Acceleration Acceleration is the rate of change of ... - Nuffield Foundation [PDF]

Acceleration. Acceleration is the rate of change of velocity of a moving object. It is usually measured in 'metres per s

0 downloads 3 Views 57KB Size

Recommend Stories


Acceleration
We can't help everyone, but everyone can help someone. Ronald Reagan

acceleration
If your life's work can be accomplished in your lifetime, you're not thinking big enough. Wes Jacks

Acceleration
It always seems impossible until it is done. Nelson Mandela

Acceleration
The beauty of a living thing is not the atoms that go into it, but the way those atoms are put together.

Change Acceleration Process from GE
Why complain about yesterday, when you can make a better tomorrow by making the most of today? Anon

Acceleration bro
Goodbyes are only for those who love with their eyes. Because for those who love with heart and soul

WordPress Acceleration
Respond to every call that excites your spirit. Rumi

R7xx Acceleration
Almost everything will work again if you unplug it for a few minutes, including you. Anne Lamott

Acceleration of solar energetic particles
If you want to become full, let yourself be empty. Lao Tzu

Acceleration Sensors
What you seek is seeking you. Rumi

Idea Transcript


A Resource for Free-standing Mathematics Qualifications

Constant Acceleration Equations

Acceleration Acceleration is the rate of change of velocity of a moving object. It is usually measured in 'metres per second squared', which is abbreviated to ms -2 . An acceleration of 2 ms-2 means that the velocity of the object is increasing by 2 metres per second every second. If the velocity of the object is decreasing by 2 metres per second every second, then the acceleration is – 2 ms-2 . This is called deceleration or retardation. Like velocity, acceleration is a vector, having both direction and magnitude. (Note a negative sign may also indicate the object is speeding up in the negative direction.) Velocity-time graphs Acceleration The gradient of the velocity-time graph of a moving object gives its acceleration. If the graph is a straight line the acceleration is constant. v ms-1 Example This graph shows the velocity of a car that accelerates at a constant rate from 0 to 20 ms-1 in 5 seconds. 20 The car's acceleration = = 4 ms-2 5

20

You may know that the area under a velocity-time graph gives the displacement or distance moved. 5 × 20 In this case the distance moved = = 50 m 2

5

0

t seconds

The facts you may need in the following work are summarised below. Use them on the next page to derive an important set of equations that apply when objects move with constant acceleration. These equations can be used to model many real- life situations. v

Summary Gradient of a velocity-time graph =

δv = acceleration δt

δv δt

Area under a velocity-time graph = displacement t

0

Area of a triangle

=

base × height bh = 2 2

sum of parallel sides × distance between 2 ( a + b)h = 2

h b

Area of a trapezium =

b a h Photo-copiable

© The Nuffield Foundation

1

A Resource for Free-standing Mathematics Qualifications

Constant Acceleration Equations

Constant Acceleration Equations This velocity-time graph shows the velocity of an object increasing from an initial value, u, to a final value, v, in time t. Work through the following steps to derive the equations. Write down an expression for the acceleration, a, in terms of u, v and t. a= ……………………………………………….........

Velocity v

u

Rearrange this equation to make the subject v. ……………………………………………………..

0

t Time

…………………………………………………….. v= …..………………………………………………(1) Use the area under the graph to write an expression for the displacement, s, in terms of u, v and t. s= ….………………………………………………(2) Substitute the expression for v from equation (1) into equation (2) and rearrange to give equation (3) below. …………………………………………………….. …………………………………………………….. …………………………………………………….. s = ut + 12 at 2 ………………………….……………………….(3) Rearrange equation (1) to give an expression for t, then substitute this into equation (2) and rearrange to give equation (4) below. ……………………………………………………..

The equations for motion in a straight line with constant acceleration are: v = u + at …….…(1) s=

(u + v)t ……...(2) 2

s = ut + 12 at 2 …....(3)

…………………………………………………….. …………………………………………………….. …………………………………………………….. …………………………………………………….. v 2 = u 2 + 2as …………………………………………..……….(4)

v 2 = u 2 + 2as …..(4) where u is the initial velocity v is the final velocity a is the acceleration t is the time taken s is the displacement

Photo-copiable

© The Nuffield Foundation

2

A Resource for Free-standing Mathematics Qualifications

Constant Acceleration Equations

Teacher Notes Unit

Advanced Level, Dynamics

Notes

This activity allows learners to derive the constant acceleration equations. They will need to know that: • the gradient of a velocity-time graph gives the acceleration • the area under a velocity-time graph gives the displacement sum of parallel sides × distance between (a + b)h • the area of a trapezium = = 2 2 These facts are given on page 1 and also on slides 1 to 3 in the Powerpoint presentation. Slides 4 to 7 give the derivation of the constant acceleration equations - these can be used as a demonstration or to check learners' results.

Photo-copiable

© The Nuffield Foundation

3

Smile Life

When life gives you a hundred reasons to cry, show life that you have a thousand reasons to smile

Get in touch

© Copyright 2015 - 2024 PDFFOX.COM - All rights reserved.