

'



s n

x

n

n

o

:

n

O

n

,

x

n

n

o

n

.

an

n

,

an

.

o

n

r

z

n

.

,



n

n

n

n

o

n

i ere tiati g the e pre sio s f f d 7 w ith regar d to t he we t i m e d re prese t i g the di ff ere tial coe ffi cie ts by f d have cos 2 2 cos A g (p )/ 9 p p ii D ff

n

x

n

an

n

n

s

or

an

7

n

n

n

” ‘



f

5 si n

an

'

(

o



.

( )

d/2 2 9 2 °

is t a ce f the bserver fr m the is f t he pe u m bra is which brevi t y is re rese te d by I t is obvious L f l t 4 f p t ha t a m all cha ge i C bei g m ul t iplie d as it is by the m all qua ti ty t a f is i se sible d co seque t ly we have as t he Th e d ”

an

n

o

n

n

,

n

n

o

n

or

,

s

n

ax

o

o

n

.

s

n

,

,

an

n

n

n

2 4— 2

u dam e tal equatio f the d eterm i a t io or e di g f t he partial ecli pse

f

n

n

n

or

n

n

n

[

SU N

TH E

EC L IPS E S O F

n

o

XV II

.

the co mm e ce m e t

f

n

n

o

w ( {

E) l





t (w

E)

{(y



v

t (3 /

)



v

s lutio f thi equa t io is eff ec t ed as follows We m ake the subs t itu t io s

The

OH

n

o

o

n

s

)l

L





(i i i )

.

n

m si n M = x m

w hich

M =g

co s

n ;

-

=x — ’

n si n

N

n co s

N =g —n

f







are four au iliary qua t ities T his gives M t ( f) ( g 7) fro m which t w values f M d i ffe i g by W e choose that value which shall m ake 1 8 0 are d eter m i e d Al have t he sa m e ig as x Si 5 the cos M m ust have the sa m e sig as g — n d m w ill be the positive square ro t o f

in

m

n

,

,

M

N

,

x

an

n

,

r n

o

o

n

S

n

.

.

l

n

,

an

o

E)

( 22



like m a er N is d eter m i ed square root f

In

n

7

°

n

x

nn

n

(y

t hat

SO

shall be the positive

n

o

'

(y

(w

equa t io ( iv) w e have m L N) t + 2 m t cos ( M where a m i ute o f m ea t i m e is as alrea dy sta t e d the u it W e i tro d uce a o t her a gle 39 such that S

ubsti t u t i g i



n

n

t he

n

n

2

2

2

u



,

n

n

n

n

n

o

ft

.

n

L si n

m si n

d

r

—N M ( )

.

is give o ly by its si e t here is a ch ice f two su pple m e tal a gles f We ch ose t hat w hich lies bet w ee o e d d 90 so that i ositive the 90 d p As

dz

n

n

n

n

°

or

n

r

t + 2 mn t 2

co s

cos

o

o

o

.

°

an

2

n

r

n

s

n

n

(M L

2

m

2

m

2

cos

2

M (

N)

L

2

cos

2

d r

,

whe ce m cos ( M N ) i L cos d v ( ) i ce s d is posi t ive as well as L d t he u pper ig gives t d t he lo w er t d t h G ree w ich m ea t i m es o f t he co m m e ce me t d e di g f the eclipse are T d T t t res pectively I f w e d e o t e by T d T the local m ea t i m es f the begi n i g d e d i g w e have n

S n

r

co

an

r

an

,

n

an

n

n

an

n

w here

n

an

e

n

n

n

,

n

A

is the lon gitu d e

o

f

t he O bser v er

,

n

,

an

n

n

o

,

S

,

.

an

,

o

.

n

n

E C L I P S ES

Q

[

T H E SU N

OF

OH

V

X II

.

N

,

Q

N

2

f

x”

;

by which we lear the poi t s f the solar disk which the m oo touche at the first d last m m e t s f t he ecli pse f t he ecli pse wi t h greater T d e t er m i e the circu m s t a ce accuracy the cal ula t io Sh ul d be re pea t e d u i g t h e values fou d i g d T i stea d f T accor di g to whether i t is t he begi f T or e d f t he eclipse that is sough t an

s

n

o

an

s

o

n

s n

,

nn

n

o

o

n

.

o

n

n

,

o

n

c

,

n

n

o

or

o

n

n

.

I

II i ta t f c j u cti i r ight a ce i fr m t h m t t h d i ta ce f t h

E XE RC SE S O N C H A PT E R XV

r ve that at t h rati f t h d i ta ce f t h fr m t h earth i Ex 1 .

o

P

.

o

e

o

o

n

s

e

o

n

ns

e

e

su n

on

o

n

n

e

o

oon

.

on

n

o

e

s

th e

e

su n

o

n

s

n s on

s

{S i n

1r ,

si n n , c o s



(8



1r 0 ,

f th d th m d where 8 d 8 t h decl i ati tal parallaxe f t h d th m d th t h h ri qu are f i eglected i t h b r ve th a t a t t a m e i t a t i f d 6 h u rl y ch a e h f Al g p d th m re pecti vel y d A t h h u rl y t h r i g ht a ce i f th ch a ge i t h r ight a ce i f t h l i e fr m t h ce t re f t h earth h ar lel t h l i e i i t h m c e t re t t u ce t re the t l g p j '

o

e

an

a re

zo n

e

s o

n

s

on s o

n

e

e

su n

an

n s

n

an

su n

oon

e

oon

e

an

,

n

,



o an

ar e

1r 0

e s

o

s n n o

.

so

e

o

e

n

n

e

o n n

n

,

a

an

s

an

e

oon

o

e

n

n s on

s

e

o

a

e su n

ns on s o

s

s



e

S ID

A= s



e

o

CO S

Si n

co s

8

e

o

n

an

,

o

n

oon s

e

e

n

s

e

n s

o

e

o



o

n

n

,

(d

'

8

[Co

ll E xam ] .

.

e ce tric a g ular di ta ce b twee t h ce tre f t h d m at i ta t f co j u cti i r ight a ce i i d d t h f th d ec l i ati i T h rate f eparati f th d m d d ec l i ati i a d 8 Pr v th at i f t h r ight a c i b cli p ed t h ti me fr m c j u cti o t t h mi ddle f t h ge ce tric ecl i p e i appr x i m a tel y 8d /( 8 d P r ve th at t h appr x i m a te d i ffere c e f t h r i ght a ce i f th p i t where t h cel tial ph ere i i ter e ted b y t h ax i f t h c e f had w d ur i g ec l i p e f t h d t h g e c e t r ic r i g ht a ce i f th i Ex 2 .

Th e g the

.

oon

an

n

s

e

s

es

an

s

on

n

on

z

are

on

n

co s

s

o

e su n

,

s

o

e

o

s

o

s

e

e

e

o

e

an

,

e

an

,

su n

su n

oon

e

su n

n

s

2

o

n

e

s c

an

s

e

e

o

s

e

s

si n

n s on

o

n

2

where

o

.

n

n s on

on

e

n

s

e

s

an

o

n

n

n

s o

o

e

e

n

e

2

o

n

s

o

o

n

e

n

s

o

n

an

e

,

n

su n

s en s on

n

n

ns

e

o

on

o

o

on

o

o

n s on

e

o n

s

o

e su n

,

s

1

re pecti vely t h ge ce tric right a ce i f th m d d 8 th ei r d c l i ati 8 b t h rati f th m g ce t ric d i ta c e t th u ge ce tric di ta c Ma th r i T p] [ E 3 U i g fi l gar ith m h w that fr m t h earl i e t b egi fig fr m t h e rth i g u rface f t h lar ecl ip e f A g 8 18 96 t t h lat e t e d i g i i t rval f ab ut 4 49 h avi g g ive su n



e

.

e

,

n s

a s se e n s

o

s n

.

n

e

e



s

x

s

'

an

,

o

n n

a re

a, a

o

n

n

n

o n s,

s

ve -

n

u re

e

a

s an

n

o

e

,

o

oon s

eo

o on an

n

s

o

o

o

e

h

e

o

so

m

,

s

n

o

s

u

n

,

.

n

.

.

s, S

s s

e



e

.

o



e

o o

e

n s on s O

s

n

,

n

o

§

125 ]

E C L I P SE S O F

M oo n

M S

S

S

.

m

i e th n

o

o

n

on

on

n

on

g

itude



s



35 5 5 2 24

h url y m o ti i latitude equat rial h ri t l parallax o

on

o

3 18

n

o

9

t ru e sem i diam eter



16 14

-



'

15 4 8

n s

[ Math

.

h w that eglecti g t h u parall ax t h e equati o lar ec l i p e i c tral at a g ive ti me re pla ce wh ere S

o

,

n

n

e

a s

s

l — p oos 8

p

co s < co s

.

59 2 8

n s

oon s

S



a

zo n



'





e

.



oon s

.

N

4 2 11

on

n





n s

u

Ex 4

on

S UN





u

M

d

s

oo n s

Mo on

M

latitu e at c j u cti i l h url y m ti i l gitud e

’ ’

u

TH E

s

s



n s

en

n

c o s < si n

p

l

r ip ] de t r .

e

a



si n c

T

to

ons

,



p

i s p n

8

e ce tric ri ght a c i d d ecl i ati d d p t h rati f th m d i ta c e t p t i ly f t h m rad i a t h latitude f t h plac t h ear th d l t h h ur a gle f t h m [C ll E xam ] b 2 9 5 30 6 d ay d t h p ri d f t h idereal If a l u ati 5 E de d ay rev l uti f t h m f pr ve th at aft r a per i d i vari ab le rder 1 4 5 5 8 day e cl i p e m y b ex p ct d t recu r i [ Math Tr i p t h d ai l y appr ach f t h d e h av i g a r t r grade m ti Th m 6 de i degree i D i v i d i g thi i t 3 60 w t th 63 533 355 34 u m b r f day i t h rev l uti f t h w ith re pect th b ta i 34 66 2 M l tiplyi g thi b y 4 2 w b tai 145 5 8 0 W al de t th m W thu that i ab ut m ak e 1 4 5 5 8 6 day fi d th at 4 93 l u ati 4 93 l u ati d th at i t h ame per i d 4 2 c mplete 145 5 8 d ay th ere rev l uti with regard t t h de T h aft r t h m ade b y t h lap e f thi p ri d fr m a c j u cti t h d m agai i u cti a t h a i t a c e f r m t h d e th e y were a t h d d t m t j i g b egi where s

8,

a,



e

oon

8

a ,

the g '

a re

e

o

ve

ec

'

'

oon

an

u s,

s

o

n

su n

s en s on s

an

,

e

e

o

e

o

e

o

an



e

an

,

oo n s

n

o

on

o



e

o

s

e

on

n

.

.

no

oon s

s s

a

an

s,

e

e

e

o

o



o

n

n o

e

o

as

n

o



oon s

e

n an

s

o

on

s

,

nn n

an

.

e

n

n

e

e

s

o n s an

n

e

o

o

e

s

n

n

on s

e

o

s

o

n

e

su n

an

e

no

o

n

e

s

e

.

se e

oon as

o

u s

.

a re

so

o

n

o

n o

e

o

e su n

s

o

.

o

e s

o

n

s

O

e

.

su n

on

e

on

s

s

.

n

o

on s

are

ons

s

e

o

e

.

o

o

.

e

o

n

on,

o

o

o

e

_

u

a re

s

s

e

.

n

o

e

s

e n

n o

n

n

n

oon s n o

e

n

.

o

o

s,

e

e

.

su n

s

o

e

.

x

o n s re

n

e

n

n

e

co n

e

C H A PT E R

X V I II

.

I

M OON

O CCU LTA T O N S O F STA R S B Y T H E

i ve ti gati o

Th e

12 6

.

n

s

of an

n

o

ccul tati

.

on

t i ga t i o n o f a n o c c u lt a t i o n It occasion ally happe s that the m oon i the course f i t s d a star T his ph m ove m e t passes bet w ee the bserver calle d A the s t ar m y f this me i o cc l t ti o m ur ose be regar d e d as a m athe atical poi t the e ti c t io f p p the star by the m oo s adva ci g li mb is usually n i sta ta eous n he o m e o though occasi ally owi g d oubtless to the m argi al p irreg laritie o f the m oo s li mb the phe o m e o is o t qui t e SO si m ple Th e reappeara ce f the s t ar whe t he m oo has j us t assed cross i t m also be bserve d though i this case the p y bserver should be fore w ar e d as to the precise poi t the m oo s li mb w here t he star w ill sudde l y e m erge It is ea y to see the astro o m ical sig ifica ce f t he observatio n f occultatio T h e t i m e o f its occurre ce d epe ds b t h the f the ob erver d the positio Th m ove m e t o f the m oo f d lace the star bei g k o w with all esirable recisio o n p p accurate bserva t io o f the m o m e t o f the star s disappeara ce d t he posi t io gives a rela t io be tw ee the place o f t he m o the bserver T h e bservatio m y be available f of ccurate deter m i a t io o f the place f the m oo or it m y be se d f fi di g the lo gi tude o f the obser er i f co mpared w i t h the si m ilar observa t io a t a other sta t io f k ow lo gitu de Th follo w i g m ethod f calculati g the t i m e at w hich t he d isa ppeara ce or reappeara ce o f a occul t e d s t ar takes place is due to L agra ge a d B essel 12 6

Th e i n

.

ves

.

n

n

n

n on

n o

O

an

s

u

an

n

a

S

.

a

n

n

n



n

n

s

u

a

n

n

n

n

O

n

n

,

n



n

an

n

n

o

n

.

n

n

an

n

n

n

on

.

n

n

s

n

n

n

n

n

n

n

on

o

o

s

e

.

n

n



n

O

n

O

u

n

or

O

.

a

n

o

n

n

n

n

n

o

n

n

or

.

an

a

v

n

n

n

a

n

n

n

an

o

n

e

n

n

a

,

n

n

n

o

n

o

a

n

n

n

,

,

O

o

a



n

.

or

,

x

,

n

on

,

e

.

,

n

o

n

n

o

n

n

n

.

O CC

UL TAT IO NS

coordi ates cos 8 s i

Th e

n

x

o

f

t he

OF

S TA

RS

MO O N

TH E

BY

[O H

X V I II

oo re ferred to t he sa m e a es are cosec m ; g cos 8 cos cosec i 8 cosec m

n

x

'

n a

.

a

7r ,



s n

z

be the ra t io w hich the dista ce f the m oo fro m the observer bears t o its dis t a ce fro m t h ce tre o f the earth then will be the d is t a ce f the m oo fro m the place o f A cosec d t h e proj ectio n s o f this d ist ce observatio the t hree a es respecti ely are cosec A cos 8 cos A cos 8 s i cosec A S i 8 cosec w he n ce w e ob t ai A cos 8 i cos 8 si c sec c sec cos i ) S d p A cos 8 cos cos 8 cos cosec cosec cos S pc 8 cosec A i 8 cosec i si p w hich m a y be cha ged i to i cos 8 si cos i A cos 8 s i s S ) p d A cos 8 o cos 8 cos p cos 3 i n cos S If A

n



n

n ,

n

,

n

n

o

e

n

n

o

an

an

on

v

x



n a







a

n



n

n a





o

7r ,

a

7r ,

a





os

7r ,







a

s a

A si n 8

si n

M ulti plyi n g for m ulae

(i)

8

p

Si n



d )

s n 7r , s



,

7r ,

,

si n n

an

n

a



d 8

'

an

n

n

n

:





)

n

n



by A d eli m i ati g e pressio s jus t give we have A si 2 s i 9 cos 8 si ( a A ) si n (S si n cos d p A) A si 2 0 3 9 i 8 c o s D — cos 8 i D o s ( a D i cos D cos si cos S i c ( p p { p A cos 2 D + c s 8 6 0 8 D cos ( — A ) Si n 8 si D cos cos cos i n i si D S s b ( p t g { n

,

s n

7r ,



n







n



7 r,

n

s n c

s n 7 r,

s

7r,

o

n (



A)

c

s n

s n

0

,



n a



x

S n

n

n a

c



7r ,



S n

n



o

'

7r ,



S n a

'





n



A )}

a

n



A )}

by the

5 12 6]

OC C

ULTAT I O N S

ST A

OF

RS

B Y TH E

M O ON

hese for m ulae e able 2 d 9 to be d eter mi ed d are S ecially d a te d f the stu d y f occul t ati because at the b p p gi i g or the e d f occul t atio t he star is th m oo s li mb d we have 2 A the si e f t he m oo s se m i d ia m e t er varies i versely as i t dista ce we m ust have A i si d t here fore A i 2 si I t ro duci g thi i t o the equatio s ( ii ) we obtai the followi g re m arkabl e for m ulae t rue a t t h e m o m e t s occulted star f disa ppeara ce or rea ppeara ce f T

n

a

an

or

nn n

o

n

o

n r,

n

n

o

n r,, a n

s n r,

s

n

n

n

n

,

o

n

n

COS 8 si n ( a

9

-



n

n

si n r , si n

o

n

.

n

e





n

s

S n

on

n

s

n

e

ons

an

an

an

n

an

A)

cos p d si n (S A ) si c o s 9 = si 8c sD cos 8 i D cos ( A ) D Si i cos cos i D cos S A ) c ( )] d { p p It is plai t hat a d are co ected by t he c sta t relatio i r radius f t h/ a di s o f m oo Th e ra t io f the m oo s ra dius t that f t he earth is ter m ed l a d is equal to 0 2 7 2 5 T hus we have fro m ( iii) h si 9 cos 8 si ( A ) cosec A) p cos ps i ( S 8 si 8 cos D cos si D cos cosec 1 cos 9 A ( ) { } i D i 0 cos cos cos s A S ( { )} p p 3 Fi ally squari g d ad d i g we ob t ai t he f llowi g fu da w hich co tai t he theory o f t he ti m e f m m e n tal equa t io occ ltatio m e c e m t or e di g f cos A cosec i A 8 si a S ) ) ( p )} ( d { i i cos D cos D 8 8 s ( A ) } cosec [{ i i cos D cos s D A S ) }l ( p{ 3 t he t he o ly I f the coordi ates f the observer be give u k o wn i this equa t io is S t he ti m e T h solutio f t his equa t io f S w ill t here fore S how t he m o m e t f t he beg in i g or t he e d f occultatio T h e equa t io n f S is ecessarily a tra sce de tal equa t io f it has to re pr ese t all possi ble occul t a t io s i i fi i t e ti m e T apply it to y par t icular occulta t io we m us t a ppro i m ate m ethods L e t T b e n assu m ed ti m e very n ear the true ti m e T + t at which a certai occultatio takes place t is thus a s mall qua tity s i n 7r ,

n r,

n

o



n

r,





n

o

,

n

n

on

ear

r

n

n

n

u

.



o

o

.

n

n

6



a

n

s n c

n

en

n

n

n

an

o

s n ’

n

n

n

n



co

s n

s n



a

7r ,



C OS

n

n

an

n

or

n

o

n

o

n

n

n

,

e

.

or

o

co

2

o

n

n

n

n

co s

7r ,

s n

o

o

u



n

n

n

ns

n

n

7r ,

'

,

n



a



an

n

n

n

c

n

n

S n

nn

7r ,

o



a



s n

o

)

s n

s n

n 7r,



n

.

n

n

n

n

an

n

n

n

n

n

n

n

u se

x

a

n

n

,

or o

.

.

.

,

n

OCC

UL TA TI O N S

ST A

OF

RS

MO ON

B Y T HE

the ter m s f the equatio c be e pa de d co vergi g series f po w ers o f t W e hall m ake cos 8 si ( a A ) cosec p pt i A cos cos D cos cosec D 8 i 8 ) ( } q { d

an

o

n

n

an

n

o

x

[C H in

n

.

XV I II

a rapidly

.

S





n

7r ,

s n

s n

r co s



a



qt

qr ,



d s i n (S

D cos A cos D cos si S t ( ) } d { d I t is su ppose d that p q v are ca lculate d f the ti m e T a d f m t w are ter s i volvi g which e m y first assu m e the v p g appro i m ate value ero Th e equatio ( v ) the beco m es si n

r

)





,

,

u

n

)

,











n

,

z

x

,

u

v

or

a

.

n

k = {p

{q

2



p



q,

,

solu t io u

'

v

,

'

n

o

an

n

or

,

n

n

A

v

this w ill give t w hich we t he substitute i thus by re peati g the solu t io btai a m ore

f

ca n

,

d

n

n

accu rate value o f t For a co ve ie t solu t io

n

n

n

O

.

these equati s w e m ake — = =m i M ; si p p — =m = M eos v s v ; q q where m M N are four au iliary qua t ities k = (m s i M + i N t ) + ( m o M + n eos N t ) —m i — N M N m cos M t} ) { ( ( ) We w i tro duce a other au iliary qua ti ty d such tha t n

n

n

n

o

f

on

'

s n

u



u



'

co

,

n

,

x

n



no

n

,

2

s n

n

2

n s n

s

?

n

n

x

m si n (M

[0

c

2

2

n

2

n

n

Si n

2

d

z

m {

N)

n

=

k

d

cos

cos ( M

r

r,

.

N)

cos ( M — N ) 4 h si d W assu m e that d is less t ha d the t he u pper ig correspo ds t o t he d isa ppeara ce o f the star behi d the m oo a d the lo w er to i t s rea eara ce pp n

—m

t

e

n

n

r

n

r

.

an

S

n

n

n

n

n

n

n

,

.

m si n ( M

If

the d is i m agi ary d there is o occul tatio I n d ra wi g this co clusio i t woul d be pro per t re m e mber that further pp o i m a t io m y be ecessary t o d eci d e w hether t his co ditio is truly satisfied T e a m i e this we t ake f t i t s m ea value m cos ( M N ) / n

n

r

n

an

n

n

n

n

.

a

o

n

a

.

n

O

x

n

n

or

n

n

,

n

r

x

UL TA T I O N S

O CC

S TA

OF

RS

MO O N

B Y TH E

[C H

X V I II

.

a gle subte de d at the m oo s ce t re by t h e star d t h f d d m ole at the m o e ts isa eara ce rea eara ce is very p p p p p early The

n

n

n



n

o

n

an

an

n

e

n

n

18 0 — 9 = N i °

d

z

hus the ecessary for m ulae f solvi g the problem f a have bee b t ai ed o ccul t t io For co ve ie t m e t hods f co d ucti g the calculation s re fer w hich tables are give by e ce m y be m a d e to t h e e phe m eris i w hich the w ork is facili t a t e d 2 7 O t 1 90 9 t h d ecl i ati f th m 1 A t m i d i ght i E d d cl i ati f th m th e i crea i g i d th 4 36 very l o b y 2 3 0 d 164 re p ctively S h w that a tar i c j u cti with t h m at m i d i g ht ca t b ccul ted at ab ut t h tim i if th tar decl i ati i le th a 3 it b i g f thi c j u cti h m d h i ve th a t t m f m e i a m e t r d h r i t al arallax t i i p g T

or

n

n

n

a

n

o

n

.

o

n

n

n

o

n

n

n



n

a

n

n

.

x

°



e R A

an

.

m

e

R A

n

8

on

s

o

e

mo o n

s

on

s

e

o

o

e

s

s

oon

e

n

on

oon s s

o

n

o

e

o

oon

e

.

s

ss

e

o

n

.

an

s n

on

n

n

o

on

e

e

°

o

s

e n

zo n

s

i cli ati o

Th e

n

n

the

n of

o

1

tan

oon

n

n

n

s

s

n

or

-

R A

n

e

s

veme t f t h m i i 10m i m ve me t t t h h u r ci rcle i theref re n

o

a re

o



e

on

o

n n o



n

e

.

n

on

su

Th e m o ’



e

.

n

e

o on

n

n

c

an

.

an

e

.

.

on

n

.

.

