calculation of pH of a salt using simplified methods - ChemBuddy [PDF]

and the equilibrium is described by the conjugate base dissociation constant. eq. 13.1 13.1. where. eq. 13.2 13.2. Start

2 downloads 6 Views 138KB Size

Recommend Stories


Y4-6 Written Methods of Calculation Calculation
I tried to make sense of the Four Books, until love arrived, and it all became a single syllable. Yunus

On the calculation of binding free energies using continuum methods
In the end only three things matter: how much you loved, how gently you lived, and how gracefully you

Calculation Methods in Mechanics
Don't be satisfied with stories, how things have gone with others. Unfold your own myth. Rumi

PdF Calculation of Drug Dosages
Ask yourself: What is something you regret doing? Next

A simplified view of blazars
How wonderful it is that nobody need wait a single moment before starting to improve the world. Anne

[PDF] The Price of Salt
Ask yourself: How confident are you in your abilities to make decisions for yourself? Next

Optimization of gridshell bar orientation using a simplified genetic approach
Never let your sense of morals prevent you from doing what is right. Isaac Asimov

Calculation of crop water requirements using CROPWAT
Raise your words, not voice. It is rain that grows flowers, not thunder. Rumi

Calculation of a double reactive azeotrope using stochastic optimization approaches
When you talk, you are only repeating what you already know. But if you listen, you may learn something

Idea Transcript


About us | Feedback

Simplified methods of pH calculation of amphiprotic salt solution

Chemical calculators | Downloads | Prices | Buy | Lectures | FAQ pH calculation Table of contents pH definition pH scale pH meter & pH electrode Arrhenius theory Water ion product

pH calculation lectures » calculation of pH of a salt using simplified methods As usual, the most general approach is unsuitable for calculations done by hand. For salts with one strong and one weak component the best way of pH calculation it to treat conjugate acid (or base) as the only source of H+ (or OH-) ions, and do the calculations in the same way as it was described in weak/acid base section. For example if we have a solution of a salt of a weak acid (with dissociation constant K a ) and a strong

BATE pH calculator operating systems: XP, Vista, 7, 8, 10 single user license price: €24.95 - approximately $33

base, the reaction of hydrolysis is

Buy Now!

Acid base equilibrium Brønsted-Lowry theory Polyprotic constants

and the equilibrium is described by the conjugate base dissociation constant

Other constants types

download 30-day free trial! 30-day money back guarantee!

(13.1)

General case Acid/base solution

where

Strong acid/base

(13.2)

Weak acid/base Polyprotic acid/base Polyprotic simplified Salts in general Amphiprotic salt Salts simplified More on the salt pH pH of buffers Buffer capacity

Starting from these equations we can calculate pOH and pH of the solution using method and assumptions shown for weak acid an base. Exactly the same approach can be used for salt of strong acid and weak base - just using the K a constant for the weak base conjugate acid . If the acid (or base) is polyprotic we can use one of the methods described in the polyprotic simplified section. However, what to do when we have a solution of a salt that contains both weak acid and weak base? In general we should use the full equation derived on the pH of the salt solution page. As it yields 4th degree polynomial, its applicability is at least questionable. Luckily, if the solution is not too diluted we can easily derive much simpler formula. Let's say we have a solution of an AB salt of a weak acid and a weak base of concentration C and dissociation constants K a and K b . Equations for K a and K b have their standard forms:

Acid-base titration curve

(13.3)

Ionic strength and activities Newton method Symbols used

(13.4)

Disclaimer pH questions

We will solve them for [H+] and [OH-]:

Table of contents

(13.5)

(13.6)

Putting calculated concentrations into water ion product equation we get: (13.7)

or (13.8) Now let's take a look at the charge balance equation: (13.9) As long as we deal with not very diluted solution, we can safely assume concentrations of both H+ and OH- are much lower than concentrations of A - and B +. That yields an important approximation: (13.10) From the mass balance we know that (13.11) combining it with the equation 13.10 we get another approximation: (13.12) Using 13.10 and 13.12 we can now rewrite equation 13.8 as (13.13)

which is a very important result. Knowing ratio of concentrations of the acid and its conjugate base we can easily calculate H+ concentration, just by rearranging acid dissociation formula and plugging the ratio into:

(13.14)

Taking logs of both sides: (13.15) If we remember the relation between K a and K b we can rewrite this equation as (13.16) where pK aB is acid dissociation constant of the base B conjugate acid. This result is interesting, as the equation is identical to that derived for the pH of solution of the amphiprotic salt. How good is the equation 13.16? For ammonium acetate (CH3 COONH4 ) pK a =4.75 and pK b =4.75 too. This salt is so symmetrical, that results of pH calculation just must be perfect: Results of pH calculation of ammonium acetate C (M) pH calculator pH eq. 13.16 1

7.00

7.00

10-8

7.00

7.00

And what about aniline formate? pK a =3.745 and pK b =9.4, so there is a substantial difference in the strengths. Results of pH calculation of aniline formate C (M) pH calculator pH eq. 13.16 1

4.17

4.17

0.1

4.17

4.17

0.01

4.18

4.17

0.001

4.24

4.17

The more diluted the solution, the worse the results, but if the solution is at least in 0.01M range both equations - 12.9 and 13.16 - give acceptable results. Questions? Comments? Feel free to discuss this page content at the chemistry quizzes forum (requires free registration).

Behavioral Health EHR/EMR quick jump: pH calculator, concentration calculator, stoichiometry calculator, buffer calculator, chemical calculator suite, pH calculation, concentration calculation, stoichiometric calculation.

Smile Life

When life gives you a hundred reasons to cry, show life that you have a thousand reasons to smile

Get in touch

© Copyright 2015 - 2024 PDFFOX.COM - All rights reserved.