Contribution to the development of technology ... - DepositOnce [PDF]

The learning dimensions proposed by Felder and Silverman in 1987 consisted of five sets of opposite learning ... In orde

0 downloads 4 Views 8MB Size

Recommend Stories


Contribution of Foreign Languages to the Development
Ask yourself: Am I following the crowd or am I listening to my own heart and intuition? Next

The contribution of agroforestry to world forestry development
Life is not meant to be easy, my child; but take courage: it can be delightful. George Bernard Shaw

Contribution of Social Media to the Students' Academic Development
The happiest people don't have the best of everything, they just make the best of everything. Anony

introduction to the general technology development project
So many books, so little time. Frank Zappa

Contribution to the magnetostratigraphy of the Carnian
Make yourself a priority once in a while. It's not selfish. It's necessary. Anonymous

The Contribution of Finmeccanica to the UK
Your task is not to seek for love, but merely to seek and find all the barriers within yourself that

[PDF] Technology of the Gods
If your life's work can be accomplished in your lifetime, you're not thinking big enough. Wes Jacks

[PDF] Technology of the Gods
You miss 100% of the shots you don’t take. Wayne Gretzky

(PDF) Technology of the Gods
In the end only three things matter: how much you loved, how gently you lived, and how gracefully you

[PDF] Technology of the Gods
Do not seek to follow in the footsteps of the wise. Seek what they sought. Matsuo Basho

Idea Transcript


Contribution to the development of technologyenhanced education in manufacturing and energy generation

vorgelegt von M.Sc. Jens C. Palacios Neffke geb. in Mexiko-Stadt

von der Fakultät V - Verkehrs- und Maschinensysteme der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktor der Ingenieurwissenschaften - Dr.-Ing.genehmigte Dissertation

Promotionsausschuss: Vorsitzender: Prof. Dr. -Ing. Holger Kohl Gutachter: Prof. Dr. -Ing. Günther Seliger Gutachter: Prof. Dr. Manuel Castro

Tag der wissenschaftlichen Aussprache: 24. Februar 2017 Berlin 2017

Acknowledgments This dissertation is the result of several years of research and project management activities at the department of assembly technologies and factory management of TU Berlin. It implied uncountable hours of hard work and dedication, which however would not have sufficed without the intellectual, moral and economic support provided by the following individuals and agencies: First and foremost, I want to thank my advisor Prof. Dr.-Ing Günther Seliger for his guidance, profound insight and ideas provided during long hours of open dialogues with regards to stateof-the-art manufacturing, global engineering education, and German culture. I cannot but admire and acknowledge his passion and experience to contribute towards the achievement of a more sustainable global community. Besides my advisor, I would like to thank the members of my thesis committee Prof. Manuel Castro Gil and Prof. Holger Kohl for their valuable input and insightful comments during the last stages of my research, but also for their hard but fair questioning during its evaluation, which undoubtedly enriched the discussion content. I am also deeply thankful for the camaraderie, expertise and support I found in my colleagues and collaborators at the chair of assembly technologies and factory planning, who not only contributed to enrich the quality of my research but turned my time at the department into an extraordinary and enjoyable experience. I remember vigorously cultivated discussions on engineering education with Jan Menn, Bastian Müller and Bernd Muschard, as well as technical exchanges with Arne Glodde. A special recognition goes to “my” GPE staff, Irina Ferreira, Sigrid Koppe and Anneliese Ulrich, which significantly contributed to my managerial and personal evolution in the last five years. Also, a very special thank you goes to my student assistants Paul Luc and Mike Wagner, who significatively participated in the materialization of devices to validate the concepts presented in this dissertation. A very special acknowledgment goes to the agencies that funded my PhD research. With the Mexican Consejo Nacional de Ciencia y Tecnología (CONACYT) as primary sponsor, it has been shown that international collaboration in the education of highly-qualified human resources continues to be an accurate path towards the accomplishment of more equalitarian societies. My work was also supported by the German Academic Exchange Service (DAAD), the German Research Foundation (DFG), and the European Union (EU). Last but not least, I would like to thank my family for their unconditional love, as well as support in good and hard times. To my father for being an example to me for as long as I can remember; to my wife Ana for her love, encouragement, and intellectual support throughout my research career especially during the last writing stages; and to my son Jan who lent and caused me a smile each time I needed it the most.