64

°

e ce t h i e f t h d i ffere ce b etwe t h m dec l i ati d th tar at t h tim e f c j u cti m u t t ex c ed i c ec (64 0 251= i f th m rb it t t h ecl i ptic b 5 20 2 I f t h i c l i ati E h w th at t h m w ill at me ti m Oth er ccul t y tar wh e la itude rth uth i le th a 6 38 [C ll E xam ] th ecl i ptic wi ll b ccul ted b y t h m S h w th at a tar i E 3 tati d 2 2 ti m at ach pa ag f a t h ear th b etwee 1 7 m t rb it th r ugh t h tar A u me m i d iameter f m f th m d d 14 h r i tal parallax f m b t wee 61 18 d b tw 16 4 6 i cl i ati f rb it t ecl iptic b twee 5 19 d 4 53 [ M ath T rip ] ccul ted V e u I t w ta ted i E 4 O F b 2 9 18 8 4 t h m th at V e u w ul d b t h m er i d i a a t t h Ti m b i g p m th m the th re day l d d that t h ccu l tati w ul d la t ab ut h ur d a quarter Fi d r ugh l y wh it c mm e c ed d h w that t h tat me t t t h d urati f ccu l tati i t i c i t t w ith t h k w a gular d i amet er f t h m [ Math T ri p ] H



s

e

o

S n

e

n

on

o

e

s

n

n

x

S

s

o r so

x

e s

so

a

n o

e

e

on

o





e en

n

an

on o

n



oon s o

e

o

an

e s

o

e

s

ss

zo n

o

e

°

n

e

.

ss

oon

o on

e





n

.

n

e .

o

s O

n

,

.

s

n

es

e

as

e

n

.

,

o

e

e on

an

o

on o

e

o

o on

e

en

o

.

oon

e

,

an

on

o

n

o

o

n

n

,

an

on s s en

s

S

as

.

.

o

on

s n o

s

n

e

an

°

.

.

x

o

e

o

-

oon



.

e

se

o

t

os

o

es

.

'

°

e

an

e

n

o

o

e

o

an

s n

o

e



on

n



n

oon s o

oon s

e

e or

s

on

n o

e

o

°



e

'

n

ss

e

°

so

o

.

.

s

os

on

n

oon

e

o

n o

n

e

.

.

on

x

s n

en



.

,

o

o

e

n

oon

an

e

e

s

n o

e n

an

o

s

e

n

n

.

n

.

C H A PT E R XI X

.

I N V O LV I N G

PR OB L E M S

P

he

n o me n

a

T o fin d t h e

r i i g d etti m ea ti m e f r i i

of

an

s n

o

n

n

g

s n

g

s

SU N O R M O O N

or

s

etti

n

g

i i g d tti g f t h mo T w i l i g ht Th u dial f p i t th u urface C rd i ate R o tati f th m S u m er meth d f d t rm i i g t h p iti R

s n

e

an

o

n

se

e

of

th e

.

su n

on

n

s

s

n

oo

on

o



s

n

o n

o

e

s

n s

s

oon

e

o

on

s



o

e e

n n

os

e

on of

a hi p at s

se a

tt i n g Le t R ( Fig 94 ) be t he a t su rise a the first poi t o f L ibra where ER N is the hori o R t he ecliptic E the equator A E is the eas t erly poi t the equator produce d fo 12 7

.

Ph e n

o

.

me n

a O f r i si n

g

an

.

s

se

.

n

su n

z

,

d

n

n

,



,

A

,

n

,

r

P

INV O LV I N G S U N

MO O N

OR

[C H

XI X

.

the directio fro m A to E w ill reach the m eri d pro d uce d f a fur t her dista ce equal to S the si dereal d ia ti m e wil l reach T the first poi t o f A ries H e ce w e have 90

beyo d

ROB L EMS

°

E in

n

n

n

n

or

an

,

n

E

A

,

n

.

= 90 — S , °

lo gitu d e f the u is A d R A = 1 80 — A because A is f the arro w head a is the m easure d fro m T i the directio a i m uth f t he risi g s m easured fro m N t h e orth p i t f t he hori o i the usual direc t io by east d south P is the pole the altitu d e f t h T h d PN e pole above the hori o e p a gle at E be tw ee the equator a d the hori o is equal to e ith to the pole 90 — a as tha t is the d is t a ce fro m the is the i cli a t io o f the ecl i ptic to the hori o 180 — f t he ecli ptic a d w is t h e obliqui t y M a y questio s t hat c a be pro pose d w ith regar d t o the ri i g d setti g f the be solved by the tria gle E R A I f c d that n e f t he other w e assu m e that d d are give elem e ts f the tria gle is k o w t he re m ai i g elem e t s c n be deter m i ed T fi d the t i m e o f su rise or su se t w he the lo gitu d e A is give w e deduce fro m t he for m ula p 3 Th e

o

n

s

an

n

n

n

z

,

n

n

o

z

°

o

.

u n

an

n

n

an

(

n

°

n

n

n

o

su n

)

n

o

o

s n

an

an

n

n

a)

n

n

n

n

.

n

n

an

,

z

o

n

n

z

n

n

.

n

z

n

n

n

z

n

o

.

o

,

n

°

o n

n

,

n

an

,

.

o

o

n

,

n

n

a

.

n

n

n

n

n

n

.

,

O

his equatio m y be pu t i t t he for m i w he ce S B A or S 18 0 B A o e o f which corres po ds t o t he i si g d the other to t he setti g I f t here be a s m all cha ge AA i the su s lo gi t u d e A t here w ill be a corresp di g cha ge AS i the si d ereal t im e f su rise or su se t Th rela t io betwee AA d AS is ob t ai e d by d if fe e t i t i g t his equatio w hile regardi g d p as co s t a t w e t hus fi d si A ( s i A cos S cos w cos A si S ) A S s S AA but fro m the t ria gle E R A w e have at o ce cos A si S si n a si A cos S cos w he ce cos S c o Se c A cosec AA AS lso cos S cosec A si s ize s i n

co s

x

,

¢ co s 8 co s 9

,

subtracti g n

cos (pc o s 8 cos ( 9 + 4 ) cos gx 3 2 cos 4) cos 8 i ( 9 cos i ) 4 5 m l t i plyi g t he first by i 4 the d the seco d by cos 4 squari g d a ddi g w e eli mi a t e 9 d ob t ai 2 i < i cos si c z x ( cos 5 1 3 cos 96 cos 8 si cos z

2

i

s in

s n

8

2

x

z

u

n

n

z

z,

ns , a n

0 = si n

addi g a

n

n

_

n

n

)

.

o

n

s n

an

S n

s n

n

) s n

x

an

n

,

n

2

x

x

os

,

s n

x,

n

an



-

2

x,

n

1

2

2

n

"

x

n

RO B LEMS

P

1 31

Th e

.

su n

di a l

-

IN

V O L V IN G

SU N

MO O N

OR

[O H

.

XI X

.

We m y su pp se t hat the place f t he t he celestial 2 4 hour s sphere d e t cha ge a ppreciably i d a pla e t hrough t he earth s a is d t he w ill i t ersec t t he terres t rial equa t r i tw o poi ts w hich m ove u i for mly rou d the equa t or i i co seque ce o f the su a ppare t diur al rota t io I like m a er we e t ha t i f a post were fi ed per pen dicularly i to t he earth a t the orth pole S as to be coi ci de t with the ear t h s a is its hadow woul d m ove u i for m ly rou d the hori z o so that the posi t io f the n d t here fore the appare t tim e w oul d be i dica t ed by t he poi t i w hich the sha d o w crossed a u i for mly grad ated circle with its ce tre i the axis f the d its pla e perpe dicular t o the earth s a xis T hus w e pos t have the con ce pt io o f the s dial A S t h di m e s i o f the ear t h are so i co si d erable i c o m we m y say that i f a t y pariso t t he dis t a ce f the s poi t f the ear t h s sur face a pos t or ty l e as i t is calle d be fi x e d s n arallel to the earth s a is t he shadow f t he style cast b the o p y i its daily m otio o a plan e per pe dicular to t h e t yle w ill m ove rou d u i for m ly d by sui t able gra d ua t io will ho w the appare t tim e Th hour li es the dial are t o be draw a t equal i tervals f T h i cli a t io equals the lati f t he style to the hori t ude d t he i li a t io f the d ial to the hori o is t he colatitude T hus w e have what is k ow as the e q t o i l s dial While the style is always parallel t o t he earth s a is the pla e o f t he dial m y be arra ge d i d i ffere t posi t io s hori o tal ver t ical or o t herwi e Th grad ua t io o f t h d ial is u i for m o ly i the equatorial s d ial d we have w to c sider the gradua tio f the dial w he otherwise d lace so that the sha do w f t he p s tyle shall i dicate the appare t t ime S u ppose tha t t he pole f the F m 96 f la e t he d ial is t t h e poi t p O f t he celes t ial phere f which the or t h polar d ista ce is p d west hour a gle 10 a

o

o

o

s

n o

o

r

x

n



n n

x

su

o

,

n

an

,

n

n

n

n

n

n

n

,

n

n

O

S

n

.

x

n



n

n

se

n

n

n

n

n s

an

n

n

n

n

,

su n

an

n

n

on

n

n



su n

o

n

n

u



an

n

n

.

n

u n

-

.

'

e

n

n

n

ns

o

n

n

n

n

x

an

u

s

n

n

S

n

n

n

on

n

e

,

,

n

e

n

n

n

nc

n

n o

zo n

o

z

n

n

u a

r a

n

.

u n

-

.



a

n

n

n

,

n

u n

n

-

,

n

an

on

o

n

n

e

.

e

n o

x

n

n

z

,

s

,

n

an

,

s

an

,

o

,

a

,

,



.

u n

o

n

n



o

n

n

o

n

o

n

n

.

o

n

o

a

o

an

.

n

s

n

.

o

.

n

n

§

1 31]

P

( Fig

RO B L EMS

S UN

I NV O L V ING

OR

MO O N

be the or t h celes t ial pole P Z the m eri dia P P the hour circle co tai i g the s S H the pl e f the d ial T h e poi t S is calle d the s bs tyle d PS 90 p is t he he i g ht h t t e t l T h hour li e corres o d i g the hour circle P P e e f y p is give n by H w here O H T gra duate t he dial we require t o k o w t he arc S H = 9 cor es po di g t each solar hour a gle h P ro d uce H P t o P so that H P = P m ust be a right a gle because OH 90 a d co seque tly cos p t ( h k) t 9 ( i) As p d k are k o w n this equa t io gives the value f 9 = S H f each value f h T m ark the hour li n es articular i stru m e by t p y observa t io we proceed a s follows It is su m e d that t here is ordi ary gr d uatio n fro m 0 to 360 the d ial the ce t re o f graduatio bei g t he poi t i w hich t he s tyle m eets the pla e o f the dial d t h origi fro m which t he a gles are me asured bei g the li e through this poi t d S t he ubs tyle I t is also assu m ed t hat p is a k ow a gle W h e t he n has a k o w hour a gle h le t the observed posi t io o f t he shado w be d we have t 9 cos p t ( h I ) We t hus fi d k d co seque t ly f each value f h we co mpute fro m ( i ) t he correspo di g val ue f 9 T hus the s m f o e t the hour a gle t he or t he m d ial w ill sho w at y a ppare t ti m e d by applica t io o f the equatio f t i m e the m ea n ti m e is ascertai n ed d ial m ost u ually see is t he o called hori T h e for m o f s n dial i n w hich as t he d ial is to be hori o tal 0 m ust on t l coi cid e w i t h the e i t h Z ; we thus have 1 0 d Le t P

96)

.

n

n

,

,



n

n

o

u n

n n

n

.

o

.

°

an

u

s

an

,

n

n



o

:

o

n

r

n

n



n

o



.



°

n

n

n

,

n

an

an

an

n

n

or

o

on

an

n

as

°

a

n

n

an

n

e

°

on

n

n

n

n

n

n

,

n

n

n

n

n

.

n

n

o

.

o

an

.

s

an

n

n

.

n

.

su

n

n

n

,,

an

an

,

an

n

o

or

o

n

un

o

su n

n

n

an

ca n

.

n

n

an

,

t

,

n

n

n

n

an

o

.

u n

a

z

su

s

-

z

-

,

z

n

0

n

PZ

p

where

d)

s

n

is t he latitude

T

.

90

°

n

,

an

d)

,

hus the equa t io

tan 9

,

-

an h t 5

si n (

(i)

n

beco mes

.

l a s t hour li es t hat ee d be d ra w the d ial are those correspo di g to t he case w here t he s reaches t he hori o whe its d ecli ati is greatest I this case i f h be the hour a gle cos ( 18 0 h ) t n t ( 2 3 Th e

n

n

n

n

n

z

u n

n

on

on



n

.



a

an

n

n

°

n

396

P

RO B LE M S

INVO L

VI NG

SUN

M OO N

OR

[O H

.

x 1x

whe the value f h thus obtai ed is substitute d f h i ( i ) w e O btai 9 e tre m e t y pe f s d ial ? is that i w hich t he dial is A n d the s t yle is parallel t o t he m eri d ia xis but arallel to the earth s a the ot i p h la e f t dial e p L t P Z P ( Fig 97 ) be t he dial parallel t o the pla e f t h e m eridia A B is a t hi recta gle s t a di g per pe dicular to the f la e a er w hich t he u er o f the a d p pp p p e dge A B parallel to t he terrestrial a is P P is the style T h e s n i the diur al F 97 m otio m y be su ppose d to be carried by a pla e rotati g u i form ly rou d A B d he ce t he sha do w A B f t h e e dge A B w ill a l w ays be parallel to A B d at let us say t he dista ce W he the n is i the m eridian is i fi ite W he n t he su s hour a gle is 6 the I ge eral i f d be 0 the height o f t he s tyle above t he dial ’

o

n

n

n

or

n

.

o

x

n

u n

n

,

n

-

a



o

n

n

n

.



e

.

n

n

o

n

n

n

n

n

,

n

o

n

,

x

,



u

.

,

n

n

IG

n

.

.

a

n

n

n

n

n

an

,



O

an

n

93

n

.



su

n

n

co

n

a:

x

n

=d

x

,

,

n

h

:

n

.

'

n

.

n

t h,

here h is t he su s hour a gle Fro m t his equatio n t he value o f wf each value o f h be fou d E 1 Sh w h w t c truct a d i al f which t h d i al h al l b vertical d faci g d uth d i which t h tyle i d i rected t t h uth p le T hi m y b b t a i ed a partic l ar ca e f t h g eral th e r y b y m aki g I = 0 p = pi qua ti (i ) d irectly f ll w th h ri L t S ( F i g 98 ) b t h p i t d uth N t h adi r P t h uth p le P H th h ur ci rcle c ta i i g t h th e fr m t h t r i a gle N B E w h ave ’

W

n

n

or

ca n

x

o

o

.

.

an

s

n

s

a

e

en

on

e

so

o

o

e

o



n

s

u

<

,

o

n e

.

o n



,

n n

on

e

.

c

e

n

e

s

e

o

-

n

o

s

e

,

an

,

as

n

.

e

so

as

.

su n

n

or

so

e

u e

O

n

ons

o

e

u e

o

o

s

e

.

e

so

e

su n

o

e

on

zo n ’

o

,

o

n

,

e

ta n NH = c o s < 1) t a n h

.

F IG

98

r ve that y d ial b graduat d b y t h f ll w i g r u l L t T b t h ti m e a t which t h h ad w f t h tyle w r mally the d i c t h t h cel ti al ph ere f pr j cted th rmal t t h d i c the t h mark f ti m e T i i cl i ed t t h mark f ti me T at a gle — t t ( T T )} { [ C ll E xam ] x mpl f thi k i d f di l u t W i mb r M i t r 1 A Ex 2 .

e

as e

.

o

P

o

o

an

n

e

e

n o

o e

n o

o

s

ca n

-

°

s

n

,

e

,

e

to

N P D .

.

.

or

e

on s

n

s

o

e

es

n

s

e

o

s

or

e

o

1

c o s a)

an

O

o

e

o

n

an

n

.

e

e

e

e

o

on

e

an

O

su n

.

a

e o

s

n

o

su n

-

a

o cc

rs a

o

n e

.

.

n s e

.

3 98

P

R OB L E MS

IN V O LV I N G S U N

MOO N

OR

[

OH

x 1x

.

rotatio i tersects t h e su s sur face i a great circle k o wn as t h e P oi t s t he su sur face are said t o have helio to eq so l graphic lati t u d e d lo gitu d e w i t h re fere ce t o t he solar equator T h e heliographic latitu d e o f a sol r poi t S is the perpe dicular d the l gi t u d e O f S is the fro m S to the solar equator a e fro m a s t a dard poi t 0 the solar equa t or t o the foot f the er e dicular p p I Fig 99 ON is t h sectio o f t he sur face o f the s by n

n

n

r

u a

ar



n

.

n



on

an

n

n s

n

n

a

n

an

re

.

n

on

ar



n

n

n

on

o

.

n

e

.

n

FIG

t he

u n

99

.

.

la e w here the oi which t he O f t he ecli ptic i t i 0 p p s sur face is m e t by the li e fro m t he su s ce tre to P a d su t he lo gitu des i crease i the d irectio show by the arro w he d O N is t he solar eq ator a d N is the asce d i g o d e o f the solar equator t he ecliptic T his poi t re m ai s fi e d i t he la e f the ecli t ic because the su s equator has reco is ble o n p p g f precessio T h e lo gitude H m o t io f N m easure d the ecl i ptic fro m 0 the equi o o f 1 9090 is 7 4 A s t he s is d there for e ca t a Soli d bo dy ot have a per m a en t G ree w ich resor t is m ade to a s pecial m etho d f i dicati g the poi t lo gitudes Th e poi t 0 w hich is a d pt e d as the origi o f s o l f t he solar equa t or 0 is d efi e d to be t h particular poi t w hich happe e d to be passi g throu g h N t G ree w ich m ea oo 18 5 4 B y t he rota t io f the l t J 0 is carrie d t o w ar ds N w i t h a u i for m m otio w hich would bri g it rou d t he circu mfere ce i 2 5 3 8 d ay Th solar equator is i cli e d to t he eclipti at t he a gle 90 — xh = 7 T h e coor di ates 3 7x are the la t itu d e a d lo gitu d e f a poi t P t he su s sur face wi t h respec t to ON d m eas red fro m t he origi 0 I like m a n er h B are t he heliographic coordi ate f P w ith res pect to O N d m easure d fro m t he origi O n

n

s

'

,

n

n





n

n

n

n



n

n

u

n

n

a

.

n

x

n

n

.

n

-

n

on

'

n

n

n



n

n

o

n

n

o

n

.

n

u n

nn

or

o

n



n

n

on

an

s

a

n

.

.

n

n

s

c

n

on

n

n

o

.

n

°

n

.

o



n ’

n

n



su n

n

e

°

n

n

o

u



n

,

an

n

n

an



.

n

n

,

n

n

n

n

n

o

n

n

n

n

ar

e

n

n

n

,

n

on

x





a

o

an

n o

n

n



.

s

P

RO B L EM S

IN

V O LV I NG

From the ge eral for m ulae

o

n

si n

8



MO ON

OR

tra s for m a t io

f

n



fi B l H) c o s B cos ( X s i n B cos \ [r + cos 8 s i n xr

Si n

,

S UN

q

co s

co s

12 ,

we have

i

t —

n,

H)

O

r s n

cos 8 cos ( N M ) —M i s i X H) cos 8 i ) { ( the heli graphic lati t u de n d lo gi t u d e usually T o O btai ter me d D d L O f t he a ppare t ce t re f t he su s d i sc we sub ti t ute fo B 7x i t he equa t io s j us t fou d the values 0 d we 180 (D w here G) is t he geoce tric lo gi t u de f t he su have cos 4 si ( G) i D — cos ® — H —M L s D ) ( ) ( —



,



s n

,

an

n

,

r

s

n

n

°

n

n



s n



n

n

,

,

o

n

n

,

n

r

a

o

n

s n

,

o

n

an

n

co s

co

i n ( L — M)

co s



H)

ro m whi h D L t h require d he l iogr phic coordi ates o f the ce tre O f the su s d i c be O btai e d wi t hou t a mbigui ty W e w seek the e pressio f c o P where P is the e o or t h er m os t poi t f t he disc d t h e su s l i m b be t wee n t he t he proj ec t io o f the solar a xis t he pl e o f t he disc d latitu d e f S the ole f the su equator Th l gitu d e the celestial Sph ere are fou d by m aki g ) = O B = 90 i ( i ) = t ha t fro m which we T h e solu t io B l is f course rejec t e d because ‘i 8 2 4 5 d B :l 3 18 0 d l a t itu d e f E th e ole O f t he earth s equa t or T h lo gi t u d e t he celes t ial sphere are give by X = 90 B = 90 — w Th e lo gi t ude d la t i t u d e f T the helioce tric posi t i f the ear t h are give by 7t = 1 8 0 G) w here (D is t h su s geoce tric lo gitu d e The P t he a gle require d i equal t o Z S TE T o btai t he e pressio f it we have

f

c

a

e

,

n

n



s

n

n

ca n

x

n o

n



or

n

.

ar

s

n

n

on

n

.

n

n

on

n

e

t

o

on

n

or

co s

ET

co s

cos xj

— si n

z

w si n

cos H

i

r s n (0

(9 ;

,

n

S n

.

co s

( cos

n

.

substi t u t i g i cos P ( cos E S cos S T cos E T)/ i w e have n



s

alr s i n ( CD — H ) ; cos E S si n «1» cos a)

ST =

n

e

n

x

n

d

.

,

n

n

>

°

,

.

an

°

°

co s

an



n

o

n

O

n



n

an

n

.



o

°

,

°

on

n



«r

an

n

n s



n

o

:



o

se e

°

n

an

o

an

O

an

on

e

n

2

m si n

i

2 2 (0 4 s n (0

l

xr

cos

s i n w s i n xr c o

l

si n

2

sG

{

2

+

c OS

l

xf

.

si n

ET

,

cos ( ® H ) cos ] cos ( CD H ) li

— s i n w c o s xr c o s

l

ST

m co s

®

-

2

l

x;

xr c o s

2





H)

3

P

RO B LE M S

I NV O LV I N G

MOON

SUN O R

[C PL

XI X

sho w that the egative sig shoul d be attribute d t o si n P it su ffices to take the case o f i G) It is t he obvious that the positio a gle P m ust be but this w oul d o t be the case u less the radical i the e x pressio f i P h d a egative S ign i n P m y be w ri t te i the for m f cos ( C A D h ) w here f is egative qua t ity d where h is i d epe de t o f G) it is easily show tha t P is positive fo hal f t he year ( fro m J uly 7 to egative f the re m ai i g hal f Th m axi m u m 5) d Ja d the m i i mu m is value f P is O ctober 8 A pril 6 o I t i requi red t fi d t h val ue f P J ul y 1 5 th 190 9 fr m th e E 1 f ll w i g data To

n

n

«f

n

n

n

n

to ,

n

n

n

o

s n

a

n

.

a

s s

n

n

an

.

or

n

n

n

e

.

an

n

.

x

o

n

on

o

n

n

on e

r

n

n

a

an

n

n

n

.

o

o

s

.

e

n

O

on

o

n

It i ea y t

that s i

o se e

s

s

cos

0) c o s i

= sz

n a) s i n

H)

( 6) t 2 2 2 o s c o s s i n xlf + c (9 dz co s

= 112 °

°

¢

m= 2 3

°

4:

co s

6)

H = 74

°

l 4 99 1

°

i 8 6446 ; (9 H ) 9 9400 wh c e th autical al ma ac t h e val ue f P a s well

0 9 14 4 ;

co s

2

a) + s n

2

n)

co s

2



en

,

app d i x t ther elem e t D L f th f th which pa ed thr ugh t h a ce di g Th m er id i a 2 E cli ptic f t h u equat r 18 5 4 J 1 G ree w ich m ea th de th r m erid ia f phy ical b ervati i th d h el i m ea u red fr m thi er merid ia d h el i graphic g raphic l g itu d latitude fr m t h lar equat r A um i g th at t h de rem ai fixed 190 9 J u l y 1 5 i f t h peri d d term i e i t h l i graphic l g itud at day u r tati b f th m ea Fr m mea 18 5 4 J 1 t 190 9 J u l y 1 5 i i terval f 2 02 8 3 day ( 1900 i t a l ap year) B y d ivi di g 2 02 83 b y 2 5 3 8 u m b er f r ta ti f th Th r meri dia 7 99 1 7 2 5 8 w b ta i t h th eref r adva ced l 72 5 8 f a c mplete rev l uti b y d t h de i h H e ce t h h eli graphic l g itu d f th de f t h 1 72 5 8 360 62 lar equat r t h ecl iptic i We x

no

on

e

e

s

e

ze

,

n

e



e s

n s

e o

o

s

an

o

°

o

so

e

on

fir t p s

l

itu e i t ri e

o n

Ex 3 .

d g of A

on

It i s

.

of

s

n

su n

an

an

n

o

o

n o

n s

e

,

n oon

o

on

s

e su n

e ze

.

o

e

an

n

.

o

o

e

on

o

on

n

e no

e o

on

°

52 3

a ce d i

t he

s

n

i s 74

( 1909 0 )

required t

a maxi mu m D i ffere ti ati g t h re ul t t er where is

n

e n o

,

.

e

.

e

o

s

360

Th e

e

n

e

on

n

o

.

o

°

n

n

,

e

s

.

on s o

°

n

e

x

o

.

o

n

n oon

s n o

o

e

on

on s

z

ss

.

an

s

s

e

on

e n

o

o

s

n

as

s

e

O

n

s

o

on

o

on

n oon

n

o

s o

ss

n s

so

on

o

n

su n

or

o

e

n



s

n

o

s

e

e

o

o

n

e

o

e s a re

s

e

.

,

e

.

.

o

s

n

on

o

en

e o

as o

n oon

fin d i n t h e

n

d

n o

e me ured as

on

ecl iptic fr

the

o

m the

°

fin d

o

g

.

whe

n

t h e po s

iti

on

a gl n

e

P

of

the

s

u



n s

ax i

s

.

n

e

s

n

o

z

o,

th e we

A=s B=

{

i

expre i f i P with regard t G) h ave f t h determi ati f l t h equati ss o n or

n (e c o s

si n

d

/ co s

or

s n

e

n

-

N

+(

co s

2

m+ s i n 2

on o

H ) c o s (9 — C OS -

z

an

o

w c o s2

H )} S l a (9 ) s i n

e

d

eq uati

A B = O,

cos

qr

i

—H @ (

(9

) S i n g/

g

on

w s i n xx, O S a) s i n

n

.

P

RO B L E M S

INVOL

VI NG

SU N

OR

MOO N

( OH

x 1x

.

the t erres t rial equa t or d A t he arc f the m oo equa t r de the ear t h s equa t or t o i t s asce di g fro m i t s asce di g od e t he ecli pt ic 83 is as u ual t he lo gi t ude f t he a ce di g the eclipt ic d e f t he m oo s orbi t

on

an

,

n

n o

n

on

n



o

n s

o



on

s

.

n

o

s

n

n

n

n



n

o

n o

on

.

FIG

( Fig

100

.

.

is t h ver al equi o N is the asce di g o de f t he m oo orbi t t he ecli ptic l N d th ere f re by L w 3 the desce di g o d e o f t he m o s equator H N d as A is m easure d fro m H t o t he asce di g o de w e have T

.

10 0)



n

n

e

‘‘

on

n s

x,

n

an

O

n

n

a

o



n

n

n

o

n

n

n

n

HN

A

m d 2 3 2 7 4 herical t ria gle have the values I p o f the t i m e give d 1 3 2 6 respe t ively 82 i a fu ctio t he ephe m eris f i tervals f t d ays t hroughout the year i each val ue o f 9 t he qua t i t ies f A 83 are co mputed by t h e F f llowi g for m ulae cos i cos cos 1 + si w s i I c 88

In

this

an

,

°

an



an

n

s



c

or

s

,

.

n

en

n

,





n

n

O

n

or

n

°

i

.



,

,

n

o

si n

i

si n

Si n

i

co s

A = — si n

'

A=

co s si n

'

Si n z c o s

sa

n

n

co





I — Si n

I s i n 88 ,

co s

I

w co s

si n a

m — S in I

si n

I

co s

83

I

co s

83 ,

co s w c o s

.

88

.

i de pe d e t d i dee d the first B t the firs t t hree e able a d A

n ot .

+

si n

si n

,

£3 ,

cos cos I



hese equatio s are four t h are i d e t ical

T

si n

c o s w si n

t

i s i n sa

co

os

n

n

a

n

u

n

n

an

n

an

n

n

d

to

1 33 1 34 ]

P

-

RO B LE MS

MO O N

SU N O R

I N V O LV IN G

be fou d wi t hout a mbigui t y d t he last three i like m a er give d 83 d t he c i ci d e ce f the t wo values f : thus i d epe de tly fou d provide a use ful check o the accuracy o f the work f the m oo coi ci d es wi t h t ha t f A t he period o f ro t a t io its rev lu t i rou d t he ear t h t he m oo kee ps early t he sa me face to the ear t h O wi g however to the i cli a t io o f the d t o other circu m sta ce c o m oo s equator t o the ecli ptic a certai m argi rou d t h e m oo li m b t d w ith i t s m oti occ sio ally passes out f vie w d a corres po di g m argi o other side co m es i t o view T his phe o m e o is k ow as th the li b ti o f the m o a ce d i g d e 1 E O S ept 2 8 h 1 908 t h l g itu de f t h m f th m eq uat r t t h earth d et r m i e t h i cl i ati i 70 de f t h m equat r t h equat r t h t rre f th a c di g t rial equat r d t h fr m t h a c d i g de t h ear th eq uat r t t h e cl i ptic de di g t hé a c W b tai fr m t h ab ve f r m ulae n

an



'

an

z

n

n

an

n

o

n

n

o

n

o

s

n

nn

7

n

.

n

s

o

o

n

n



on

n ec e

n

.

°

e

o

R A

e

,

.

en

.

n

e O

are

e

o

o

.

S

.

urface f t h Fr m th o

o

o

in A

an

B 0 = 1 32 eq

ua t r o

Sh



oon s



oon s

oon s

n o

n

n

o



e

s

o

o

on

n

n o



e

on

s

e

e

s



e

s

o

o

s



e

o

s

o

on

o

e

oon s

o

.

e n o es

oon s s

on

e

on



e



oo n s

ons

nes

e

on

e

n

s

e

n o

e

e

as

an

n o

e

n

e

e e

.

n

e o

oon

o

an

s o

ss n



o

s

so

o



e

oon s

.

1 34 a

n

°

o

a

e

e o

en

s

o

oon s

d B

°

n

o

m the

o



e



n

n

law f Ca i i that t h le th m equat r m y b b tai ed b y t h f ll wi g c tructi m c tr f t h m r gard d a ph ere d ra w l i t t h l rb it d f t h cl iptic d l t th m meet t h m u rface re pecti vel y Pr d uce t h arc A B b ey d B t C that le t h m u rface f t h m T he 0 i th o

e

f t h e mo o n

o

h w fr

n

.

A = 25 4

Ex 2

n

n

e

e

s en

e

o

e

o

n

O

n o

n

e

on

no

n

on

n

n

s en

e

o

an

o

e

n s

n

on

e

n

n

.

t

.

n

.

on

on

ra

s



an

n

.

n

o

e

s

n

n

n

n

a

s

n

an

n

s

n

n

.

x

o

n

n

on

n

u

S mn

.

ip

at

se a

m e th o d



er s

o

f

de

te r m i n i n g

th

t

po s i i o n

e

o

f

.

ro m t he ce t re f t he earth a li e be d ra wn to wards the ce t re f the the li e w ill cut t he earth s ur face i w ha t is k w as the bs la po i t T hus t here is a t every m o m e t a subsolar poi t so m ewhere T his is t he o ly po t the earth a t w hi h the s is a t t ha t mo m e t i t he e i t h Th geoce tric la t i t ude f t h subsolar poi t is bviou ly t he decli a t io o f t he t wa ds i T h e lo gitu d e f the subsolar poi t m easure d s f o m G ree wich i 24 — ( a ppare t ti m e at G ree wich ) L t us su ppose t he ear t h to be a phere w i t h ce tre E i t t d pt w h r d i g th c ti u u m ur ft 1 It i Th w d fr m G r w ich rth p l i th m t f t rr t i l l g it d l f t h c y gr du ti f t h qu t r t hr ugh ut th ci cu mf r c th If f

n

n

O



su n

o

n

o

su

n

n o

r

n

n

.

s

en

e

.

n

n

n

e as

n

n

s o

o

e n o e o

e

en

co n ve n e n

es r a e n e

on

e s s ar

u

o a

as

o

e s east

a

a

ar

on o

e a re o

e e

e

e

a o

e

on

e

.

o

r

n

o n

een

'

.

S

e



n

n

h

,

on

s

o

n

S

z

O

n

n

r

n

n

e

.

n

n

.

o

n

,

u n

c

u n

s

n

o

n

o

n o

e

s

eas

o e

r

e

e

s

en

2 6— 2

en

e

.

40 4

P

R O B L EM S

IN

V O L V I NG

MO O N

SU N O R

[C H

.

x 1x

L E t Fig eglect the su s aralla S be t he d 1 1 0 p ) ( d P t he sub f the s d irectio s lar poi t L e t 0 be the posi t io bserver who sees t he s i f t he direc t io OS parallel to E S d a t t he al t itu d e l = A H OS t he l d w e see t ha t A OE P = 9 0 the altitu d e o f t he s is t he c o m f le e t m O f t he a gular dis t a ce p t he bserver fro m t he i b l p i t Whe ever alti t u d e l f t he 101 F is observe d t he observer k ows t ha t h e m us t be situa t e d a t t hat m o m e t o t he circu m fere ce f a s mall circle f the e rth d escribe d arou d t he subsolar poi t w ith t he ra dius 90 — l If t he observer k ow t he G ree wich t m e d t he solar d e c li a t io he k ows t he geographical posi t io f t he subsolar poi t d c o se que t ly he a d raw o s t ereogra phic char t 2 3) t he circu m fere ce O f a circle w hich his positio m us t lie O f c urse the bserver w ill already k ow his posi t i appro i m ately a d he e he will o t eed m ore t ha a very s m all arc which is prac t ically a straight li e d is calle d t he S u m er li e a fter t h i ve t or f this m etho d Thu a Si gle observatio O f t he su s al t i t de e ables t he m ari er t o rule a shor t li e his chart w hich passes through his actual T h m osi t io ob t ai t ha t osi t io u t re eat the observa t io e p p p w he t he is at a di ff ere t altitu d e som e hours later H the dra w a other S u m er li e a d t he i n t ersec t io o f the two li es will give his actual positio I t his w e have assu m e d t hat t h po i t io o f t he O bserver h s t cha ged be t wee the t w o bserva t io s If he has bee i m otio d k ows t he course h e h d t he u m ber f t ake m iles he procee ds as follow T ake y poi t A the fi rs t S u m er li e d set ff char t a poi t B so t ha t A B th re pre e ts both i m ag i t u d e d directio t he dista ce T hrough B d raw a parallel to t he origi al S u m er li e the t he shi p mus t lie a t t he ti m e f t he seco d o b erva t io so m ewhere t hat parallel Th e i t ersec t io f this parallel wi t h the seco d S u m er li e gives t he p i t io f t he hi p at the ti m e f t he seco d b erva t io n

o

an

o

x

e

.

an

u n

o

n

n

n

an

.



n

.

u n

O

n

'

an

n

'

n

,

°

an

-

,

u n

Sl

O

so a r

o n

o

an

n

O

n

n

n

.

su n

IG .

.

n

n

n

n

a

o

n

n

°

an

n

o

n

s

n

.

i

n

n

n

n

an

n

n

ca n

n

n

n

x

n

,

on

O

o

.

on

n

n

n c

n

n

n

n

e

n

n

n

n

n

e

n

an

s

n

n

n

an

n

O

on

n

an

n

an

.

n

n

n

n

o

s

os

n

.

n

n

s

n

ru n

n

O

n

,

n

n o

n

.

o

on

n

n

on

n

n

an

o

n

n

e

n

n

a

.

as

s

n

n

s

O

ru n

ca n

.

n

n

e

n

n

n

n

n

s

.

n

n o

n

n

u

s

.

n

n

n

O

n

su n

n



n

o

.

n

n

n

an

,

on

n

n

o

n

s

o

.

P

R O B LE M S

IN

V O L V IN G

S UN

re pecti vely S h w that t h we t l g itude = b t w h re x ceed t é ( A ) y j 1 x d h au xi l i ary a gle g i ve b y s

22

s

e

n

are

(i) ( ii ) ( iii ) (i v )

co

e

s

e

co

( ),

0 2

a l

an

z,

o

.

s

t A= c o t 8

co s

9 = c O S 8 si n

ta n

a

ta

co s z= co s

5 (a l 1; ( a l

a , ( z,

n

the p

co t x

co s

i

si n

li

[

OH

e

c

o

f

Ob s

c

a:

o se

.

x 1x

ervati

ta n

2,

on

an

d

n

sin

=

lac

Of

on

b d > bm Th e W c d iti th at t h rb it h uld cha ge fr m c cave t c ex with ut retr gradi g i th at t h rad iu f curvat re h uld pa th r ugh t h val u T hi c d iti O that t h rel a ti giv an

d

s

o

e

on

s

s

x

o

n

on

e

e se e

o

s

o

x

e

on

on

o

e

e

u n

o

s

s

a

a

= 38 7 b /

Ex

.

2

S

a

en

S

su n

e

o

an



s

oo n s

e

e

.

o

s n

n

o

O

s

s

n

o

on

u

on

on

es u s

(

mzb )

h u ld th eref re req ui r o

o

o

e

o

e

on

.

m2 > a /b

e

.

l)

m b)

(a

ss

e

a

on v

o

o

s

3 2 2 m b a b m + + ( + l ) c o s (m a b

a

an

a

where

B u t m2 < 169,

.

as

.

19

re i

> mb w e

e

,

0> n

o

o

e

a

o

an

e

.

o

.

Si ce

n

n no

or

co

e

.

s

n

o

e

n

e

n

s

o n

s

.

.

e

n

.

A

all t ll ite i cl i p ed at very which i t rb it grea te t i cl i ati

s

m

sa

e

s

s

e

e

O ppo s

iti

an

ex

ecl iptic [ Math T ri p ] i i T h ex pre i wher t h d i a me t r ( / ) i {( d d R d i ta ce f atell ite d f arth fr m t h earth h w tha t t h b u dary E 20 If t h m b t re t d ph er i dal f t h i ll um i at d p rt i e fr m t h e rth i c mp ed f t w em i ell i p e eglecti g t h parallaxe f t h arth d v iewed fr m t h atelli te [ C ll E xam ] It frequ tly happ that t h ti me fr m w t f ll m E 21 x ceed t h ti me fr m that full m t t h f ll wi g w m b y a d y d h w th at it i ad eq uate h av i g E xplai t h chi ef cau e f thi m re m ax i m u m d m i i mum appare t d i am t r i pp g i ve th at t h d 29 5 m at l y 33 [ Math T r i p I ] fo r t h e

ss o n

p

s

n

n

on

s o

ha

ca n

v

fin d

on :

t o t he

e

.

.

.

ss o n

e

o

an

e

x

.

s

a r

s

oo n

e

s, n

1

r,

e

n

s

an

.

e

o

su n

s s n

"

o

on

s n

n

e

s o

a

s en

e

1

s

e a

s

as

an

s

o

e

n



o

e

s o

e

su n s

,

a

s

an

e

,

o

o

o

su n

.

os

s

e

o

o

e

n

.

e

oon

e

s

an

e

n



e ns

en

an

.

O

e

o

s, a n

n

e

o

o

s

o

n

o

ne

n

o

as

s

o

.

e

.

o

oo n

u

oo n

a

s

n

o

o

ne

e e

.

a re

ro x

a

.

or

n

,

s

s

.

e

o

.

e

e

.

x

e

s a re

.

PL AN ET A

RY P H E NO M E NA

reat t d i ffer ce d t t h latu r ctum f t h m i E 22 G i ve that t h per i d ic arth fi d r ughl y wh at ti me f th ext ract fr m al ma ac Fi r t m th Ve u i ev N ex t m th V e u i t cl The g o n th e

s

s

x

.

o

u e

en

es

o

e

e e

n

,

o

s

.

n

oo n s o

e

o

e

e su n

n

n

.

o

o

xx

.

ecce tricity wi ll b f u d wh e t h rb i t ti m e f Ve i earl y t w thi rd th at f y ear i i d icat d i th e e c ecutiv

e



e

n

.

o

[OH

o

o

n u s

s

s n

o

e

n

n

s

-

s

on s

e

n

an

i ra e t th t b e ea i l y e [ Math T i p ] E 23 If t h ear th a d S atu r m o ve i ci r cular rb it f rad ii l d i t h same pla e t which t h pla e f Satu r ri g i i cl i d at a fi ite an gle h w that t h c d iti th at Satur ri gs m y di appear r app ar t t h e earth m y b writt b erver s

i

on

:

n

s

s an

en n

on

:

n

s

s

os

oo

tr

s a

g

o

En

.

e su n

tr e

L b

s

o

.

s e n

s

.

r

.

x

n

.

e

.

e

n

S

o

O

s

,

o an

n

n

o

,

e

e

on





s

s

ne

n

2

n

or

s

n

e

e

en

e

(t + e )

n

2

si n n

3



t,

ta t h w b y a graphical m eth d f lvi g t h e equati therwi He c th at t h cca i reappeara ce ccur i gr up f l 3 f d i app ara ce 5 5 i cr a 3 d fi d appr xi m atel y t h c r itical al ue f 7 & eparati g t h fi r t d ec d ca e [Sh p h a k E x hib it i o ] L t E re pectivel y th e wh d P b e t h earth d Satu r ri g ted ed gewi e t t h e rth pr f ( Fi g 1 12 ) P E w i ll b e t h i t r e cti t h pla e f S atu rn ri g with t h pla e f th ecl iptic D raw A L B d OM B A PE c d iti T he th parallel t requi red l y b m t whi le Satur i m v i g fr m A t C D t B If SP = d ES = I d i f w m ea u re l gitudes fr m E P d t h ti me fr m C th m m t whe t h l gitude f Satur i r w h ave fro m t ri a gle E S P n

e

S

o

e o

or

n

ti me

is th e

t

e

s

and e

on s

n

.

c

,

n

as n

.

e

e

s

s

n

e

an

s

on

s

n

an

s ar e

e

e se n

e

n



o

s

e

o

o

n

n

2

s ze

o,

e

or

s

n

n

,

en

o

n

on s

o

e

.

e

an

n

s

e

o

on

o

n

n

2

Si n n

The

ti me

mA

t o 0,



t = si n

3

atur take i pa c mpared with a y ear T T S

n

s

is g

o,

?

sm

l

2

n

1

ca i g

se o f

S

atur

n

n

= 30 9

F ’G

ss m g

n

o

n 3

fo r i n t h e

s

n

s

n

an

n

o

on

e

o

o

en

o

a

on

e

e

an

o

n

e

n

o

e

v

,

an

on

on

r

s

n

.

ca n

e

e

.

o

f

n

e

.

s

o

or

s o

,

.

an

s

se

e

ee

e

o

n

o

o

n

an

se s

s

n

or

n

or o

on

n

so

o

o

,

s ons o

or

,

ac

an

s O

a

n

n s

a

n

n s

on

on

o

o

n

si n

wher

n

.

i ve

n

equati

by t he 1

n

'

1 12

'

on

98 6,

;r

.

d E u P E t o tart fr m A L it r a h CM i 98 6 f a year wi ll h ave vertake t h m vi g parallel cert ai ly ce d p ib l y th r e ti me I f T/ T > l 5 the E m u t h ave vertake t h parallel th re ti me d p ib ly fi tim e T h val ue f i gi ve b y S ppo s

n

s

o

s

an

n

e

'

o ss

o

ve

s

.

which

of

c ur o

se

es

s

e

1 5 1r m a y b e

n

on

n

o

o

n

1r

in

c

n

n

'

e

,

n

0

.

o

s

n

s

an

o

e

o ss

an

e

e

n

l

6 1r 7i 3

u b tituted f s

'

or n

i n the

se

c

on

d

term

.

s

P L A N ET A

i er tiati

D ff

en

wi th re p ct t

t

o

e

s

g

n

RY P H E NO ME NA th

d

an

a i

m k

en

n

[C PL

xx

t,

g

l

se c ( 0

{g

co s

dt

J

thu

and

t he g

s

0

J a b (a

b

(

ar

+ b)

a

rea t t val ue es

made h

is

s

o mo g

(

co s

eeu o

n

in

s

ch a

da y t h e

on e

x

0)

t + co s

2

a)

b ? t) "

2

Si n

b)

act r 2

by t he f

s ’

2 1:

o

.

vr a

J B(a m a y be

A

.

i



-

where P i

P

s

year

the

.

—J E) J d 4 (

se c w a

P

+ b)

m

as

uch

as

’ f N E) d ( l

a

ms e c 14 40 m

" l’

J a b (a

ge i n R

n

t

f d a /d t i s

dt

hu

b

2

f

'

o

da

T

+ b) c o s b



s e e a)

T hi

2

—‘3

s

-

J b (a

-

b ( a + b)

+ b)

m = l 29 5 6

43 1 x



'

.

e ce t h appare t R f V e u i uch ca e m y i c rea e b y 6 i dereal d rem em b eri g th a t t h mea d y i ab ut 4 l ger th a t h d y t h req ui red re u l t i b ta i ed rb it ab ut t h E 29 It h b e var i u l y tated th at t h e rth i ( l ) a ci r cle h av i g i t c tre ear t h d (2 ) ell ip e havi g u c tre Pr ve th at i f t h am b ervati were u d f f cu at t h f th i b le b y d i rect b ervati d t r m i i g t h ap e it w u l d b i mp t d i ti gui h b t wee t h t w rb it u l t h u diam eter c uld b m a ur d withi ab ut a quar t r f a c d u d iameter ab ut 32 36 d d lea t val ue f th (Th g r a te t 31 32 r pecti vel y ) [ M at h T p I ] I ca t h rb it w uld hav t h equati H

an

n

e

n

n

,

a

x

s

.

as

.

e

o

,

s

e

n s

n n

e

su n



e s

e

o

s

an

es

s

su n

e

e

o ss

o o

e

s

n

a

s

e

n

on

a

s o

e O

n

on

e s

s

o

,

s

s

on s

e s

on e

n

s

O

e ss

e su n

o

an

,

s,

se

o



an

,

e s

,

s

m

o

e

n

e

s

s

o

n

s

'

.

o

.

e

n

e

en

s s,

s

e

e



n

s

n

s

a

n

o

s

n

o

n

en

e

s

o

.

n

s

n

s

s

A

e

e

,

o

.

5m

s

se

or

o

e

on



n s

e

o

.



o

a re

n s

'

an

.

'

ri

n one

an

d in the

se

o

o

se

o

th r

w ul d b rvati d i ameter It

e o

o

on

ca n

e

be of

be

r

=a

r

=a

e

(l (1

+e

co s

e co s

.

on

e

sin

9 9

e

2

2

2 i s n

i mp i b le t d i c r i m i ate b e twee th e eq uati s th u d iameter u le qua titi e uch é x m ea u r d o ss

e

s

s

o



n s

e

n

.

n

n

s

ss

n

s

es

s

on

as

e

z

se

by

mi

C H A PT E R XXI

I

.

I NST RU M E N T

T H E G E N E RA L Z E D

.

Fu dam e tal p i ciple f t h e ge eral i ed i t rume t ted p i t T h l i e i t h g eral i ed i t r u m e t repre th ph ere E x pre i f th c rd i a te f a c l tial b d y i term f t h e read i g f th g eral i ed i tru m e t whe it d i rect d u p I ver e f rm f t h fu dame tal equ ti f t h ge eral i ed i t rume t C t ra t b twee t h d i rect d t h i ver f th pr b lem ge er l i ed i t r u me t f t h i dex err r f ci r cle I I i t h ge eral i ed D eter m i ati i t ru me t Th d et rm i ati f g d by b erva ti f tar i b th r ight d left p iti s f t h i trume t f X D e t r m i ati d 9 D e t rm i ati f t h i dex err r f ci r cle I O a i gle equati which c mpri e t h the ry f t h fu d ame tal i t r u me t f th b rvat ry D i ff re ti al f rm u lae i t h th e ry f t h ge eral i ed i t me t A ppl icati f t h d i ffere ti al f rm u lae Th g e eral i ed t ra it ci rc le n

n

n

e

s

e

on

en

e

n

ss o n

e

o

oo

n

e

s

n

e

o

o

e es

en

o

z

a

n

e

an

n s

z

on o

ns

s

n

ns

s

n

n

ons O

e

n

z

n

e

se

o

s

o

e

n

e

o

n

o

n

e

n

s

s

z

n

e

on

n

o

an

an

n

on

o

an

e

n

on

o

e

s n

o

n

n

ons o

ns

n

n

s

e

n

o

n

o

o

n s

o

s

e

o

on

n

n

O

r

on

os

e

e

s

n

n

n

a

n

n

o n

n

ns

e

s

e

o

o

on

as

on

e

s

n

se n

n

ns

z

n s

z

s

o

n

n

o

s

r n

s s

e

o

O

o

o

e

o

se

e

o

e

o

n

z

n s ru

n

on

e

140

men t

n

Fu

.

n

e

O

n

o

n s

z

dam e n

ta l

pr i n

l

cip e s

o

f t h e ge n

e ra l i z e

d

i n st r u

.

the e pressio ge erali ed i stru m e t we are o t to u d ersta d a particular i stru m e t actually e mpl ye d i t he but rather a geo m etric l abstractio t he theory f O b ervatory which i n clu des as s pecial case s the pri ci ples f t he fu dam e tal i stru m e t use d i pr ctica l stro omy W he we have obtai ed t h e equatio gi Vi g the theory f t he ge erali ed i stru m e t it w ill be fou n d tha t these sa m e equatio n s By

x

n

n

n

s

n

s

a

n

z

n

a

n

n

n

o

n

,

n

n

n

n

o

a

,

n

n

n

,

n

n

z

n

n

o

,

n

n

.

ns

n

o

TH E

G E NE

RA LI Z ED

RUM EN T

[ C PL

I N ST

xxx

co mpri e as particu l ar cases t he for mulae ecessary f the stu dy f the followi g i str m e ts a m o g others t he al t a i m uth t h e m eridia circle the pri m e ver t ical i s t ru m e t t he al m uca tar d the equatorial S o m e f t hese i t ru m e t s will be d iscusse d separa t ely i C ha p XXII Th f llowi g d iagra mm a t ic re prese ta t io n ( Fig 1 1 3) is i t e d ed t o e hibit t he esse tial parts o f the ge erali e d i s t ru m e t T h fu d am e tal a is A B dis t i guished as a x is I is ca pabl f rota t io about beari gs w h ich m y be re prese te d by t h z

n

n

o

n

n

n

u

n

:

an

o

.

n

,

n

n

n

x

n

z

n

n

,

a

.

1 13

n

.

e

,

n

F IG

n

.

n

n

n

,

n

x

o

n s

n

n

e

n

,

.

.

o

z

n

,

e

or

n

e

.

cyli drical socket H H i the base LM It m us t be u derstood t ha t axis I m y be hori o t al or ver t ical or i y t her posi t io bu t its direc t i is fixed rela t ively t the base L M d f o u rs e i t has freedo m fo o her o t io t ha rotatio t m y Th e beari gs at H are fi e d t A B d carry C D k ow a is II which c ro t a t e freely i i t s beari gs though lo gitu di al m o t io t hrough i t beari g is A s A B is r t a t ed t presu m e d C D is carrie d with it d A B is fi e d d t h e a gle be t wee C D X Y i the d ia m e t er o f a grad ua t ed circle fi e d rigi dly to LM d f which t he pla e is per pe d icular to A B f Th e gradua t io this ci rcle is t o be fro m 0 t o ole o f this ci rcle is t o b e Th n

n

a

z

n

n

on

o

n o

r an

x

n

s

n



an

o

an

n



x

n

as

n

o

.

n

c

n

,

an

x

.

an

'

n

n

°

.

e n

,

.

,

n

n

n



an

s

o

n

n o

s

o

,

n

n

an

,

o

an

.

n



n

x

n

.

n

o

4 34

is f

T H E G ENE

RAL I Z ED

I N STR

UM ENT

[O H

xx i

.

the ce tre f t he ci cle X Y t o the n ole O f that circle the a xis T h a is f C D is f o m t he ce tre f X Y to the ole o f X Y t he telesco pe is f o m the eye piece t o the bject glass a n d the r a d ii f the circles are f o m t heir respective ce t res t o t he circu m fere ce Th e poi ters are as has bee said rigi d ly attache d t o A B If we thi k f t he poi ter as a straight li e rigidly a t t ched t o A B d perpe dicular t hereto this lin e will be parallel t o so m e ra dius A the a xis A B is tur ed r u d 360 t his o f the gra d ua t ed circle parallel ra d ius w il l als m ove co m pletely rou d the circu m fere ce arro w head the poi ter to i dicate its se se the I f t here be we d efi itely ssu m e t he re d i g to be t ha t i dicate d by t h e rad ius d aw fr m t he ce tre o f t he circle parallel to t he poi t er t he d irec t io i dic t ed by its arro w hea d a d i I like m a er a poi t er f t he circle X Y m ust be fi e d d be perpe dicular to a is II as the i gidly to a is I S f geo m e t rical t heory is co cer e d we m y m ake the sa m e p i t er W e have o ly to i m agi e the poi t er as the d fo both circles co mm o pe pe dicular t o A B d C D d rigi dly fi xe d to A B d the T he t his l i n e will be parallel to the pla es f bo t h circles radii i each circle parallel t o this li e w ill give the corresp di g rea di gs f each circle L t R be t h gra d uatio i circ l e I ( i e X Y) i d icate d by t h ra dius o f t hat circle parallel to the poi ter just d escribe d d i the se se show by the arro w hea d o t he poi t er L t R be t he graduatio i circle II ( i s X Y i dicate d by the ra dius o f tha t circle parallel to the poi ter d i the se se show by the arrow head the poi ter T he w hatever p i ters be ctua l ly sed provide d o ly t ha t t hey are fi e d to a is I their i dica t io s o ly be R + A R d A R are cer t ai i de d R + A B respectively where A R the i s t ru m e t It will duly appe r e o s which are co sta t f later how t he qua tities A R d A R are to be deter m i ed We shall first i vestiga t e t he rela t io s between R d R d t he coordi ates f t he b o dy the celestial s phere ro

m

'

n



r

o

n

r

,





o



n

n

n

n

n

o

.

.

n

a

n

n

an

o

O

r

n

x

e

.

r

o



,

n

s

.

n

n

o

an

o

°

on

-

n

n

n

.

n

n

.

can

n

r

n

a

n

a

o

n

n

n

n

x

r

n

a

nn

n

-

.

n

an

r

x

n

x

O

.

ar

o n

n

an

an

n

n

n



r



a

n

.

n



or

n

o

n

n

n

.

n

an

o

n

on

n

or

n

n

.

e

e

n

n

.

n

.

e

an

n

n



n

n

n

n

.

n

on

an

o n

x

x

an

u

a



n

r

n

141

es

x

n

a

.



n

an

o n

Th e l i n

n

n

o

.

n

an

n

n

n



n

n

on

c an

an

or

n

,

n

n

,

,

rr

n

n

n

.

n



e

.

n

.

n

n

n

-



.

an

.

i n t h e ge n

e r al i ze d

in

t

s ru

m en

t r e pr e s e n t e d

t o n th e s ph e r e We shall w s t u dy t he ge erali ed i stru m e t by the hel p o f n es i oi s the celes t ial s here corres o i g to the li the d t p p p ge erali ed i stru m e t po i n

as

s

.

n

n o

n

n

n

on z

n

n

.

n

n

z

n

n

1 4 0— 1 4 1]

T PI E G E NE

R AL I ZE D

I NST

RUM E N T

4 35

raw fro m y fi i t e poi t 0 li es parallel t o t he li es f the ge erali ed i stru m e t as already e plai ed each i the se se f t he arrow hea d t h e corres po di g li e E a h ra dius f the celes t ial phere su pp se d so d raw will ter m i a t e i oi t p the sphere d t he betwee y t wo such poi ts will be equal to the a gle betwee the two cor es po di g li e f t he i stru m e t f t he celes t ial body D ra w also fro m O a li e i the d irectio T hi li e will su ppose d t o be a s t ar w hich is u der bserva t i be c i ci de t with t he li e draw t hrou g h 0 parallel to t he a is f t he t ele co pe whe t h telesco pe is directed u po the sa m e star L e t this poi t be S ( see Fig i like m a er le t B be t he oi t corres o d i g to a is I D t o a is II d V t o the co m m o p p t he two circles poi ter f D

an

n

z

n

n

n

n

n

,

n

on

-

n

a re

an

n

n

n

or

n

n

n

n

n

s o

n

on

n

.

o

,

on

o

s

.

n

x

n

x

n

a

n

n

.

n

n

n

n

n

o

o

e

n

n

c

.

n

n

s

n

n

n

o

n

o

n

,

an

,

o n

n

r

n

n

x

n

o

s

n

n n

x

,

.

,

an

n

.

F IG

.

1 14

.

be the polar circle f B S that N V is the grea t circle N V will re prese t i g the pla e o f ircle I A y t w o poi ts there fore be eparated by equal t o t he a gle be t wee t he two corres po di g radii f X Y A B is the ole f t he circle i creases fro m N to V ( as show by t he N V t he gra d ua t io arro w hea d) We have already se t tled t ha t the gradua t io at t h e Le t N V n

O

o

n

c

n

an

s

n

o

n

n

-

.

n

n

n

a re .

on

n

n

.

s

n

o

n

n

2 8— 2 o

THE

G E N ER ALI

Z ED

IN S T

RUME NT

[

OH

xxI

.

B A s t he circle X Y re m ai s i oi t is to be t he sa e V m p m t o i t io ho w ever t he i s ru e t be ro t ate d abou t or we A B D C p f t he i stru m e t are co cer e d a s su h m ove m e t s m y so f reg rd N V as a fi e d circle the celestial sphere n

n

n

s

a

n

.

E x pr

te rm

f th e

o

s

e r

,

n

x

a



n

c

ar

,

O

n

n

n

on

ssi o n

n

o

e a di n g

s

o

,

.

c o o r di n a t e

f th e

n

f t h e ge n

c el e ti a l b o d y i n e d i n tru m e n t w h en

s o

e rali z

f

a

s

s

te d u po n i t o t her L t M N ( Fig 1 14 ) be the equa t or or the ecli ptic or y fi e d grea t ircle which is adopte d as t he sta dard f re fere ce f the coordi ates f poi t s the celestial sphere L t M be the o i gi from which i t he d irec t io i dicate d by t he arrow head a M L ) is t be d e t er m i e d f coor di a t e t he s t ar S L e t L S ) be the ther coor d i a t e o f S which is t o be t ake as 8 m d o itive because lies t he sa e si e as does the le S f M N p di r e c

.

e

an

.

c

x

n

o

n

n

on

n

a

n

-

n

o

or

e

n

o

or

.

n

n

on

s

W e have

n

.

n

n

r

o

o

n o

t o defi n e t he t wo quan t ities which w ill e xpres s the posi t i o n O f N V ( which i s o f course the pla n e o f circle I ) wi t h res pec t t o t he sta n dard circle M N T hese q u an tities are t he arc X) fro m M t o t he asce n di n g n o d e N o f N V a n d t he a n gle MN 9) bet w ee n the t w o grea t circles bo t h d ivergi n g fr o m N VN N Th e poi n t N m a y be w here 9 is a n a n gle be t wee n 0 a n d t ake n as t he z ero o f grad ua t io n o n N V a n d we t he n have t he a r e n o

w

.

,

°

NV

B

:

.

It w s t ate d t hat A B d C D ( Fig 1 13) are a t a co s t a t a gle I t foll w th at m a tt er how t he i stru m e t be m ved w m us t have t he p i t D which is the le f N V always at t he sa m e d i t a ce fr m B which is the le f N V T his o s t a t be t wee the oles f t he cir les I d II we hall re prese t by 90 q so t ha t q is always be w ee 90 d A t he a gle be t wee t w graduated ircl es i t he be t wee their les we see t ha t t h e a gle N VN ( Fig 1 14 ) i also 90 q W e have alrea dy agree d t hat t he p i t V N V is to have the readi g B d it re m ai s to choo e a situa t i f the er f gradua ti N K V t hat is the circle X V I t hi ase we coul d t m ake use f N t he i t ersectio f VN wi t h the s t a dard circle M N f the od e N is co sta t ly cha gi g i t he use f the i stru m e t A co ve ie t ero o X Y is t hus sugges t e d T h pla e as

n

an

o

.

s

o n

o

n

n

n o

,

n o

,

n

n

a re

o

c

n

o

c

,

c

.

o

n

n

an

s

n

n o

°

s

.

n

S

a re



n

O

°

s

o



o

n

,

n

n

an

°

n

n

.

n o

e

s



.

n

on





n

.

an

n

s

on



on

on

,

o

no

,

or n

n

,





on

n

n

.

n

n

z

n

o

o

s c



n o

n





or

n

n

n

o

.

'

n

n

n

z

n

.

e

n

T HE G E N E

cos H S cos H N = cos R -

co s

HS

Si n

[OIL

x x1

H V, H V + si n R

co s

H S si n H V

cos

cos H S i H N = Si R cos H S s H V cos B cos H S i H V m iii re uci g by ea s d S ubs t ituti g t hese values i n d ( ) ( iv ) we have LS = cos 9 si n q si K S cos 9 cos q i K V K S Si i 9 cos R cos q i K S 9 i R cos K V o K S n

s n

co

n

f

RUM ENT

d S n

o

I N ST

R

HN

AS

an

RA L I Z E D

a

n

n

n

c

s n

s n

s

9 c O SR s i n q s i n K V c o s K S LN LS s i n 9 8 111 q SI n K S

Si n

sin

cos

s n

s n

n

n

,

cos

cos K S si X V cos 9 Si R cos K V o s K S cos 9 cos R cos q Si K S cos 9 cos B si g cos K S Si X V cos L N cos L S cos B cos K V c o K S si R cos q i K S R i q cos K S s i n K V si L e t M ( Fig 1 14 ) be the origi O f the s pherica l c ordi ates d let M L f A S the coordi ates S d 8 L b e S ) ) M N is X w e have si n

9 co s q

n

c

n

n

n

n

,

s

s n

n

s n

n

o

n

.

an

.

an

a

o

n

LN = X — a .

an

d KS =

r

,

K V= R

n

,

.

’ .

W ith these cha n ges w e ob t ai n the follo w in g fu n da m e n tal

or m ula e

f

fo r

the ge n erali ed i stru me t si cos 9 i q s i r 8 cos B si 9 cos q i cos 9 cos g cos Si n R Si 9 cos si R cos R cos R si R i 9 i q — = i i cos X 8 i 9 S ( ) q cos 9 cos q i r cos R si 9 cos q c o s r S i n R cos 9 c o r i n R cos R cos 9 si n q cos c s R si R n

z

n

n

.

n

s n

s n r

n



r

n

si n

a



n

r

s n

S n

co s r

n

s n

s n r

n

S n



n

'

s

s

r

co s

(X

co s

+

q

si n r s i n

co s r c o Si n

SR

q cos r

n

R

co s Si n

o

R



R si n

R







1 4 2 g ]

R A LIZ ED

T H E G ENE

I N ST

RUM ENT

4 39

d 8 c require d qua tities b e calculate d by these fo m ulae fro m the O bserve d qua t ities R d R it bei g assu m ed t ha t t he co s t a t s f the i s t ru m e t i 9 X g are k n o w E 1 m f th Th f t h th ree l eft h d m em b r f th qu are equati ( 3) f t h g eral i d i t rum e t i qual t u ity V er i fy th at t h ame i t rue f t h m f th f t h th r e r i ght h a d quare m m b er E 2 D ter m i e wh at t h equati f th ge ral i ed i t r me t b c m e wh ax i I i perpe d icular t ax i II (g = 0 ) whe there i rr r f c ll i mati i t h t ele c pe ( = 0 ) d wh e 8 t h c rd i at f th le f ci r cle I ly i trum e tal c ta t i t h xpr i th It i b vi u that X= 90 + whe ce l im i ati g X d 9 d d maki g g = = o t h qu ati (3 ) b c m e Th e

n

a

an

r

n

n

x

e

.

.

n

o

su

o

on s e

e

s

v z

,

s

s o

en

ze

ns

o

e

e

su

.

,

,

,

e

en

o

on

s

n

r

n

,

an

-

e

s e

s

s

an

o

s

n s

o

o

n

e

a

s

.

o

e

.

e

n

-

(

co s

o

0

ao

—a

a

(

) )

n e

n

do ,

on s

s

n

n

e

8 = s i n 80 s i n R + c o s 80 s i n R

co s

8 = c o s 80 s i n R

co s

8=

B

R

co s

e

o

e ss o n s

n

e

.

n

an

o

si n

80 s i n R

si n

n

es o

n

e





oo

e e

n

u

s n o

e

0,

0 an

co s

ns

z

n

on s

e e

e

s

n

°

o

an

r

e on

r

Sin

o

o

s

n

ons

n

e

a re

,

o

s

n

o

e

n

e

.

s

o

s

o

n o

e

n

n

,

.

.

o

e



an

n

o

s

x

e

an

co s

R

'

co s

R

'

,

,

'

h w th at g + = o i t h e c d iti ece ary that t h e tel s c pe f t h ge eral i d i t ru m t b d i r ct d b y a real etti g f R d R t the le f ci rcle I d th at g = 0 i t h s im i lar c d iti f t h t i l E If c d i at f t h le f ci rcl I I while t h e 4 8 b th i t rume t i h w that pla ced th at R i t h read i g f ci r cle I Ex 3 .

o

S

.

e

n

n o

o

x

o

ns

n

s

so

n

o

co s

8

sin

9 s 1n g

—a cos 8 X ) (

co s

:

no e

.

o

9 c o s 9 co s B ,

co s

9 si n B

s

,

9 s i n g + s i n 9 c o s g c o s R,

co s

e an

o

e

co s

:



an

or

o

8=

(X

o

n

on

si n si n

)

n o

e

e

s

a

on

o

o

e

s

e

es

n

ss

n

e

s

oor

e

on

e

r

e

a,

e

ca n

en

an

.

.

n s

ze

on

s

r

.

u dam e tal quati it i plai th at t h e tele c pe i i variab l y d i rected t h le f ci rcle II If h d b e made h uld have f u d t h c rdi ate f t h t i l f circle II w + 90 th le f ci rcle I t t h tar t o which t h fr m t h E 5 If p b t h tele c p i p i t d wh e t h read i g ci rcle I I i R h w th at If

r

=

s o °

90

s

.

s o

i n th e f

o

e

e

o n e

s

s

n

x

.

si n

p

s O

n o

o

on

g si n

e an

o

r

s

+ co s q co s



,

r si n

a

r

.

n

oo

n

se n

x

e

no e O

.

e s

S

R

e

o



R e

n

cos

p

180

an

j

co s

o

on

s

s

ct

o

d

an

d

co s

p

+r )

co s

( 90

°

h e re b de cr i b ed w ith d (g i—) re p ctivel y d t h le f circle I a s centre the t h e th e e ci rcle wi l l be t h r g i o f v i ib i l ity s on

s

en

g)}

+r)

co s

o

etwe

— 90 °

ob e

s

th eref re ci rcle °



an

.

s o

e

n

e

n

ns

n

.

s

s

e

ze

.

whe ce at t h l i mit

ss o n

e e

on

n

e

e

o

o

on

e

n

.

e see

b

e

o

n

explai why R i ab t fr m t h xpre i Fi d t h regi th cele tial pher withi which E 6 b reach ed b y t h g e eral i d i t r um e t t d f c rre 5 th at t h ex t reme val ue W fr m E p p

an d

If

e

e

n

n o

e

o

are

s

ons

e

n

o

co s

ca n

n

on

.

e

n

n

e S

en

x

°

e

th e ,

s

ce l tial es

e

an

e

e

e

sp

n o

on

ra

s

o

,

s

.

11

n

-

r

an

d

zo n

e

T H E G EN E

Ex 7 .

is

e

an

o

e

u le n

I NST

RUMENT

[O H

.

XXI

iametricall y pp ite p i t t h cele ti al t h r ad i g f ci r c le I I w h t h g eral i ed i t r ume t t b d i rected t P Sh w th at t h e i t r u me t ca

L e t P I , P 2 b e t wo d

.

h ere d l t R d i r ct ed t P

sp

RALI Z ED

O

os

o n

s

on

e

s

.

be



I

e

n

e

o

en

ns

o

.

e

en

n no

n

n

ns

z

e

o

2

ss

é (90 2 s i n § (90

cos

h w met ricall y

Ex 8 .

fo r g e o

S

.

o

z

h o w t he

R



) 4:

tan g ta n

r

(i f t a n

9 ta n

R



) 4:

ta n 9 ta n

r

(i f t a n

9 tan

ab e ce

of

s n

9 f

r

o

uati

m Eq

on

r

r

<

(3)

acc u ted

is to be

o

n

.

1 43

In

.

fo r m

v e rs e

f th e f u n d a m e n

o

t al

e

qu

a

ti o n s

f th e

o

l i e d i tr u m e n t W e re fer agai t o Fig 1 14 where i addi t io to t h t a t ion already e plai ed w e w take N N = 90 i n Which case it is easily see that the coor di a t es f N are X 9 T he re m e m beri g that the cosi e f t he dista ce bet w ee 8 d 8 is cos 8 cos 8 cos ( si 8 Si 8 ) w e h Ve b y subs t i t u t i g t he coor di ates f S B N N the equa t io s i 8 cos SB 9 cos 8 Si 9 i ( X ) cos S N = i 8 si 9 cos 8 cos 9 i n (X ) cos SN cos 8 cos ( X ) Bu t we c other e pres io s f cos S B cos S N O btai cos SN I the tr a gle B D S the a gle B D S 90 — R f i ce V is the pole f B D we have VD B d as D is the pole O f K V we have VD K R H e ce cos SB cos ( 90 q) cos ( 90 r ) si i S 0 0 R cos 9 9 r ( 90 ( ) ( ) ) q i si s i cos cos r R q q Fro m the tria gle S VN w e have cos SN = cos S V c N V + s i S V si N V c ( 90 g S VK ) cos S V c N V + i N V i q i S V c o s S VK ge n

era

n s

z

.

n

.

n

,

n

e

n o

°

x

n

n o

,

0

O

n

.

o

n

n

a

o

n

n

,

n

a,

n

an





,





n

n

a

n

n

,

a

a

o



,

,

,

o,

n

co s

s n

S n

0

n

n

at

s n

a

s

a

,

,

.

.

an

x

n

s

n

or

O,

,

.

'

n

1 n

n

°

,

or S n

an

o



n

.

°

°

°

n

n



n

n

°

°



r s n

.

n

os

n

os

s n

si n

cos r c o s B cos R



n

s n

os

°

s n

N V c O S g Si n S V si n S VK

si n

cos g

cos q

r si n

si n r si n

R si n R R .





T H E G EN E RA L I

Ex 1 .

Le t

.



l e t RI R1

an

i t r u me t n s

n

01

al

d

an

and

81

,

0 2,

w it

I f we

e spo n

o

UM ENT

cele ti l c rd i at d i g pa i rs f read i g

82 b e t he

c rr

d R 2 , R2 b e t h e ’

.

a

s

oo

o

n

of

es

n

[CH

n

t wo

s

e eral i

th e g

s of

n

RI

cos r co s

R1 c o s R l + s i n q c o s r s i n R I s i n R l

co s

9 si n

RI

c o s r Si n

RI

so s

c o s r si n

g

'

Rl

ze d



R1 + si n q c o s '

co s

'

R I si n RI

r co s

, '

,

r,

w ith t h uffi x 2 pr ve that

ss o n s

e s

81 c o s 82

co s

g sin

si n

i mi lar expre i

81 S i n 82

d

s an

e

r

r cos

XX I

.

tar

i r si n s n 9

co s

si n

l

I N STR

co s

AI B1

a

Z ED

"

(a l

co s

o

,

( 12

0 102

B 1B 2

A 1A 2

)

.

ea y t h w that A B 0 c i e with re p ct t t h d i r cti t h rec u lar axe N ON OB f t h l i e OS wh ere O i t h ce tre f O g ta t h c el ti al ph ere tar wh c rdi ate d S th 8 E 2 If A B a ta dard p i t 8 fA B Of 0 b t h val e h w th at t h err r A A 8 i t h c rdi a t f y th r p i t 8 ari i g fr m err r A R i t h det rmi ati f R ati fy t h relati It

IS

e

o S

o

n

e

s

o

e

o

an

o

{c o s 8 si n

80

o

e

e

(

a

n

n

s

=B

the

x

n

co s

in

s

o

.

ss

s a r e (1 1 ,

n

,

o

o

.

o n

e

e

n

o n

00 ,

0,

s n

a,

on

e

8 c o s 80 s i n

cos

1

n

o

s

s

)}A 8

s

an

es o

n

or

,

e

s

,



s o

an

d

(a

00

) Aa AB O) A R

.

g

(

an

aB

= ) AA0 + B B 0 + 0 0

aO

a

d

n o

ti

n

g

OR

.

that

80

=



0

6 78

.

e

e

R,

o

requi red re ul t E S h w th at t h equati xpre ed i t h f rm n

oo

on o

ao

w ith re pect t

g

OR Ob

o se

s

s

os n

(B A O

a A — we

n

8 si n 80 + c o s 8 c o s 80 c o s

i ere ti ati

e

n

8 c o s 80 c o s

e

oo

e

n

,

on

e

v

si n

ta i

u

e

e

ha e

F o r we

D ff

a

n

sin

e

0

s

o

e s

I

0,

0,

1 are

1,

O,

,

an

.

.

I,

s

es

x

S

s

Of

ons

the g

e eral i ed i tr me t ns

z

n

u

n

ma y b e

o

c o s r si n

R = L + S i n 9 si n

r,

cos r co s

R = M sin R + N

co s



'

si n r

which

=

-

L Si n g — M

B,

co s

g co s R + N

L = o o s 9 s i n 8 + S i n 9 c o s 8 s i n (X

cos

a

g

Si n

R,

)

,

M = S i n 9 S i n 8 —o o s 9 c o s 8 s i n ( X—a ), N = o o s 8 c o s (X Ex 4 .

S

.

)

.

h w that o

ta n R

wher

a



i

i

la t que ti b de t r m i ed wh E 5 S h w h w t h qu a titi e g i g R R each f t w pp ite p i t h ave be d R R f It i a il y ee th at w have t w equati L h as the

e

x

.

n

s



s e

ame m a i e

o

.

n ,

s

n

s

o

an

, ,

s

n

e



,

i n t he

n ng as

s

o

or

F ta n

E ta n ’

o o

r co s

g

r co s

g+ G

s

r ca n

os

on

e

sin

+G ’

si n

.

n

e

o n

ons

o

e

n

,

s

= 0, H + q

s

en

en o

re d b ta i ed t he

a

n

.

14 3— 1 4 4]

hr F q ua ti T here

W e e

e

TH E G E N E

G, H , F

,

ta i

ob

we

on s

G

'

,

,

bo

n

H



th

RAL IZ E D k ow n

a re

ta n

I N ST

n

q g and

r co s

RUME NT

ua titi n

Si n

es

9

44 3

d by

an

luti

so

th e e

of

on

s

.

th t w po ib le l uti i g b t s l i b etwee 49 0 d — 90 w ca d ter i e which ai r r t i t b take E S h w th at f every real p i t t h e cele tial Sph ere except t h 6 l d t i l f ci rcle I t h c rre p d i g readi gs R d R will b e ither b th real ex cepted c e R i b th i mag i ary d th at i th i det rmi ate We h ave E X 3 a

u

s

a re

e

x

n o e

n

.

no e

o

n

e

an

e

o,

.

n

o n

e

O

or

n

°

or

o

an

e

°

o n s, v z

e

o

o

s

on

s

on

n

e

n

e

u le



as s

.

s

,

R = co s

c os

R

r co s



R co s

,



an

n

an

n

M sin R + N

If si n R

oo s

.

,



°

.

.

an

so

ss

n

es

ro

o

o

u s

r o a n d 18 0 — o , 18 0 g m n of p °

R

'

th r al

bo

a re

e



si n

,

a n d c Os

R

R

bo

a re

th real

' .

an

d

v ice ver a s

,

c a e wh e M = 0 d N 0 S E 8 E S h w th at i f R a ti fi es t h equ ati 7 (i v ) (v) (v i ) th e 18 0 R wil l al o ati fy them T hi i b v i u l y t ru e f ( i v) d t pr ve it f (v ) a d (v i ) w quare d a d a d d t h e eq ati f E d replaci g M 6 d N b y th ei r val ue b serv i g th at L + M + N = 1 w h ave of R t h re u l t f t h el i m i ati n

i n the

ss

x

.

s

s

s



s

s o

o

s

on s o

if

x

e

.

.

on s

t r ue f

Z

°

n

,

,

,



R + (s i n 1 80

or

° -

r co s

s

s an

an

as



e

n

or

n

e

2

o

an

,

t r ue f

R is

or

.

r co s



o

an

2

1 = L + COS 2

s

x

2

2

n

thi

s

or

u

bu t

s

ee

.

.

n

o

an

o

.

s

n

e

s

si n 9 c o s r si n R

9

on

n

e

O



2

)

,

RC

h w th at i ge eral t h t l c p c ul d o t b d irected t t h le f ci rcle I u l t h read i g that ci rcle i dicat d ther f t h i mag i a y ci rcu lar p i t at i fi ity ed th at t h c rdi at f t h le f 14 2 E 2 w h ave m e ti I = X— 90 i u b tituti th e e ci rcle I i ve b d d 9 g g y — =O M w d N= X th a t 8 M= i 9 i 8 8 i (X— ) 9 ( ) d N 0 T ati fy u der th e c d iti t h equati Ex 8 .

no

S

.

o

,

o

n

n e ss

n

r

x

s

,

a re

s n

s n

an

.

a

co s

o s

co s

s

—M m

on e o

co s

on

on

R = co s

R + N si n B = s

i

ons

r co s

n r co s

R

on

an

co s

an

es

oo

e

,

a

co s

s n

o r co s

n

u

e

144

.

Co n

tr a t s

n

n

o n

n

s

o

n o

n

s

n

s

e se e

a

ons

e



g + si n g s

n

.

s

e

o

es

n

co s

u t h ave i R R i fi ite I thi ca e t f t h i m ag i ary ci r c lar p i t at i fi ity s

e

o

on e or o

e

n

e

o

e

n

o

e

an

s n

n

o

.

n

M si n R + N

we

n

°

n

-

n

e es

on

n

e

.

e

,

e

o n

n

n

s

n

c o s r Si n

an

R

R= i i



,

an

d R m

us t b e

.

t

b e w e e n t h e di re c

t

an

d th e i n

vers

e pr o b

t me n t We are w to o t ice a fu da m e tal differe ce be t wee t he d d 8 whe R dir e ct proble m o f fi n d i g d R are give d 8 are give t h e i verse proble m f fi di g R d R w he d R I the f rm er we i tro d uce t h e O bserved values o f R 142 i to the equatio s d re me m beri g that lems

o

f th e ge n n o

e rali ze

d in

n

o

n

n

.

n

n

a an

n

n

s ru

n

n



an

n



a n

n

n

n

a

n

n

an

n

o

n

an

,

an

an

n

.



TH E

G E NE

RA L I Z ED

I N ST

RUME NT

[O H

XX I

.

we btai a bigui t y m d 8 fr m t he three equatio s w ithout y T his is t h e d irec t proble m w hich has t here fore always solu t io d ly e B t i the i verse proble m d 8 are give d we are t o seek R d R fr m t he equatio s ( iv ) ( v) ( vi ) 1 4 3 T here are t w o solutio s real i m agi ary or c i ci de t to th i s i verse problem so tha t i f the ge erali e d i s t ru m e t be poi te d a star i e way it i ge eral be also poi t e d the sa m e s t r i quite a di ffere t way It m a y t be possible to direc t the i t ru m e t t he star by y real setti g bu t i f it is there are ge erally t wo to t ally di ffere t d ispositio s f the i s t ru m e t by which t h e star be bserved T here are thus two d i ff ere t e d R which eq ally corre p d to pairs f values fo R d 8 pair f values f Fro m t he equatio ( iv) 1 4 3 w e c d eter m i e si R a d i f t his is j l we sa t is fy ( iv) by ei ther f t h t w real a gles R d 18 0 R I trod uci g the firs t f t hese u pple m e tary values i t o ( V) a d t aki g t h is i co j u c t io with ( vi ) we have t wo li ear equa t io s fro m which both s i R d R are d e t er mi ed d thus R is k w w i t hout a m bigui t y a s to i t s qu d ra t Th e value f R so f u d we hall ter m R Whe 18 0 — R is subs t itu t e d i ( v ) the equa t i so btai e d i f take i co ju ctio w ith ( vi ) will i like m a er give a o t her T hus f value f R which we Shall ter m R 14 3 E give values f 8 w e have t w o solutio s i R R n d 18 0 R R d we lear tha t i f t here is there are ge erally two e t he d i ff ere t positio s i whic h the ge erali e d i s t ru m e t c be a give s t ar O e f these is called the righ t poi te d u po f cha gi g the d the o t her t he le ft d the pera t io positi i stru m e t fro m o t he other is ca lle d f these positio s t O

a an

n

o

n

an

.

n

on e

an

on

on

u

.

n

a

n

an

n



an

n

o

n

,

n

,

on

ca n ,

n

n

n

n

can

n

a

on

an

n

n

n

O

an

,

n

n

o

n

.



an

a

n

on

no

n

or

,

n

n

,

r

n

,

can

n

.

o

n

.

,

,

o n

on

o

,

n

z

n

ns

an

s

u

on

on

.



n

ca n

>



°

an

n

.

n

n

n

n

n

n

n

an

,

n o

o

o

n

n

n

n

S

n

n

n n

n

n

n

on

n

l

Ex 1 .

n e

n



°

a

,

2

,

n

an

n

n

z

o

O

an

,

n

,

n

n

.

an

n

.

n

or

I

,

n

n

n

O

.



V z,

,

n

n

x

,

on

n

co s

on

,

n

n

n

o

n

o

n

O

.

.

S

h w th at t h o

—c o s 9 s i n

the

an

I.

a,

an

the

n

2

o

e

n

a

o

do

n

n

n

n

n



°

n

r ever s a

n

n

s

o

n

n

,

o

e

o



n

n

an

,

,

r co s

e e

xpre i

ss o n

R + co s r

sin

R cos R



si n

g co s

r cos

R si n R

'

ch a ge i f t h e ge eral i ed i tru me t b r verse d d red i rected t ame p i t f t h e cele tial ph re a d explai t h e ge metri al m ea i g f fact W se e fr m ( ii ) p 4 4 1 that t h g i ve ex pre i i equal t o

s n ot s

n

o n

n

o

ns

z

s

s

e

,

n

n

e

o

n

.

e

o

,

.

,

sin

e

8 s i n 9 — s i n (X

ss o n

n

a

) co s 8 co s

o

an

e

s

9

.

c

n

n

O

TH E G E N E

RALI Z ED

I NST

RUM ENT

[

C H XXI .

144 i R is alrea dy how n i t cha ged by reve sa l i e the two values f R i a per fec t ly a djusted i stru m e n t w oul d be su pple m e tal H e ce

AS

.

S

n

O

.

n

s n

,





no

n

n

r

,

n

n

.



R1 + A A

A

90

R g( ;

°

.

hus fro m a si gle pair f righ t d le ft readi gs a d is t a t objec t w e deter m i e A I f the d ista t m ark be a s t ar it is to be o t e d t hat t he d iur a l m ove m e t o f t he heave s w ill i certai cases m ake t he ord i ates f the s t ar di ff ere t i the seco d O bservatio from wha t they w ere i n the firs t Th followi g procedure w ill ge erally su ffi ce t o re m ove t his di fficulty T here are t o be t w o bservatio s f the star i the right d o e observa t io f h ositio R t s t ar the le t m s e i f ; p m w m osi t io n a t a o e t hich is m i d way be tw ee the t wo righ t p Th e m ea O f the t wo for m er is to be take fo R O bserva t io s eli m i a t e the e ffect O f the diur al m otio f m os t T hus w e c ractical ur oses p p p f t hi particular i stru m e tal co s t a t is T h e d eter m i a t io so sim ple that i w hat follo w we shall al w ays presu m e t hat t h correc t ion has bee m ade so that the R f r for m ulae is i deed the arc K V f Fig 1 14 T h i de er or o f circle I or X Y d m 1 1 Fig ca o t be eter i ed u t il certai other co sta ts 3 ) ( i ves tigate d e c t e d w i t h the i s t ru m e t have bee T

n

O

n

an

n

n

.

n

n

n

n

n

n

o

n

on

n

n

co

n

e

.

n

n

n

n

.

O

n

an

n

n

n

o

n

o

e

a



n

n

n



n

n

.

n

n

an

n



r

n

1

.

or

.

n

n

o

s

n

n

n

e



O

.

e

.

nn

n

n

n

n

n

s

n

.

n

o

x

ou

n

r

n

n

n

n

n

n

n

co n

.

t e r m i n a ti o n o f q a n d b y O b s e r v a t i o n s o f o f th e i s tr u m e n t s t a r s i n b o th r i gh t a n d l e f t p o i t i o n d R be the readi gs o f circle I i the right d le ft Le t R m f d d ositio s t he i s t ru e t whe irected to the sa m e ista t p m ark it bei g u d er t d tha t i f t he m ark is a s t ar the e ffec t f m m m a are t ove e t is to be eli i ate t he way alrea y i d d y pp e plai ed It w ill be show n that t h i de err r o f circle I h s e ffect o the fi di g f g d by the prese t process d t here fore we m y regar d it as ero while the i d e error f circle II w e have already correc t e d W e hall w wri t e t he i 8 1 42 ) f both the right d le ft positio s f r m ula f W e have f t h righ t positio 14 6

Th e de

.

r

s

s

an

1

n

2

n

o

n

n

,

n

n

n

s

.

n

an

n

n

oo

o

.

x

n

n

an

n

e

.

n

n

n o

n

o

an

a

or

or

e

n

x

o

a

n

z

or

s n

n

r

n

,

.

o

n

n

an

x

o

no

S

an

n

.

5 —1 4 6]

TH E

-

G EN E

RAL I Z E D

I N ST

8 = — c o s 9 si n g s i n

si n

RUM ENT

r

cos q si cos R cos 9 cos q cos i R i 9 cos Si R cos R i 9 s i g cos c R i R the le ft positio d f in 8 = cos 9 i q si i 9 cos g i cos R cos 9 cos q cos i R si i R cos R 9 cos si 9 S i q cos cos R Si R Ide ti fyi g these tw o values f i 8 w e fi d the ter m s m i tt i g the cas e o f i i volvi g cos 9 disa ppear we m y d ivi de by S i 9 d b t ai the resul t si n

9

n r

I



r s n

S n

r

S n

an



n

I

n

r

s n

n r

os

s n

I

n

or

s

-

s n

s n r

2

'

r S n

n

r s n

n

n

n



2

n

r

n

so

,

a

n

an

o

,

O

n

2

s n

o

n



n

n

s n

n

A in

which A is ( cos g i

an

S n r

abbrevia t io f i q cos i R) or

n

S n



r s n

R ( }

si n

1

R 2)

I

R cos 5 ( R the right posi t ion ’

co s r co s

like m a er w e obtai f 142 i stru m e t cos (X ) cos 8 cos g cos In

n n

n

or

n

n

,

a

S i n r si n

d fo r

the le ft cos (X

a

)

cos 8

Rl

cos R

RI

r co s

an

I



si n

cos q

r s n

R 1 si n

co s

q Si n

r Si n

R2

i

R

cos R R i g cos s i R i n R Ide ti fyi g t hese e pres i s w have A cos ( R + R ) 0 B u t w e have alrea dy see t hat co s r

2

s n

x

n

n

r

2

S

e

s on

:

2

1

.

n

A si n

by squari g cos i ( q n

an

s n r

d

} ( R1 + R 2 ) 7

:

0

,

a ddi g w e see t hat A 0 or i q cos r si R ) i 5 ( R R ) cos cos R cos } ( R n

s n

n



s n

r

,



cos

n



I

2



1

1

’ .

R2 )

.

Of

t he

RA L I Z E D

T H E G EN E

I N ST

RUME N T

[ CH

XX I

e ter o ly i t he co m bi atio R R the i de error f circle I has bee eli m i ate d We t hus ob t ai a form ula i ter al co s t a t s q n d m y be f d by S howi g how t he t w d 8 are abse t the for m ula d oes bservatio A t d e pe d t he s t ar or m ark chose w hile X d 9 w hich d efi e the as pe t o f t he i stru m e t al o va ish If f brevi t y w e write A s RI

an

d R2

n

n

n

n

n

o

o

n

n

O

S a

.

n

n

n

n

n

n

s

,

a

n

a

r

x

ou n

n o

,

an

,

n

2,

n

n

n

n

I

.

an

on

n

n

n

,

c

.

or

A = si n

} 1

—R R 2) ; ( 1

cos R cos } ( R d be e resse p y ’

'

O

the equatio

n

ma

A

— 4

'

-

I

R 2) ;

R2 )

x

co s

q

si n r

+

B si n q c o s r + C c o s r = 0

,



i volve o ly qua ti t ies k o w by observatio T h e a m e o peratio applie d t o a o t her star or m ark w ill give a si m ilar equatio = 0 A cos g i + B i q cos + O whe ce CA (B A A B ) i q A O We thus lear i q d co seque t ly there appear to be t wo f which ei t her will atis f y t he require m d l e t l values f q p p co di t io s XV have ho w ever agree d t ha t 90 g is t he i cli atio d it is a co n ve t io ( p 33 ) t ha t the a gle f circle II t o circle I i cli atio S hall lie be tw ee 0 d so t hat q d e oti g d A ccor di gly w e 90 d is t i guish m us t be be t wee w hich f t he two u pple m e t al a gles m ust be take d thus h m fi is k ow wi t u t a bigui t y We d also q i n w h i ch A B , C

n

n

,

n

n

s

n

n

n

.

n

n





s n r ’

s n



co s r



n

an

S n

r

S n

n

n



,



n

'

or

a

n

e

u

O

s

°

n

n

e

.

,

n

,

an

o

n

n

an

n

n

an

n

o

A O) t a n ’

ca n

n

n

n

,

an

n

.

(A C

an

n

s



°

n

n

.

n

°

on e o n

n

n

n

n

n

n



(B C ’

r

BC

) ta n

q

.

Fro m this is k o w f as betwee d 1 80 we choose the value which lies as m ust lie bet w ee d 90 T hus q d t h e two i ter al co sta ts f t he ge erali ed i stru m e t m y be d eter mi e d n

r

n

n

n

,

r

n

r

n

n

n

a

.

De

n

°

n

n

o

n

ca n

,

X si n 8 + Y c o s 8 c o s a si n

X

o

n

n

z

.

o

w here

an

.

r

e

r

n

,

,

an

te m i n a ti o n o f X a n d 9 f these qua t ities m T h d eter m i a t io be w ritte f for m ula ( iv ) f 1 4 3 which 147

o

or

r

,

an

,

°

cos 9

,

Y

:

+

Z

q

co s

si n r

si n

a

be m ade by ea s m y n

n

8 si n

a

cos g

9 Si n X

,

Z

c o s r si n :

si n

R 9



0

cos X

.

( i)

,

TH E GE NE

R AL I ZE D

I N ST

RUM EN T

[C H

XXI



.

t he in stru m e n t be reversed a n d d irec t ed again o n the sam e s t ar at 8 w e k n o w that R is chan ged in to 1 8 0 R the readin g R bec o m es R a n d y is u n altered w he n ce cos r c o s R M s i n ( R y) N cos ( R y ) ( iii) I n equatio n s ( ii ) a n d ( iii ) both M a n d N are k n o w n fo r as t he e observa t io n s give Th lace o f the s t ar is k n o w n a 8 are k n o w n p R R R T here are t here fore t w o lin ear equa tion s i n Si n y a n d cos y i n which t he c o e fficie n t s are k n ow n From t he s e s i n y a n d cos y are d eter m i n e d so that y is a scer t ai n ed w ithou t a mbiguity We have thus S how n h o w all t he co n s t an ts o f t he gen eraliz e d i n s t ru me n t m a y be ascer t ai n e d If

°





,

,

,

2

,

,



2

2

.

,

.

,



,

,

2

,

.

.

.

,

.

*

14 9

On

.

a

si n

g

le

e

u a ti o

q

wh i ch

n

th e o r y

m pr i s e s t h e

co

t a l i tr u m e n t s o f t h e O b e r v a t o r y L t 8 be t he co r di a t es f a star S f whi h t he rea di gs f the ge erali ed i t ru m e t are R er let a I like m a seco d s t ar S with coordi ates have t he rea di gs R R Th e oor d i ates m y be altitu d e d a i m uth or right asce sio d d ecli a t i or la t i t u d e d lo gi t u d e or y other sys t e m For t he cosi e f t he a gle bet w ee t he two stars we have the e pressio si 8 i 8 cos 8 cos 8 cos ( 0 ) w hich m y be w ri t te si 8 i 8 cos 8 cos 8 cos { (X ) ( X 142 w e b s ti Fro m the ge eral form ulae f — t ute i the e pressio jus t w rit t e f s i X si ( ) cos d cos (X — ) cos 8 t heir equivale t s i ter ms f R d the co s t a ts f the i s t ru m e t 9 g er w e c I like m a 8 cos cos c their substitu t e fo i n Si X X a ) ) ( ( equivale ts i ter m s o f R d R d t h us obtai d 9 q e pressio f t he cosi e f the a gle be t wee t he two s t ars i R R; term s f R d t he co ta ts f t he i stru m e t Th e work m y be i m plifie d by observi g that 9 ca ot e t er i t o the result f it is bvious tha t t he a g le betwee the t wo s t ars m us t b e i de pe d e t f t he positio f t he fu d am e t al circle w i t h regard t o w hich the coor di a t es are m easured It i t h ere fore per m i sible f this par t icular calculatio t o assig t o 9 y arbi t rary value we please wi t hout restricti g t he ge erali t y o

f t h e fu e

dam e n

n

a,,

O

,

a,

on

an

o

n n



n

,

z

n

2

,

.

n

n

,

an

,

n

2

.

n

n

n

,

a

S n

2

,

s n

,

2

,

a,

n

n

n

s

,

n

an

r

an

,

,

an n

n s

n

O

n

n

o

n

.

n

nn

n

O

n

n

n

s

2

n

n

n

os

n

n

n

an

r, an

,

n

O

n

an

an

nn

n

.

S

or

,

,

,

a?

2

an

a

,



o

,,

,

O

su

a,

n

c

2

or

n

n

n

n

n

n

or

n

n

O

ca n

,

n

,

r

o

,

o

x

n

x

a

a,

2

n

n

a,

2

n

n

an

n

c

n

an

,

.

or

,

,,

n

n

n

,

a

n

x

o

n

,

n

an

n

n s

z

n

s

o

,

n

c

n s

s

.

or

n

n

n

,

n

R

148 — 1 4 9] o

the result llo w s

f

fo

Z

TH E G E N E A L I E D

we

If

.

m

ake

9

I N ST

90

RUM E NT

the equa t io

°

be

n

co

cos 8 cos 8 cos ( ) i 0 i R cos R R i q B g x cos g i cos R cos i R cos R R i q i R cos cos B R i g cos i R ( sg i i x ( cos i R c cos R cos R si g cos i R q i g i c os q cos i cos cos si i g q which gives the foll wi g fu da m e t al equa t i si 8 si 8 cos 8 cos 8 cos ( ) si n

8, si n 8,

co s

,

s n r 0

8

s n r s n

s n

s n r

si n

n

,

2

q

"

co s

co s

2

2

co s

sin

Si n

2

g Si n

2

co s r co s

,

si n

s n

co s r co s

,

si n



,

S n

r s n

,

si n

n

r s n

,

si n



,

,

n

n

,

s n

,

co s

,

n

S n r

n

,

i

r s n

on

a,

,

a,

r

cos (B

r

R,)

,

R sin R g r co s R cos R cos ( R R ) c o s r Si n R Si n R c o s (B q r sin R Si n ( R si n R ) q ( ’

c o s r si n 2



,

,





,



,

r S n

o

n

co s

,

os r

,

_





r

,

S n r S n

,

r S n

,

es as

a,

r S n

,

S n r

co

a1

,

m

,

,



2

,



,

,

R,)

,



c OS

,

cos g

Si n r

cos

r Si n

,

,

R,)

(R1

(

co s

R,



cos B 1 i R R i ) ( g { }( f ircle I i i t pla e m us t be I t is bviou t ha t a r t ati wi t hout e ffe t t he dis t a ce S S H e e R d R e ter i to d o eque t ly t he R S S o ly by t heir d i ffere e R i de error f cir le I does t e t er i t o t he e pre i We m ight i d ee d have further abbrevi at e d t he work by m aki g R 0 be fore m ul t iplyi g to f r m t he eq a t io ( 1) i f a ft er t he m ul t i pli ca t io w e re place d R by ( R We m y u ppose tha t t he i de err r f circle II is A i w h i h case R d R h oul d be re pla e d by A d R A We have alr a dy sh w how A d le ft bserva t i s f t he a m e bj e t m igh t be f u d by right It m y however be d e t er m i e d otherwise as will prese t ly appear d this for m ul be B y assig i g sui t able values to q m a d e to a pply to the follo w i g astro o m ical i s t ru m e ts —the alta im u t h t he m erid ia circle the pri m e Ver tical i s t ru m e t the equa t orial d the al m uca tar W e shall see la t er t hat f the shoul d be each as ear ero as possible m eri dia circle g d d qui t e arbi t rary d fo t he al m uca tar q is the lati t u d e Th followi g ge eral proo f will Sho w t hat the co m plete t heory f for m ula each f the i s t ru men ts a m e d must be i cluded i this si n

c

,

,

o

s

O

co s

i n r cos r s q

co s

on

n

on

,

c

,

n

,

n

an

,

an

,

s n

,

s

n c

.

n c

n

,

s n

,

o



c

n

,

n s

n

n

~

x

n

n

n o

c

o

n

x

ss o n

n

n

o

n

n

u

s

a

,

,

x

o

o

n

,

,

n



n

.

c



an

,

,

S



an

c

o

a

,

n

,

,

an

n

n

,

,

an

an

an

r

e

o

n

n

s

O

c

n

r

a

,

n

.

.

,

n

ca n

n

n

n

,

or

.

z

n

r

an

n

n

o

,

n

n

o

,

n n

z

on

O

an

n

e

.

,

r

.

n

o

n

n

n

on e

2 9— 2

.

TH E

G E NE

RAL I Z ED

RUM ENT

I NST

[OH

XXI

.

Fro m y such i s t ru m e t w e d em a d n m ore t ha t hat the two read i gs R a d R O b t ai e d by directi g t he i stru m e t t ar t icular star shall e able us to calcula t e t he coordi a t es 8 y p f t ha t star free fr m i stru m e t al errors L t S S S be three sta d ard stars f w hich t he coor d i ate are k ow d le t each f t h e e s t a s be bserve d wi t h t h ge erali ed i s t ru m e t wit h re ults R R R R respectively S bs t i t uti g f each o f the three pairs ( S i t h e ty pical for m ula ( i ) we ob t ai three i d e (S m d e e t equa t io s Fro these equa t io s be d A n p g will t here be y i d fi i t e e i the solutio fo i N fou d each c se w e m y regar d t hese qua ti t ies as a ppro i m ately k ow so tha t t o obtai t he accurate values f g d A we hall have t o solve o ly li ear equa t io s We m y t hus regar d ( i ) as equatio co ecti g R R d k ow qua ti t ies We L t S be t h e star whose coor d i a t es 8 are sought d subs t itu t e their w rite the equa t io ( 1) f t he pair ( S R We t hus have equatio n u m erical values f co ec t i g t he coordi ates 8 f y star w i t h i t s c rresp di g R R d k ow u m erical qua t itie Whe we subs t itute f R d R t h values bserved f S the for m ula re duces t o a u m erical rela t io be t wee the d 8 f the particular tar S Fro m t he pair ( S S ) w e fi d i like m a er a t her qui t e i depe de t u m erical equatio i volvi g 8 A ho w ever t w equa t io s are o t ge erally su ffi cie t t deter m i e 8 without T his equa a m bigui t y w e b t ai a t hird equatio fro m ( S ti is t i de pe de t f the others bu t i f we m ake = si 8 h h cos cos cos 8 w e all obtai t ree li ear equa 8 si y f d 8 f d t io s i by t he solutio w hich are ou w ithou t a y a m bigui ty ectio wi t h t he di ff ere t A l l the or d i ary for m ulae used i co i n stru m e ts a m e d be d e d uce d as particular cases o f t he ge eral equatio mal l qfi t i t i uch th at th e r ec d d S h w th at i f g d b E f ll w higher p wer m y b m itted f r mula ( i ) m y b w ritt n

n

an



n

n

n

o

n

n

n

n

n

n

an

o

o

e

,

n

n

,

,

z

n

n

n

o

s

o

n

u

n

n

n



,

n

n

e

r

,

n

a,

an

,

ca

n

,

r

,

x

O

n

n

n

n

nn

n

,

ss

n

n

n

n

n

n

,

,

,

a

n

,

or

an

a

,,

,

.

or

.

e

,

n

n

s

O

n

,

n

r

s

n

.

,

.

n

an

,

a

n

3

,

o

n

r an

n

,

S

a

.

n

an

a,

,

an

,

n

n

.

n

or

or

,

,

n

an

n

n

,

n

n

on

n o

a

n

n

a

,

,

o

s

n n

n

n

.

n o

a,

n

s,

.

o

n

o

,

n

a,

n

n

n

o

S

n

z

n

a

,

n a,

z

,

an

n

n

or

,

n

O

,

n

on

n

.

n

n

n

s

a

n

o

or

O

n

n

an

n

e

n

n

o

n

n



an

,

a,

n

an

.

an

a,,

n

n n



a,

n

e

n

n

n

an

o

,

.

n

n

n

n

n n

n

n

can

n

n

x

an

o

.

an

e s

r

1

es s

on

s



o

si n

s

a

e o

8, S i n 82 + c o s 8, co s

R,

+ g si n



,

co s

8,

o

co s

(

a

,

—a

(R l R zH — R si n R R ,) ( , ( , cos

R,



co s



'

-

2

e n as

e

a

o

o

s :

)

si n

R,



si n

R2



’ — — co s c o s R R R Z) ( , ( 1

an

T H E G ENE

be t he ositi p

If N t he

n e



w

o

bu t

O

n

RUM E NT

n

n

n

n

N N N = 18 0



N N

NN



°



n

n

n

7

s

NN

N i

7; s n

,

T

hus we obtai

AX

i

the

n

cos 9AR cos 9A R

,

.

three for mulae A9 = n

S n

,

N N

8

t he

n

MN



AX

; si n

.

n

NS s i n SN L 7

n

,

’”



d N

co ec 9

a



XX I

-

s n

n

,

SN

i

an

.

,

N NN

7; S n

,

CH

9



si n

on

cos S N L whe ce Si 9A R cos 8 ; i (X ) I f fi ally a perpe d icular N N is draw to 9A R

Si n

or

,

[

n

o





A "

I NST

f ositio t he poi t origi ally a t N p f t he asce di g o d e f N V M N the w

n e

on

RAL IZ E D

9A R

co s

i

7) s n

— X (

(X

) cos 8 01) cos 8

a

cos 9A R ) i 8 W e shall w i ves t igate t he e ffect u p n d 8 f a cha ge f 9 i to 9 + A 9 i t bei g su ppo e d t ha t X g R R re m ai u altere d w hile t his cha ge t akes place T h cha ge is f course equivale t t o a r ta t io f t he fi g ure N VK S rou d N through a n a gle A 9 w hile this figure re m ai s u altered i for m N S is u cha ge d d S m oves per pe dicular t o N S through t he s m all d is t a ce si N S A 9 it is obvious fro m the figure tha t this i crea e o f 9 di mi ishes t he d ecli atio by AX

1

n o

o

n

n

o

s n

n

,

n

s

n

o

n

.

O

O

.

,

n

N S s i n N SL A 9

We thus bt i

n

,

,

n

n

n

Si n

r

n

n

s



n

an

n

n

n

o

n

n

o

e

.

n

n

,

,

n

n

a an

si n

n

(X

at

) A9

.

a n

We have als

A 8 = —si u

— a A9 X ( )

o

cos (X

a

) ta n 8 A 9

l t o f t h e di ff e r e n t i a l f o r m u l a e T h for m ulae ( i ) ( ii ) d ( iii ) 1 5 0 will e able us o w to d e d uce fro m the fir t f t he for m ulae f the ge erali e d i s t ru m e t 1 4 2 t he re m ai i g for m ulae ( 2 ) d 5 Th first for m ula is *

15 1

A pp i c a i o n

.

e

,

,

s

an

,

o

n

,

.

n

,

n

or

n

z

an

e

si n

8= —

co s Si n co s

Si n si n

9 si n q si n 9 i n s q

r

cos cos R 9 cos g cos i R 9 cos i R cos R 9 si g cos cos R s i R r

r s n

n





r S n

r

n

n



n

n

1 5 0—1 5 2]

t his

T HE

G EN E

RA L I Z ED

UM ENT

I N ST R

45 5

ust be u iversally t r ue i t m ust be t rue i f 9 be i creased by A 9 while 8 receives its c rrespo di g variatio Perf r mi g the di ffere tiatio substitu t i g f A 8 from ( ii ) d dividi g by A 9 w e have i ( X — a ) cos 8 = — i 9 i g s i cos 9 cos q i cos R si 9 cos q cos s i R cos 9 cos S R cos R cos 9 i g cos cos R i R T hus we see ho w t he first leads t o the seco d f t he fu da m e tal for m ulae 14 2 Fi ally le t the equa t io j ust ob t ai ed be sub mi t te d t o the d i ff ere t iatio as alrea dy e plai ed i n 1 5 0 wi t h respect to A 9 A X A R all o t her qua t i t ies re m ai i g co sta t d w e have cos ( X ) 8 AX i 8A9 i S i R cos cos R B ( q i g cos S i R i R ) cos 9 A R E li m i ati g A 9 A R A X by equation ( i ) 15 0 w b t ai t he third f the t h ree fu da me tal for m ulae f the ge erali ed i stru m e t 14 2 i cos ( X ) cos 8 cos g si r s i R cos cos B cos R As

m

n

n

o

n

n

n

n

,

n

n

or

o

.

an

n

n

,

S n

s n

s n

n r

s n r

n



n

r



in

r

'

s n

r

S n

.

o

n

n

n

.

n

n

n

,

n

n

n

x

n

,

a

n

co s

n

,

,

an

r

v z

,

n



co s



s n

.

,

n

,

r

,

o

n

n

n r s n

s n

n

n

n

co s

S n

n

,

e

,

n

O

n

n

or

z

.

n

n

a



r

si n

q

c o s r s in

hus we see how the t hir d f the three fu also be de duce d fro m t he fir t T

o

s

n

R si n R

da m

’ .

e tal for m ulae m n

a

y

.

tr a n i t c i r c l e A i m porta t ase f t he ge erali e d i st u m e t is tha t i which a is I is Si m ply the ear t h i t sel f I f the equator is take the f da m e t al pla e M N Fig 1 1 4 the i ce this is or m al d with a sui t able t o the ear t h s a i w e m us t have adj ustm e t f the origi the coordi a t es 8 will beco m e t he R A the Th poi ter which is carried wi t h t he earth i d d ecl circle I ( i this case t he cele tial d iur al rota t io will i d icate equator ) a readi g R w hich c diff er o ly by a con sta t fro m the 15 2

Th

.

e

ge n

e r al i z e

n

c

n

d

s

o

.

n

x

n



n

an

.

n

r

n

n

n

.

u n

as

n

z

n

,

.

n

,

an

x s

o

n

e

n

S n

a,

n

.

n

n

n

n

n

an

s

n

on

n

n

.

456

TH E

G EN E

R AL I Z ED

si dereal ti me 3 This co s t a t the fu dam e tal equ a t io s n

.

n

n

q

cos



R

co s r co s

R =

s

'

co s

be i clu de d become

+

r

[c a

n

in X

an

8 c o s (S + X —

si n

n

t he g e n e r a li z e d

tr a n s i t

ci rc l e

X—



n

n

o

c

d t hu s

)

a

8

si n

x xi

8

si n

cos cos 8 s i a S ( ) q g d y isti guish this ase f the ge erali e d i str si n r

ma

m q sm

RUM EN T

ma y

n

n

c o s r si n

We

I N ST

n

z

u

m

e t as n

.

e pressio s f t h e right a ce si d the d ecli a t io 8 f the n ole f circle II i the ge erali e d t ra sit circle we observe that i f had bee 90 the tele cop e w ould be n eces arily always poi t e d t o 8 a d there f re by substi t utio n f 90 f i equati s ( i ) they m us t be sa t isfie d by a 8 w he ce — i i n cos 8 s (S + X + q 8 cos 9 cos 8 si X ) 1 gs From the fi rst w e obtai 8 q fo w e rej ect t he solu tio 18 0 9 becau e T h secon d equation requires 0 3l q :l q d f t hese t h for m er that S + X shall be ei t her 90 is i ad missible f it would o t sa t i fy the third equatio H e ce fo t he coordi ates o f the ole f circle 1 1 we have To fi n d

n

x

n

o

0

o

n

do,

n

°

n

n

n

z

s

°

o

o

on

n

ao an

s

n

0,

on

n

n

r

r

s

or

n

0

,,

or

l

s

s n

s1n

in

0

>

°

do

r

d

equation s ( i ) m

cos 8

0

R cos r cos R

c o s r si n

a

an

o

e

n

s

n

a0

an

or

n

n

n

e

>

or

.

r

0

°

s

n

do

n

0

n

°

co

o

n

.

o

80 = q

= S + X

,

be writte t hus y n



80 8 111

i

s n

cos 8



si n

si n

r

8



(a o

)

a

cos 8 cos 8 cos ( ) Whe the ge erali e d tra sit circle is still f rther speciali e d to for m the me i di ci c l e o f our observa t ories t he telescope m ust be a t right a gles to a is 11 so t ha t = O d a is 11 m us t lie d e eas t i stru m e t m y be i t w posi t io s d w est Th acc rdi g as the ole o f circle 11 is i t h e eas t poi t f t h e h i or the w est poi t I the for m er case nd t i ii bec m e ) ( q R = s i 8 ; cos R = cos 8 3 ( cos 8 si ( — S ) 0 s fro m Which w e have two soluti o s i si n r

83, si n 8

sin

ao

0

a

(

n

n

r

x

an

o

n

1n

on s ’

n

also

o

n

o r zo n

o

a

n

o

n



a

00

,

v z

n

.

8=R d

x

n

n

n

an

a

n

n

n

.

z

an

r

,

e

.

n

u a

u

r

an

n

u

n

z

’ ,

8 = 18 0 é R °

~

or

:

,

C H A PT E R

XX I I

F UN D A M E NT A L I N S T RU M E NTS

TH E

.

O F T H E O B SERVAT O RY

readi g f a graduat d ci rcle Th err r f e cce t r icity i t h grad ua ted ci r c le f d i vi i T h err r i t h g rad uat ed ci rc le T h t ra it i t r um e t d t h m r i d i a ci rc le f th rr r f c ll imati D ter m i ati rr r f level D e term i ati f th D e t rm i ati f t h err r f a i muth d t h err r Th e

n

e

o

e

o

e

ns

e

e

e

o

o

s

n

o

e

e

n

s on

n s

n

e

an

n

e

n

on

o

e

e

o

o

n

on

o

e

e

o

o

n

on

o

e

o

o

et rm i ati ci rcl T h al ta i m uth

D

on

n

.

o

f t h e de

e

n

o

on

z

c l i ati n

an

a tar

of

on

e

o

by the m

s

o

f t he

erid ia

n

e

e

15 3

Th e

.

rea

uat ri al tele c pe

d the

an

z

di n g

o

f

eq

o

s

gr a d u a t e d

a

o

.

l

circ e

.

We shal l fi rs t co sid er t h theory f the gra dua t e d circle as actually e m ploye d i the co s t ructio o f as t ro o m ical i s t ru m e t s m etal d rou n d the Th circle so u ed is ge erally m a d e f g u circu m feren ce a t hi stri p f silver or other sui t able m e t al is i laid traits as t hey are o ft e called n which t he d ividi g li es are e grave d T h e pri cipal t raits are u m bere d fro m 0 to thus d ivi di g the circu m fere ce i t o 360 equal parts or d eg ees I so m e B e tw ee each t wo t raits t here are subsi diary d ivisio s d M A RTI N S m eri dia o f t he fi est i stru m e t s such as PI ST O R circles there are fe w er t ha 2 9 subsidiary traits i every degre e d t hus the circu m fere ce is really gra d uated to s paces o f I t is ho w ever m re usual i ordi ry i s t ru m e ts to fin d trai t s a t o ly 5 or 10 i tervals further subdivisio s f the circu mfere ce bet w ee two Th co secu t ive traits are obtai ed as will be prese tly e plai e d by the hel p o f m icroscopes so th a t seco ds d eve te ths f n

e

n

n

s

e

o

an

-



o r

n

n

°

n

n

n

r

n

n

n

n

n

an

n

n o

.

n

.



n

n

.

n

n

.

n

n

n

n

o

n

n

n

n

n

o

o

n

n

an

n

o

'

e

n

n

'

n

n

n a

.

n

o

n

n

,

n

n

n

,

n

an

n

x

n

,

n

o

a

F U N D A M ENTAL

1 5 3]

I NST

R UM E NTS

seco d c be taken accou t f I s m all i stru me t s such as f t he i t erval be t wee t rai t s is e ffec t e d se ta ts the subd ivisi by t he ver ier a co t riva ce we m y regar d as ge erally k ow fro m its e m pl oy m e t i t he baro m e t er I f the fi e d poi t er ha ppe e d to coi ci d e e ac t ly wi t h f t he t rai t s o t he circle the by the readi g f t he cir le f tha t ar t icular osi t io we are to u ders t a d the u ber egrees m f d p p It will ho w ever d m i u t es by w hich such t ait is desig ate d m ost usually ha ppe t hat the po i ter is t i coi cide ce wi t h T rea d t he circle u der these circu m s t a ce f t h e traits w e require artifice by w hich t he s pace bet w ee the t raits be subdivided For t hi reaso a m o g o t hers the poi ter f t he ge erali e d i stru me t is su persede d i t he m eridia circle by t he s pider li e f t he rea d i g m icrosco pe Th m icrosco pe is attached to a fi ed su ppor t d i so d irec t ed tha t its field f View shows a s m all f t he d ivi d e d cir c le ( Fig Th por t io S pi d er li e A B is s t retched across the f cus f the m icrosco pe d co seque tly the i m ages f two c se utive t rai t s T d T d t h e l i e A B are bo t h show d is t i c t ly to observer who looks t hrough the eye iece f t he m icr sco e o p p T h m easure m e t is e ff ec t ed by the li e F m 115 A B whi h by m ea s o f a care fully wrought screw w ith a divi d ed head be m oved parallel t itsel f a d f m h er e icul rly to the a is t he icrosco e osi t io d T f p p p p A B is read by a scale w hich sho w s t he u mber o f c m plete rev lu t io s f t he micro m etric scre w d t he divided h ead shows the revolutio which is to be add e d thereto fractio al part f W he t he po iti f the screw i such tha t i t s rea di g is ero t he li e A B m y be reg rded as taki g t he place o f the p i t er We o w m ove A B fro m the ero positio d bri g it to oi cid e ce with T ( < T ) Th readi g f t he scale d t he screw he d w ill the give the dis ta ce from t he poi ter to T where a si gle revolutio o f the t h e u it is the distan ce A B a d va ces i cre w T h e value f t his u i t i seco ds f arc is de t er min ed as e o f t he co sta ts f the i s t ru m e t by m easure m e t f k n o w a gular dista ces by the m icrom e t er T hus w e fi d t he an

n

n

on

n

x

n

a

n

n

n

n

n

,

n

n

n

no

o

n

n

n

n

s

.

n

n

n

n

o

n

n

o

s

n

n

n

n

n

o

s

z

or

.

an

n

c

n

n

ca n

n

on e o

o

n

r

.

x

n

n

o

n

.

n

on e

n

n

n

n

an

n

n

n

n

x

n

.

o

n

,

o

.

e

x

an

s

o

n

o

e

.

n

o

o

an

o

an

n

n

c

on

an

I

n

n

2

n

an

o

.

n

e

n

.

c

,

n

ca n

n

x

a

o

o

o

,

one

o

n

on

s

n

s

2

e

.

s

n

n

n

o

.

n

n

n

o

an

n

n

n

n

.

n

an

o

n

n

on

n

n

n

z

o n

z

I

o

n

n

n

a

o

.

a

n

n

o

an

n

c

n

n

o

a

n

n

e

.

n

n

.

]

,

n

n

o

n

n

n

.

n

o

F U ND A M EN TAL

I NST

RUM E NTS

[

xxn

ca

u m ber f seco d d fractio al parts f a seco d from T t o the poi t er Th qua tity so f u d add e d to the d egrees a d m i u t es pro per t o T gives t he readi g f t he cir le Th si gle li e A B m y be a d va t age usly re placed by two l l l li clo e t oge t her I this ase the i stru m e t is set p f readi g by pla c i g t he t w li es so t hat t he t rai t T lie sym m etri ally betwee t he m It is f u d that t his be d o e with grea t er e a t i t ude t ha by t ryi g t o bri g a i gle li e i t o i ide w i t h t he trai t E If whe A B i plac ed d T t h m ic r m ter crew read w he T t h m ic r m et r c rew r ad A B i plac ed fi d t h r ad i g f t h ci r c le wh e t h m ic r m et r c rew r ad I i a u m ed th at t h i t rval b etw e t w c ecuti ve t rait i d th at t h r ad i g f th crew i crea e fr m left t right O rev l uti f t h crew c r e p d i ec d t 12 0 /( ) d acc rd i gly t h re d i g i o

n

n

an

s

n

n

n

e

.

o

n

n

n

'

ara

e

n es

s

n

n

a

n

or

n ce

x

o

o

n

n

s

l

o

n

n

ca n

n

n

n

n

S n

n



.

n

.

s

on

on

s

n

.

n

.

c

c

c

o

n

x

co n c

n

n

c

o

n

.

I

,

n

o

I

e

n

e

e

2

e

n

e

I

o

o

e

o

e

s

s

e

it

s

s

e

s

e

s ”2 ,

t

.

n

e

an

it ,

n

e

e

ss

s

.

e

n

e

e s

n

ne

o

n

o

s

o

s

o

s

on

o

o

a

e

n

on s

e

an

s

e

e

n

o

.

s

s

o r

on

s

n

on

s

s

n2 — u 1

o

an

s

n

-

T1 + 1 2 0

(

—fl

n

i

n z— n i

l/(

l

t r i c i t y i n t h e gr a d u a t e d c i r c l e Th error f ecce trici t y arises fro m t he abse ce f coi ci de ce bet w ee t he ce t re 0 ( Fig 1 1 6) ro d which t he circle w ro t a t e d w he t he d ivid i g e gi e by which t he gra dua t io s were e grave d d t he ce t re 0 ab u t which t h e circle ro t a t es whe m e i use ar t f a m eri ia ircle or o t her as ro o m ical i s t ru t t d p L t 0 A; m ) m eet ) be t he rad iu f t he circle d let 0 0 the cir cle i A W e t ake t w o t her d A t he ircle d we poi t s A shall su ppose t ha t R R R are the gra duatio s c rrespo di g to A A A L e t t h e i stru m e t be ro t ate d so t ha t a li e origi ally a t O A is m ove d T he to 0 A A O A is t he a gle t hrough which t he i s t ru m e t has really bee t r e d t hough the i di a t e d F 116 by the poi ter is 1 54

Th e

.

e

e rr o r

o

n

n

f

e ccen

an

n

n

as

n

-

l

n

an

2

o n

o

c

n

n

n

0,



1

n

.

u

-

2.

I

n

n

2

I

n

n

an

,

'

2



2

n



.

o

,,

n

n

n

an

s o

O.

n

n

o

a

n

n

.

n c

o

e

as

n



n

n

u n

.

n

,

o

n

n

n

.

n

on

n

o

n

a re

n

n

c

IG '

n

A ,A , = R 2

°

4

error aused by ecce tricity is t he d i ffere ce be t wee the a gles subte ded b y A A at 0 d 0 respectively I f A A O A h the n T he

n

c

n

1

4

an

2

O A i0 = '

,

[

n



'

n

n

'

;

A o OA l ,

$ 1

Bl

O

R O)

.

1

«

F UN D A M ENTA L

I N ST

RUM E NTS

m h t i m t b ci r cu lar r v th a t a u i g p err r f ce teri g i d icat d b y the e read i g f t h ci r cle 0 0 48 f t h rad iu o

e

o

n

ss

,

o

n

o

e

n

n

u tracti

s

e

equati

g

n

r

( i)

on

f

x

/a

$

wh re e

R2

an

d RI

thi rd p iti os

an

tak

¢

R3

tted letter th ree p iti os

m/a

:

(c o s R I

,

o

e

[ Math

Re )

thi equati

ma y b e

s

R2) +y

co s

ri

T p]

.

Ra ) —m s i n (R I

R0 ,

se c

(si n

on

R2

sin

o

on

s

s

o

os o

e

s

.

writt

en

R I ), o

os

o n s, a n



e

O

si n

RI)

3

.

e

on

c rre p d t t h fir t t w p iti fi r t m icr c pe If $ b A O A

the

of

3:

Rl

3:

(c o s R I

or

r

on s

an

dy

R 3) + g/

Rl + x ’

an

(S i n

(c o s R l

we m

,

n

R2

si n



(Si n

(c o s R l

R2 , R 3 , R l

R1

ci rcle th e

f the

cos

R2

R3



3

d

fo r t h e



,

y

R3

the

s

u t h ave

.

ec

on

d m

icro

s

(s i n R 2

Sin

Rl



si n

Rl



R 1)

) + y (s i n



R3



ive r ad i gs w h ave qu a tity wa t ed



is the

d

of

gs

'

R 2 , R3 t h e g '



n

R3

R I)

si n

cos

(s i n

read i



R 2 ) + g/

cos

R3) + 3 /

co s

R 2 , R 3 t o be t h e

,

Rl + x

(c o s RI

(c o s RI ’



R3 n

Rl

co s

'

u tituti g f equati fo x

s



ons o

R2

S bs

dy

RI + 3:



R3

( Rz

’ = A0 0 A 2 2

gs

n

do

e

RI

R2

d

is

s

o

on

i n th e

s 0 0 pe

R1 ) + m s i n

RI + x

read i

4' s If w e

h ave

0 an

R2

th e

a re

os

\lx1

’ = xx l 1 A0 0 A1

ii

c ec R

=m

— 2

m ( ) we

o

(l z

ake

n

x xu

c rrectly grad ua ted t h appr x i mat ly t h e fracti

d

an

.

‘’

If w e m

e

o

e

s o

S b

r

e

[GEL

n

e

n

n

e

n

t wo

.

u a te d c i r c l e W e have h i t her t o a su m e d t ha t t he e gravi g o f t he t rai t s o n a gradua t ed circle has succeede d i t he obj ec t d esired w hich is o f course to m ake the i tervals be t wee every pair o f co secutive t rai t equal B t eve t h e m ost per fec t work m a shi p falls short f t he accuracy de m a d e d w he t he m ore refi e d i vestigatio s o f s t ro o my are bei g co ducte d C o secutive traits are t stric t ly equi dis t a t d w e have t o co sid er ho w the observa t io s m y be c mbi e d so as to be cleare d as f ossible ro f m h t e p e ffec t s o f E rrors o f D ivisio S u h errors are o d oubt s m all adj ust the ac t ual place f each Th e skil ful i stru m e t m ker t rait so t hat i t w ill t be m ore t ha a f w te th f a seco d fro m the place i t ought t o occu py bu t i t he bes t w ork such errors t be overlooke d m ust Firs t T h e T h e errors m y be d ivi d e d i to t w o classes sys t em atic errors w hich rise d fall grad ually fro m t rait t o trait accor di g to so m e ki d f law S eco d Th casual er ors which ee m to foll w y la w d vary irregularly from t i i t to t d t rait 15 5

Th e

.

e rr o r s

o

f di v i si o n

in

t h e gr a d

s

n

.

n

n

,

n

s

n

n

o

n

n

n

n

n

a

n

n

u

.

n

n

n

n

.

n o

n

an

n

ar

n

o

n



n

n

.

ca n

o

e

n

n o

n

s o

n

n

,

n o

as

c

.

a

n

n



a

.

n

a

.

.

an

n

n

o

n o .

s

o

o

an

n

.

an

.

e

r

a

F U ND A M E N TA L

1 5 44 5 5 ]

I NS T

RUM ENT S

to t he la t ter there is cer t ai m ethod f comple t ely eli mi a t i g their e ff ect u less by t he act al d e t er m i a t io f t he error o f each se parate t rait all rou d t he cir u m fere ce followe d by a rigorous applica t io f its err r t o t he readi g f every trait i volve d A s t his w ould require a se para t e i ves t iga t i f ea h o e o f several thousa d traits the task w oul d be a colo sal e t ge erally a t te m pte d T h e errors f i divid ual d i d ee d is t rait are t este d a t di ffere t par t s f the cir le d i f t hey are fou d t be m all i t m y the be hope d t h a t i t he m ea f several observa t io s t ake wi t h everal microscopes t he i flue ce t a ppreciably a ff ec t the fi al re ul t o f t he casual errors w ill A regar d s t he syste m atic errors i t he d ivisio f t he circle t he a sura ce o f t heir d isappeara ce fro m t he fi al re ul t has a m ore sa t is fact ry fou d atio E rrors f t his class m y arise fro m t h e m echa is m use d i t he d ividi g e gi es by w hich t he trai t s t he circle Th t oothe d wheels i t he d ivid i g e e g rave d e gi e are t d ca ot be abs lu t ely t ruly sha pe d d absolutely ce t re d S u h errors i t he trai t s m y t o a large e t e t be d ee m e d perio d ic so t ha t whe t he wheels f the e gi e have per for m e d a cer tai u m ber f revolutio s d a cer t ai ad va ce has bee t he e gravi g t he sa me errors will be re pea t ed T his is m a de i t leas t f t he chie f sources fro m which sys t e m a t ic errors arise i t he places f the t raits d let R A R w h ere L t R be t he read i g f a certai trait A R is a s m all qua t i t y be t he t rue rea d i g f t hat poi t t he circle a t which t he t rait is ac t ually itua t e d T he A R is t he error f t ha t t rait We shall assu m e that A R be repre e t e d by a e pressio f the for m As

no

n

n

n

n

o

u

n

n

n

n

o

c

n

o

n

a n

on

or

n

n o

n

s

o

o

.

n

n

o

c

n

n

n

a r

o n

n

n o

nn

c

.

n

a

n

n

an

n

n

n

.

o

n

o

.

e

o

n

n

an

n

n

,

s

o

n

n

n

n

one

x

o

n

n

an

a

o

n

n

o

n

n

n

n

n

,

a

e

.

an

s

o

n

.

o

n

.

n

n

n

n

o

n

s

n

n

n

n

,

n o

n

n

s

s

,

n

n

n

o

on

an

n

a

n

s

c

s

s

n

,

n

n

o

o

n

.

n

n

n

o

on

n

.

ca n

.

x

,

s

n

o

AR = A 0 + A l + RI

co s

R + A g co s 2R + & c

sin

R

B 2 sin 2 R + & c

.

.

w here A A are con stan t s w h ose values d e pe n d B u pon t he i n divi d ual peculiarities o f t he graduatio n It is so m e jus t ifi c atio n o f t his assu m pt io n t hat R a n d R 3 60 o f course i n d icate o n ly the s a m e rea d i n g a n d t here fore w he n A R is e xpresse d i n t er m s o f R t he e xpres si o n m u s t be u n al t ere d i f R be c ha n ged i n t o R + T his co n d i t io n is obv i ously fulfille d i f A R has t he fo r m ( i) It shoul d be n o t e d t ha t i n the n ecessary li m i t a t io n o f t he n u m ber o f ter m s o f the series we ta c i t ly assu m e tha t t here is n o ,,

1

1

,

,

.

°

,

.

F U ND A M EN TAL

4 64

RUM ENTS

[OH

I NST

xx u

.

large break i t h e co t inuity f t h e s l l rou d the circu m fere ce We assu me i fact t hat h g i the error at di ffer e t m f oi ts rou d t he circu ere ce d t t ake lace very abru t ly p p p d this o f course w oul d be the ca e w i t h care ful w ork m a shi p D isco t i ui t y is o t presu m e d d A are each R fi ite d t heir u m ber is s m all We m y illus t ra t e t his re mark as follows S u pp se the dividi g e gi e started fro m 0 0 d i e gravi g the t rai t s rou d the circu m fere ce persiste tly m ad e each trai t hu d redth f a seco d too f fr m the precedi g t rai t but m ad e o t her error T h is error w oul d accu m ula t e so that the trait 35 9 5 5 w oul d have error o f w hile the error f the e t t rai t i 0 a ero A t t his o place t he d i ff ere ce f t w co secutive errors w hile i all other cases the d i ffere ce is o ly w ill be e ff ec t a case o f disco ti ui ty S uch arra ge me t f T his i i i w hich the d isco ti ui t y w as eve s t ill m ore the errors viole t coul d as is well k ow be repre e t e d i a series o f the ki d w are c id eri g i f we w ere allo w ed to t ake a great u mber AR but i t coul d o ly be very ill p f t er m s i t he series f se t e d i f w e were restricted to a fe w ter m s It w ill be assu m e d i wha t follows t hat a s m all u m ber f t er m s i the e pressi f ar t icular circle A R does e prese t t he errors f y p m icro c pes sy m m e t rically place d S u ppose t ha t there are rou d t h e circle d t hat t he correspo d i g readi gs f t he circle L e t the circle be ow i a certai posi t io are R ro t ate d through a gle X d le t the readi gs be R R R I f the i s t ru m e t w ere theoretically per fect we h ul d f course have “

i

n

o

n

n

e

n

.

c

n

n

n

an

o

an

rr o r

es

a

n

n

s

n

n o

,

s

n

n

an

n

an

n

n

n

I

,

.

a

o

.

°

n

n



an

n

n

ar

n

n

n

n

n

n

on e

n

n

o

o

n

n

n

ne

.

o

n

or

n

one

o

o

n

IS

.

n

an

n

n

o

n

n

s

,

e

°

n

.

n

n

n

n

n

on s

e

n

n

,

n

.

,

n

n

,

.



x

n

s

o

n o

°

z

.

n

or

n

n

,

n

re

re

.

n

n

r

o

s

an

n

I

o

n

,

an

n



n

l

n

n

S



—R ’ 2

Rl

O wi n g

n



n

n

or

o

n

an

n

on

.

n

n

x

an

o

n

n



2

,

o

n

.

o

R ,,

however t o errors o f d ivisio d o t her errors uch f i sta ce the error f ec e t rici ty w hich w e have already X i d e e d t hese qua tities w ill o t be all equal d w e take f f all t he d i ff ere t qua titie ( R 8 0 as t h e m ea (R i dica t ed by each m icrosco pe se parately two m icroscopes I f 9 be approxi m ately the a gle bet w ee the 9 = 360 T h e readi g R f the firs t m icroscope whe d uly correc t ed by the a dd i t io o f A R will be n

s

as

n

r

o

c

n

s

or

co n

or

an

n

s

n

n

o

,

n

n

,

an

n

,

,

n

l

2

5

.

.

.

n

n

n

n

°

n

.

I

n

R1 + A 0 + Al RI

n

o

1

co s

R 1 + A z c o s 2 R1

si n

R 1 + B g si n 2 R 1

F U N D A M E NT AL

I NS T

RUM EN TS

[

OH

x xn

.

su ppose t he circle tur e d i t o a d iff ere t posi tio n R Th e a gle X t hrough which whe t he rea di gs are t he circle has bee tur e d is as already s t t e d t he m ea o f t he rea di g i the two po i t io s We m y as d i ff ere ces f t he illus t ra t io t ake t he m os t usual case f f ur m icr sc pes whe w e h ave i f k :l 1 1 Le t

u s now

o

a

,

n

n

s

o

n

,

s

,

n

a

.

o

o

o

,

c os

an

,

n

,

,

A4 (

B4

It

n

71.

>

,

n

2

n

n

n



n

n

n

n

n

cos 4R

cos

,

si n

4B ]

(s i n

( cos 8 R

A8

B8

4

( Si n

8 R,

s 1n

o t ewor t hy t ha t A A A B B B have d i appeared fro m t his for m ula Th e ter m s corresp d i g t o these qua titie are however by f t he m ost i m por t a t i t he e pres io s f A R T hese t er m s will i clu d e m os t f t he e ff ec t s o f sys t e m a t ic errors i t h divisi d as has bee alrea dy show all t he e ff ects f the error i ecce t ricity T hus by taki g readi g a t four equi d ista t m icroscopes X is d e t er m i e d free fro m t he pri ci pal e rro r s f t he gra d ua t e d circle B y observi g a case i w hich X is k ow we o btai a li ear A m i i B t her i ilar observatio s w ill t A O q p vid e fur t her equa t io s d fro m a su ffi cie tly large u mber t he val es o f be d e t er mi e d by the m e t hods f B A B least squares I t m y be s t ate d ge erally t hat the e ffect is t o eed at t e tio S ho w that t h ese f ur qua t i t ies are too s m all t o fi d i g t he a gle t hrough which the circle h bee T hus f rotated w e si mply use t he for m ula is

n

2

,

,

, ,

ar

n

n

on

an

n

s

x

n

n

s

or

.

o

n

n

,

n

n

s

3

,

n

on

.

e

2

,

n

o

,

n

n

.

s

n

n

o

n

.

n

n

u a

on

n

u

4,

n

an

S,

8

ca n

n

o

n

n

n

n

n

ro

n

n

o

or

n

n

n

a

.

n

s

8,

4,

4,

n

n

n

as

n

R4)

-

.

n

l

Fi ally the reaso s f havi g eve n u m ber f readi g m icroscopes place d sy mm e t rically rou d a gra duat ed circle m y be su mm arised thus m f We eli i ate the e ects e ce t ricity by t aki g t he 1 f f ( ) m ea o f t he rea d i gs f two m i rosco pes at the e ds f a d ia m e t er d a f ti i t t he e d s f several d ia m e t ers ( 2 ) We eli m i a t e the greater part f the er ors i divisio by t aki g t h e m ea f t he rea di gs f four m icroscopes place d at i t ervals f n

n

n

or

an

n

n

o

n

n

an

o

n

n

a

or

or

o

n

n

n

c

n

n

n

c

o

o

n

o

o

.

n

n

a

r

n

n

o

o

t r a n s i t i n tr u m e n t a n d th e m e r i di a n c i r c l e I t has bee how i 1 5 2 that the theory o f the ge erali e d i stru m e t i lu des a m o g m a y other special c a ses the theory o f 1 56

Th e

.

s

n

n

n

n c

s

n

.

n

n

n

n

z

F U N D A M E N T AL

1 5 5 — 1 5 6]

I N ST

RUM EN TS

4 67

t he i n s t ru m e n t k n ow n as the m eridia n circle or t ra n si t circle by w hich z e n it h d is t a n ces as well as t r a n sits c a n be observe d Th e i mpor t an ce o f t h e m eri d ian circle is however so grea t bein g as i t is t he fu n dam e n tal i n s t ru m e n t o f t he as t ro n o m ical ob s erva t o ry t hat it is use ful t o d evelo p i t s t heory i n a n o t her a n d m ore direct .

,

,

,

,

m

a er nn

.

ge eral d escriptio f t he m eri dia circle m y be briefly su m m ari e d as follows A g rad ua t e d circle is rigidly a tt ache d t o a i A t hr ugh i t s e t re d or m al t i t pla e A telesco pe whose o pt ical a is is per pe d icular t A d t here fore parallel t o t he gra d ua t e d cir le is also rigid ly at t ache d t o A T hus w he A m oves t he gra duate d circle d also t he t elesco pe m ove wi t h i t as e pie e T h a is A is m u t e d h ori o t ally d its e t re m i t ies t erm i ate i pivo t s which rest i beari gs lyi g d e e st d due west I o m e i s t ru m e ts f t his class arra ge m e ts are m a de by which the i s t ru m e t aft er b ei g raise d fro m i t s beari gs c be tur ed rou d 1 8 0 i t h hori o t al pla e d t he replace d so tha t t he piv t which was rigi ally t owar ds the eas t hall be lace d t w ar d t he wes t d i I such i s t ru m e t s the c e e r p ole f the gra dua t e d cir le m y t here fore be t ur e d t o w ards t he eas t to w ar ds t he wes t accor di g to t h e p sitio f t he pivo t s I t will be bserve d t hat whe t her t he i s t ru me t be i t he ole eas t posi t i or i t he ole wes t t he gra dua t ed circle d the o pti al a is f t h telesco pe will both be parallel to the pla e f i f the a dju t m e ts be per fec t t h e m eri dia I t he pla e f the focus f t he object glass f the telescope there are two l s pider li es at right a gles to t he t elesc pe O e f these is par llel t the a is ab u t which t h t elesc pe revolves d is calle d the h i t l w i e T h t her is p p the hori o tal wire d is calle d the me i di l wi e t di l W he the i mage f a star i the m eridio al wire t hat star is f these wires A l i e fro m t h e i t er ectio i t he act f tra si t t o t he ce tre o f t he obj ec t glass is the pti l a i s f t he i s t ru m e t Whe t he tele cope is sai d to be se t u p a star i t is t o be u der t ood tha t t he i m age f the s t ar is coi ci de t with wi m d d l ctu l r i i i r l th r u u ly v r l fi x r i i l m d h t I I i gl h ri t l w i i ft r pl c d b y t w p r l l l w ir pl c d cl d th t g th r The

n

z

an

o

n

n

a

.

x s

o

an

n

c

x

n

o

n

c

o

n

s

.

an

,

n

.

,

an

c

on

x

e

.

n

o

n

n

an

n

z

n

n

x

n

an

a

u

.

n

s

n

n

n

n

n

°

n

n

o

n

,

e

n

n

n

z

n

o

o

o

n

an

s

o

an

s

v

sa

n

.

n

a

n

,

n s o

o

c

x

o

n

n

n

r

n

o

e

.

s

n

o

n e

an o

t

e

e

e

s n

e

a

o

zo n

an

a

x

ca

n

o

e

c

re

.

o

on

s

a

r

o

s

n

.

n



n

s

n

n

n

ona

en

n

on

n

.

er

r

.

o

o

an

o

n

e

o

x

o

n

z

o

n

or zon a

o

o

-

n

an

o

.

o

a

n

,

o

n

ar

an

-

s

o

cu

n

n

-'

n

n

e

n

n

.

n

on

-

n

n

o

n

n

n

v

c

or

n

an

,

c e

e

s o

en

s

a re

e

e

a

e

a

se

o

e

e

a

a a

e

n

e

on a

res

es

a

o se

e

.

30— 2

F U N D A M E NTAL

4 68

I N ST

RUM E NT S

[O H

x xi i

.

t he in tersection o f t he t wo cross w ires this is equivale n t t o sayi n g tha t the optical a x is o f the telescope is direc t ed u pon t he s tar A n o bserva t ion with t he m eri dian circle has fo r its objec t t he d e t er m i n a t io n o f bo t h the right asce n sio n a n d t h e d ecli n a t i o n o f a s tar or o t her celes t ial bo dy Th e first is o bta i n e d by n o t i n g the ti m e by the si d ereal clock when t he star crosses t he m eridian I f t he clock be correc t t ha t t i me is t he right as ce n si o n o f the star I n so fa r as t he d e t er m i n a t ion o f t his ele m e n t i s con cer n ed t h e m eri d ian circle i s what is calle d a tr a n s i t i n s tr u m e n t a n d t he grad uat e d circle is n o t c o n ce r n e d Th e d eclin a t ion o f t he star is ob t ai n e d from i t s z e n ith d istan ce which is observe d by m ean s o f the gradua t ed circle at the m o m e n t o f tran si t T h e i d eal co n d itio n s o f t he m eri d ia n circ l e as here i n dicate d c a n o f cour s e be o n ly a ppro x i m ately reali z e d i n t he ac t ual i n st r u I n t he firs t place t he a xis A will n o t be quite h o ri z o n tal men t oi a n d we shall assu m e t ha t t he n t o n t he celestial s phere i n d i p c a t e d by t he n o le o f t he gra d ua t e d circle shall have a n eas t erly a z i m uth 90 k a n d a z en i t h dis t an ce 90 b w here b a n d k are bo t h sm all qua n tities Th e a xis o f the t elescope is o f course a ppr o xi m a t ely at right a n gles to t he a x is A We s hall su ppose i t to be d irec t e d t o a poi n t o n t he celes t ial sphere 90 0 fro m t he n ole o f t he circle T h e s m all qua n t i t ies k b c are calle d t he errors o f ,

.

.

.

.

.

,

.

,

.

°

°

,

.

.

°

.

,

,

res pectively I f t h i t d i t s a dj ust m e t were per fect all these qua t i t ies should me t be ero bu t i prac t ice t hey are t ero d they are t eve co s t a t fro m d y t d y T hey have t o be d eterm i ed whe ever t he i stru m e t is use d d t he will be duly m etho ds f d oi g e plai e d Whe k b c are k ow w e a pply correcti s to the observe d ti m e f t ra si t a t wha t t i m e t he a d thus lear tra sit across the t rue m eri dia ac t ually took place I Fig 1 1 7 P is t he orth celes tial pole Z is the en i t h N is t he ole f t he grad ua t e d circle A ccor d i g to the d efi itio s f d k alrea dy give we have b F m 1 17 th,

a z i mu

o

f l e ve l

d

an

o

an

n

z

no

a

a

o

n

n

n

o

n

,

,

z

an

n o

n

.

an

,

ca n

n

on

o

n

n

n

n

n

.

n

n

.

z

,

n

.

n

n

an

,

o

n

,

n

o

.

n

n



n

n s ru

n

so n

.

e

.

,

n

n

x

ti o n

n

,

n

c o l li ma

f

,

F U N D A M E NTAL

INST

RUM EN TS

[

GEL XXI I

his is the fu d am e t al for m ula f the reduc t io f m eridia observa t io s T h qua tity t is t he rrec t io to be a dde d to the bserve d sid ereal t i m e f the t ra si t t ob t ai t he true i dereal t i m e T his e pressio f t is ge erally k ow as M ayer s form ula I t m y be t ra s for m e d i various w ays For exam ple B essel d eter m i e d by the i t ro duce d t wo w qua t ities m d equa t i T

n

n

n

o

n

o

o

n

n

co

n

e

.

o

n

or

n

s



x

.

n

n

a

n e

n

n

n

n

or

n

.

.

an

n

n

n

,

on s

m = b co s an

¢ + k si n

d )

n

,

= b si n

(



k

p

p

co s c

,

t hus we have the followi n g con ve n ien t for m ula

d

t =m +

tan

n

8

+ c

8

se c

qua t ities m a d are fu ctio s f the errors i level d a i muth d f t he la t i t u d e d are i d epe de t f t he s t ar We l easily see t ha t m 9 90 d ( S e e Fig We m y also otice H an se s f r m ula w hich is obtai ed by t substi t uti g f m its value b sec ct w ith which cha ge the la t for m ula beco m es iv ( ) B y a y f these for m ulae w e obtai t he correctio w hich m ust be applie d t o observe d ti m e f t ra sit i or der t o ob t ai t he clock t i m e f t ra i t across t he true m eridia Th e

n

n

an

z

o

,

°

an

n

o

n

n

o

.

n

n

an

n

n

an

n

a

n

n

n

.



o

n

,

n

or

a n

n

,

s

.

n

n

o

o

an

n

n

n

ns

o

n

n

.

t e r m i n a t i o n o f t h e e r r o r o f c o ll i m a t i o n Th qua tity 0 k ow t he error f co l li m ti i t he m eri d ia circle or i d ee d i f f r m o tra sit i stru e t m ca y be d eter mi ed by the i d f what are k ow as colli mati g telescopes f which we shall here d escribe t he use I the focus f the t elesco pe f the m eridia circle is a fram e carryi g a li e w hich be m ove d fro m coi ci de ce w ith t he fi ed m eridio al li e i t o y parallel positio i the la e er e d icular t o t he o t i cal a is f the t elesco e his o T p p p p p m ove m e t is e ff ec t ed by a m i ro m e t er screw wi t h a graduate d head so that by c u ti g t he revolutio s d the frac t io al parts o f a revolutio the dista ce through which t he m vable wire has bee dis placed fro m the fi e d w ire beco m es e actly k ow We sh all first ho w how by t his c triva ce we c ul d d eter m i e the error f colli m atio i f w e could observe t w o dia metrically o pposi t oi ts t h e heave s p 15 7

De

.

e

.

n

n

,

n

n

n

n

n

a

o

an

o

n

o

n

o

n

n

,

n

n

n

ca n

n

x

n

n

n

n

an

n

n

n

x

n

n

.

c

n

o

,

n

n

an

n

n

n

n

o

x

x

S

on

n

o

n

n

.

n

e

n

on

n

n

o

n

n

on

.

n

o

a

o

,

n

as

n

.

F U N D A M E N TA L

1 5 6—1 5 7]

I N ST

R U M ENTS

471

be t he hour a gle d d eclinatio o f a poi t t he celestial sphere the fr m ( i ) we have 8 i l cos 8 8 ( 9 si c = cos l i t) A s 0 l 9 are fi e d qua ti t ies c ec t e d with t he i s t ru m e t it is plai t ha t this equa t i wil l o t i ge eral be sa t isfie d f a give pair f values t 8 T his m ea f ourse m re tha n t he obvi u fact tha t as t he m eri d ia cir le has o ly d egree o f o t be free d m i e r tatio ab u t a si gle a is its teles pe ca directe d to y poi t o t he celestial sphere e ce pt th se w h ich If h wever we give the i stru m e t lie a certai circle a seco d degree f freedo m t he it withi certai li m i t s which f our prese t pur pose are quite arrow li mits be direc t e d u po a y poi t i t he vici ity f the circu m fere ce f C b y the m ovable wire T hi seco d d egree f free d o m i give j us t de ribe d B y m ovi g t his wire t o a d is t a ce fro m t h fi ed w ire d regardi g the i t er ec t io o f t h wire i i t s e w l f o itio wi t h t he h ri ta w ire t he li e colli m atio t he f p t ele co pe t he error f c lli m a t io is w c l w d the equa t io ( i ) be o m es t here f re cos l si 8 si l cos 8 cos ( 9 t) i ( m) is deter mi e d by si m ply screwi g the m ovable T h e qua t i t y t il the a i f t he t elesco pe be direc t ed to t he poi t P w ire o f w hich the co r d i a t es are t 8 u ppose t he t ele c pe direc t ed t o t he celestial w L e t us — f m ro the 1 8 0 which is 8 d t i t w i t h co r i a t es P + ( p t a t the dista ce A gai let t he m ovable wire be for m er poi t P so tha t P shall lie t he i tersectio f the m ovable wire d t he fi ed hori o ta l wire d we have 9 t 8 l i cos os cos l i 8 i (c ) ( ) 0 m) i (c m) i (c n m m as all the qua t itie are s all t hi be wri tt e d y I f t, 8

n

n

,

s n

x

,

o

.

n

o

an

n

n

sc

n

n

n

n

ca n

n

,

n

o

o

n

n

s

n

.

n o

n

,

n

n

o

- -

e

at,

e

n

as

o

,

n

n

n

n

,

s

zo n

o

,

n n

o

o

n

n

on e

co

n

an

o

,

o

o

n

an

o

c

S n

c

n

n

n

,

.

,

s

s

n o

n

can

x s o

o

.

n

x,

u n

o

°



o n

n

,

n

o

n

n

z

n

s n

,

s c, x,

n

o

s n

s n

s n

an

o

an

032

,

n

n

,

s n

n

se

on

,

x

,

n

.



an

n o

n

.

x

a

o

n

n

s

c

,

n

n

s

x

,

or

x

o

n

o

n

,

c

n

,

or

.

n

n

,

n s

n

n

s

n

.

,

o

.

on

n

n

on

n

00

s

,

n

on n

on

n

o

s n

n

n

o

n

o

n

,

an

,

,

x ,,

l (x

,

,

a

s

,

,

d hus is ou t er s t he ob erved qua ti t ies f m o d i f T 0 m d f t he a lica t io t his r ess we ob t ai a air ia e t ric f I p p pp ally opp si t e poi t s by wha t are k ow a pair f collim ati g o f m uch i mporta ce t elesco pes T h pri ci ple i volved n

n

n

o

.

e

n

n

,

n

on e

as

502

.

o

n

oc

n o

n

as, a n

n

s

n

n

o

n

in

F UN D A M ENTA L

4 72

IN S T

RUME NTS

[OH

.

x xn

the theory f astro o m ical i s t ru m e t s is e plai ed i the a e ed f the A B is t he t ra si t i s t ru m e t or telesco pe d iagra m m eri d ia circle f which t he ce t ral cube is pier e d by a c yl i d i l hole L M f which t he a is is XX w he t he tele ope is i t h e ver tical positio AB T h a x i about which t he tra sit i stru me t itsel f rotates is perpe dicular to t he pla e f t h e m i a er d the ivot a t the w es t erly e t re i t y is show t he p p p figure while e f the positio s w h ich t h i s t ru m e t m y ssu m e duri g i t s rotatio i i di ated by t he d ot t ed li es Th t wo collim ati g i s t ru m e t s X Y a d X Y are fi ed hori o t ally d cros wires are placed d south o f the m e i dia circle n orth f each f t hese subsi diary i stru m e ts as d F t the foci F i t he focus o f the great i n s tru m e t i t sel f n

o

n

n

n

n

.

n

,

n

sc

n

n

s

n

an

o

x

on

o

s

n

n

n

n





n

o

n

n

n

n

n

r

an

e

c

n

an

a

n

n

n

a

n

n

,

x

o



e

.

nn

c

n

,

n

n

x

n

n

n

n

o

o

r ca

x

,

,



x

an

a

z n

s

o

n

n

e

.

n

n

.

So u th

F IG

.

1 18

.

light be ad m i t ted to the or t h collim ato r at Y the t h rays fro m t he foc l cross wires F diverge t ill they fall the object glass X fro m which they e m erge as a parallel bea m d a ft er d w he the passi g through the hole L M ( which t hey c ax is o f the g rea t t elescope is vertical ) fall o the obj ect glass X o f t he seco d colli m ator A s t hese rays have bee re dere d m f f arallel i age is or m e d a t F the cross wires at F Thus p t he bserver looki g i to t he sou t h colli ma t or at Y sees bo t h the w ires F d the i m age f those a t F S i m ul t a eously By m ove m e t o f the fra m e carryi g the w ires i F b e is able to bri g If

n

n

,

a

on

,

an

,

n

an

n

on



n



n



,

n

n

-

.

an

o

,

o

n

,

,

e

o

n

.



n

,

an

o

n

n

n



.

n

F UN D A M E N TA L

I NST

RUM E N TS

[

OH

x xII

.

agai through t he obje t glass i t he opposite direc t io d will there fore f r m i m age f t he cro s wires at t h focus be si de t he wires t hem selves We have the o ly t o shift the m vable wire t hrough such a m easure d d is t a ce 0 as shall m ake t he i tersec t io f t he cro s w ire coi ci d e wi t h its reflecte d i mage d the we k ow t h a t t he a is o f t he t elescope m us t be d f er e icular to t he sur f ace m ercury m us t t here ore p i t f d p p t o t he d ir Th e d ecli atio f t he a dir is l w h ile i t s hour a gle is Wi t h t hese substi t u t io t he equa t io ( i ) re duces to i (c c) i b d there fore b = c + c as all t he qua ti t ies are s m all the f sol t i 1 8 0 f m us t be rej ecte d T hus b is k ow c t he error o f colli m a t io is su pp se d to have bee previously fou d d c is as alrea dy s t a t e d the qua ti t y which has just bee m easure d mi tt e d

n

c

an

o

an

n

n

-

e

s

o

n

n

.

o

"

n

n

n

an

,

o

s

n

n

s

x

n

n

o

na

n

n

.

an

o

n

n

c)

s n

an

S n

n

n

,

n

.



an

,

n

n

n

o

n

or

,

°

on

,

n

or

u

n

,

ns



o

n

,

.

15 9

D

.

e

te r m i n a ti o n

o

f th

e e rr o r o

f

a zi

m u th

d th e

an

e rr o r

l W e shall assu m e t ha t c d b the errors f colli m a t io d of level have bo t h bee d e t er mi ed by t he m e t hods i dica t e d t h at T is t he sidereal clo c k t i m e f t ra si t f a s t ar 8 d tha t A T is t he error o f the clock d k t he error f a i mu t h We c a pply t he correc t io s f b d c to t h ti m e T d t hus we have from M ayer s f r m ula ( iii ) 1 5 6 a pplie d t o two k n o w s tars ( 8 ) observe d a t a s h or t i t erval d uri g w h ich A T m y be d presu m ed o t t o vary o

f th e

c o ck

.

an

n

,

n

n

o

n



an

or

o

an

o

z

e

,

,

,

an

.

an

n

,

n

2

n

an

an

or,

o

an

n

n

o

,

a, , a

n

,

a,

= T, + A T + k s i n

(p

se c

a2

= T2 + A T + k

— 8 b (g 2)

se c

si n

W e t hus have t wo equa t i o n s i n solvi n g t hese equa t io n s we ob t a i n

(

t wo

82

.

u k ow s n

n

n

AT

and

k

,

an

d

cos 8 s i ( 8 8 x sec cosec ( 4 T k {( cos 8 cos 8 sec 4) cosec ( 8 ) ( I these values f t he d esire d qua t i t ies we are t ote tha t errors o f observa t io a ffec t T d T d i t is esse t ial t hat t he observa t io s be so pl a e d that t he m ulti pliers of T d T shall be as s m all as possible he ce cosec ( 8 m ust be as s m all as AT

{(

T, )

a,

co s

8, s i n

( 82

(

b)

(

T2 )

a2

2

n

,

)

a,

a2

n

,

,

o

2

n

n

n

2

2

,

an

o

an

2 ,

nn ,

n ,

n

2

n

an

2

FUN D A ME N T AL

1 5 8 — 1 60]

1N ST R U M EN TS

f ossible It is there ore ecessary tha t f the t w decli a t io s p shall be ear ero d t he o th er n ear H e ce we lear t he i mporta t prac t ical rule t ha t f d e t er m i i g t h err r f t he cl ck d the a i m uth f t he i s t ru m e t f t he stars ho e shoul d be n ear t he p le d the o t her sh ul d be ear t he equat or I t will be observe d tha t while b d 0 be f u d wi t hou t observa t io f celes t ial bodies this is o t t rue with regard to A T n

.

or

z

an

o

o

an

d k

n

n

n

n

n

an

o

o

o

c

o

o

n

e

one

s

n

n

an

n

n

n

n

o

o

an

z

n

on e o

.

ca n

o

n

n

.

160

De

.

m e r i di a n

t e r mi n a t i o n

ci rcle

o

f th

cl i n a t i o n

de

e

f

o

t

b y th e

s ar

a

.

I t is t he fu ctio f the m eridia circle t o e able t he observer t o d eter m i e bo t h t he righ t asce sio d t he d ecli a t io f a celestial obj ect a t t he a m e tra si t We have already how how t he righ t sce sio is f u d d i t re m ai s t ho w how the d ecli a t i is m easure d A early as pos ible a t t he m o m e t f ul m i a t io t he h server m oves the telescope tha t t he star appear t o alo g the hori o t al wire s t retche d acros the focu f t he telesco pe Th circle is the n t be read by t he m icr sc pes i the m a er already e plai ed I t is esse tial tha t a t lea t t wo m icro sco pe t opposi t e e ds f a dia m e t er be e m pl ye d but f ur micr sc pes sy mm etrically placed ro d t he circu m fe re ce are require d f t he bes t i stru m e t d so m e t i m es eve m re tha n T h m ea R f t he rea d i gs f t h e e m icroscopes four are use d is the ad opt ed as t h e rea di g f this par t icular ob erva t io ( see n

o

n

n

n

n

s

a

n

n

n

n

o

on

s

n

n

an

.

an

n

n

o

s

o

n

n

c

s

s

o

o

n

x

n

a

n

o

.

o

n n

n

s

o

o

o

,

u n

o

n

n

e

.

n

s

or

n

o

s

o

n

o

n

n

s an

n

n

ru n

o

n

or

§

n

s

n

e

o

S

o

s

so

s

n

.

n

z

n

n

15 5 )

We have see h w t he collim a t i is d e t er mi e d by reflec t io c ircle We f m ercury pla e d u d er the m eridia fro m a basi a is u t i l i t is so w t o m ove t he i s t ru m e t abou t i t are adju te d that the fi xe d hori o t al wire i t h pri ci pal focus coi ides wi t h i t s i m age reflecte d fro m the m ercury as ee by observer looki g ver t ically d w wards through t he eye piece B y t his pera t io the t elesco pe is dire t e d t o t he a dir d t h four We m icr sco pes are t o be rea d a d t he m ea R i t o be fou d f t he m y t he a sert tha t 18 0 + R w ul d be the re d i g i s t ru m e t whe direc t e d t owards t he e i t h d co eque t ly R is the appare t dis t a ce f t he star fro m t he e i t h R at the m o me t o f cul m i ati T his m ust t he be co rected f n

s

n

n

n o

n

n

c

o

n

n

e

n

o

n

n

.

n

o

n

°

n

n

s

a

z

n

n

n

o

n

n

on

.

n

s

o

0

n

0

,

n

e

an

n

c

n

o

an

n

s

nc

a

.

x

n

n

z

s

n

n

on

o

,

an

n

.

o

n

n s

z

o

n

r

n

or

FU N D A M E NTA L

476

INST

RUM E NTS

[

OH

x x II

.

d thus t he true e ith z d is t a ce is re fractio ( C hap A ssu m i g t hat t he lati t ude qt is k o w w e h ave the fou d — fr m t he equatio 8 d ecli a t i j It is o ft e possible to dis pe se w i t h observatio o f the f s t ars who e d ecli a t io s are alrea d y n adir by m aki g use k ow I f uch a tar be observed wi t h the readi g R wje ob t ain R as t he e pressi o f i t s a ppare t e i t h d is t a ce R d agai correc t i g f re frac t io we ob t ai the t rue e ith d is t a ce B t t his is j> where 8 is t he s t ar s decli a t io n} a d thus i f d e o t e the re fractio se e

n

n

an

.

z

n

.

on

n

n

n

n

n

o

z

()

.

n

n

n

n

an

s

o

n

n

n

I

n

n

s

s

.

/

n

_

o

an

x

,

n

n

n

n

n

z

n

<

,

n

z



u

r

n

or

n

.

on

n

,

n

n

n

°

180 + R0

by which R be ascer t ai ed T hus w e observatio f R wi t h ut dire t ly m aki g ca n

0

o

n

o

,,

c

an

n

lear t he value f th adir

ca n

.

n

o

n

e n

.

erved ti me f tra it f a k w tar wh e decl i ati i 30 i f u d t b c rrect i t agree with t h tar right a ce i whi le th b erved ti m f tar i decl i ati 15 d 60 f u d t b 7 4 d + 31 5 r p cti vel y i err r Pr ve that t h err r t b expected f a tar i decl i ati 4 5 i ab ut 1 1 [ Math T r i p I ] el f rm ula ( i v) 15 6 w b tai t h f ll wi g f u r equ ti U i g B d t h re u l ti g equ ati fr m which m b el i m i at ed f X w i ll g i e t h d i red re u l t m + ta 30 + 30 Ex 1 .

°

e

s

Th e

.

n

o

o

e

o

s

o

o

es

5

an s

bs

o

es

n

,

or s

°

on

°

on

n

o

s

e

n

s

n o

o

o

.

n

e

n

e

.

n s

os

s

°

an

e

s

a re

o

o

n s on

o

n

s n

es s

o

,

v

e

n

,

or

.

es

e

,

0 ca n

8

8

o

o

s

,

e

o

s

e

.



on

n



s

o

.

n s

n

e

,

o

n

an

e

e

o

o

s

.

.

n

o

n

a

on

o n s,

or

s

°

n

u

°

c se c

m + n t a n 15 + 0

se c

15

m + n t a n 60 + c s e c 60 t a n 45 + 0

777. + 77.

sec

45

a tra it i tru m t f 10 fe t f cal l gth which i c rrect except f c ll im ati err r a tar f decl i ati 60 i b erv d t cr t h mer i di a 2 t wire Sh w th at t adj u t t h i t r u m e t t h c r m t b m ved a d i ta ce 0 0 0 8 7 I w hich d i r cti h u l d t h wi r b m ved ? Ma th T r i I p [ f c ll im ati i wh e ce T h c rrecti Th circul ar m a u re f thi a gl 10 feet g ive 0 0 0 8 7 If w rememb r that a tr m ical t le c pe i rever d right d l ft it i b vi t h i m age i th at t h w i re mu t b m ved t t h ea t Ex 2 .

In

.

o

or

e

us

o

on

8

n

oo

so o n

o

en

ns

n s

s

,

o

o

o

.

s

o

111

n

o

e

n

on

s

e

n

.

en

°

s o

s

n s

e

n

e

o

s

on s

o

,

o ss

e

e

o ss

o

s

e

es

e

o

.

e

o

on

s

e

e

s

s

on

o

s

o

n an

e

or

n

e

s

e

o

o

13

s

s

o

se

s

e

e

e

.

s

e

.

n

s c se c

x

e

on o

.

an

e

s o

.

h w th at a t ra it i t rume t c uld c ce i vab l y b th at all tar pa i g t o t h uth f t h e e ith w ul d appear t cr i g t h meri di a b y a c ta t err r 1 Ex 3 .

.

S

s

o ss n

s

e

o

n s

ss n

e

n

n

n s

on s

o

o

so

n

z n

o

ou s

adj u ted b late i ll E xam ] e

on o

c

[ Co

.

so

o

s

e

n

.

F U N D A M E NTA L

wri te t h eq uati

W e may

e

t+

co s

i er t val ue

d t2 b e t h e t wo d ff

an

whe ce b y ub tracti n

s

s o

en

C= O

.

which ati fy thi

ft

s

co s

A s i n t2 + B

c o s 152

+ O = 0,

t by

si n

ivid i

g

ou

5

( t,

n

tan

x xI I

.



A s i n t1 + B

d d

an

on

[O H

15 6) i n t h e fo m

A sin t + B

If t,

RUM ENT S r

( ii )

on

IN ST

s

uati

s eq

on

t1 +

5 (t1

h ave

we

t2 ) = A /R ,

while t h c ll i mati e ter i t C l y E f k w latitude j 9 A t ra it i t ru me t i m u t d a t a plac i a ver tical pla which i t t h m rid ia Fi d equati t det rm i e t h a i m uth A f t h i t r u m e t i term f t h b erved ti m 9 b twee tw ucce ive tra it f a ci rcum p lar tar f decl i ati 8 S h w th at a m all err r A 9 i t h b erved d i ffer c e 9 f h ur a gle wi ll lead t err r i t h a i m uth f mag itu de o

e

x

.

on

n

ns

.

n

s

z

o

e

s

o an

o

e

5 si n

2

A

A

ta n

n o

o

an

o

e

b

e eral r u la

ec e

on

en

which m

a

wr itte thu

y be

n

T

hi

m

s

= Q we 9 , 5

u t b t r ue i f h ave t h t w e

(P +

1 t an A

co s

(P

u tracti

S b

M

ul tipl yi

g ( i ) fr

n

n

o

( i ) by

g

o

n

whe ce fr n

n

theref r R st r i g t

d

.

n

o

e

o

Q

s

Th e

regard

se

r ula

d t h e fo m

co s

t = o,

s

co s

ub titut s

ed

qt t a n A t a n 8 fo r t

an

d m

.

aki

n

— t g

d d A

n

§

9= P

an

d

e

ivi di

n

g by

Q

si n

ob

we

P + co s P = O

si n

A tan 8

ta i

n

0

.

Q ) a n d s u b t racti n g ( ii ) m ul tipl i ed b y s i n (P 2 Q = 2 c o s gb t a n A t a n 8 c o s P s i n Q

Q)

,

,

Q

co t

I +co t

val ue 59 1

2

( ) si n

1

,

2

1

1 tan

A= 2

A)

we

— co s ( ) co s e

o

on

8s

co s o

2

i

is

o

an

b

P,

1 ta n

2

8

.

n

5 9/(c o s 5 9 A

n

()

2

en

s

Q

s

e

e

2

a i l y b tai

2 = A cos

on

8 cos P,

= c o s ( ) ta n Q

tan

2

d 9

.

tai ed n

i r tiati

b y d ffe

en

n

g A

with

.

.

n

.

to 9

E x 10

ce tre

si n

e

on

t=

si n

t

r qui red equati b twe c d part f t h que ti

th e

l

8

co s

Q)

si n 2 ( )

co s

which i

A

c) S i n

= Q ) c o s (1) t a n A t a n 8

1

i ts

8 S i n t + s 1n

an

(P

Sin ( ) co s

(

e

o

0 , b = 0 , [z = A

c=

sin

(P

co s an

ake

ri

Q

g b y si n

(iii )

om

s

T p

.

Q)

pta

A

n

.

Q ) = c o s (1) t a n

si n (

1tan

o

(P +

an

si n

.

sin

ii

m ( )

S i n

Smile Life

When life gives you a hundred reasons to cry, show life that you have a thousand reasons to smile

Get in touch

© Copyright 2015 - 2024 PDFFOX.COM - All rights reserved.