Jens Palacios Neffke Berlin, February 2017

Abstract In order to revert a global ecological collapse that would jeopardize Earth’s capacity to sustain life, international organizations, such as the United Nations, have stressed the need to improve manufacturing methods and energy generation technologies. However, challenges towards the implementation of these methods and technologies vary according to the perspective. Rich countries need to drastically reduce their carbon emissions without abandoning their economic growth and / or decreasing the living standards of their populations. On the other hand, developing economies need to subject their rapid socio-economic development to environmental constraints while facing a severe scarcity of human resources technically competent to introduce methods and technologies necessary to generate local wealth, while reducing the environmental impact generated by productive and energy generation processes. This scarcity is especially dire in rural and informal urban settlement, where the need of local value creation is needed the most. Given the limited success of current instructional approaches in overcoming specialists’ deficits in these societies, new paradigms of education are necessary to support global sustainable development. These paradigms should be based in the integration of economic globalization aspects, rapid development of educational technologies, and didactic methods as a means to generate societal well-being with minimal environmental impacts. This dissertation proposes an Instructional Design Model for Engineering Education (IDMEE) aimed at improving engineering education’s quality in developing countries. The proposed model bases its approach in the alignment of so-called educational dimensions to support instruction planners during the planning and delivery of formal and non-formal instruction with a strong technical component. In the proposed model, a strong emphasis has been given to the design of laboratories, appropriate to match specific engineering educational needs of heterogeneous audiences in developing countries. The model is validated through the design and development of mobile high-end portable laboratories to support developing countries’ education in the fields of sustainable manufacturing and energy generation. The design of these laboratories, deemed its physical portability feature as fundamental as a means to overcome technical and pedagogical shortcomings of distant-education alternatives. Demonstrators, realized and documented within the framework of this dissertation include a mobile E-Bike photovoltaic charging station, a portable wind tunnel, and a mobile learning factory for manufacturing. Each demonstrator is designed to address a variety of audiences according to its academic level and training purpose. Through appealing designs and features, as well as intuitive interfaces reducing external supervision, audiences comprising primary and secondary education students for instance, can be motivated to pursue higher education in the fields of engineering. On the other hand, undergraduate and graduate engineers can gain deep technical knowledge in renewable energies and manufacturing, and uneducated audiences can obtain basic knowledge enabling them to generate local value creation networks.

Zusammenfassung Um einen globalen ökologischen Kollaps abzuwenden, der die Fähigkeit der Erde, das Leben zu erhalten gefährden würde, haben internationale Organisationen wie die Vereinten Nationen die Notwendigkeit betont, umweltfreundliche Fertigungsverfahren und Energieerzeugungstechnologien aus erneuerbaren Quellen zu implementieren. Die Herausforderungen bei der Umsetzung dieser Methoden und Technologien sind allerdings, je nach Entwicklungsstand des Landes, unterschiedlich. Frühindustrialisierte Länder müssen ihre CO2-Emissionen und den Ressourcenkonsum drastisch reduzieren, ohne ihr Wirtschaftswachstum zu gefährden und / oder den Lebensstandard ihrer Bevölkerungen zu verringern. Auf der anderen Seite müssen Entwicklungsländer ihre rasche sozioökonomische Entwicklung den Umweltauflagen unterziehen, wobei sie jedoch kaum über die notwendigen technisch-kompetenten Humanressourcen verfügen. Besonders beträchtlich ist die Knappheit dieses Personals in ländlichen und informellen urbanen Siedlungen in Entwicklungsländern, wo der gezielte Aufbau von Wertschöpfung am dringlichsten ist. Angesichts des begrenzten Erfolges aktueller internationaler Ansätze bei der Überwindung dieser Bildungsdefizite, sind neue Bildungsparadigmen notwendig, um eine globale nachhaltige Entwicklung zu unterstützen. Diese Paradigmen sollten auf der Integration von ökonomischen Globalisierungsaspekten, einer raschen Entwicklung von Bildungstechnologien und didaktischen Methoden als Mittel zur Erzeugung von gesellschaftlichem Wohlergehen mit minimalem ökologischen Einfluss beruhen. In dieser Dissertation ist das sogenannte Instructional Design-Model for Engineering Education (IDMEE) erarbeitet, das darauf abzielt, die Qualität der Ingenieurausbildung in Entwicklungsländern zu verbessern. Das vorgeschlagene Modell stützt sich auf die Ausrichtung von sogenannten Bildungsdimensionen, um Unterrichtsplaner bei der Planung und Durchführung von formaler und nicht-formaler Ausbildung mit einem starken technischen Bestandteil zu unterstützen. In dem vorgeschlagenen IDMEE wurde ein Schwerpunkt auf die Gestaltung von Laboratorien gelegt, und spezifische technische Bildungsbedürfnisse heterogener Lernergruppen in Entwicklungsländern beachtet. Das Modell wird durch die Konzeption und Entwicklung von mobilen High-End-Laboren in den Bereichen der nachhaltigen Wertschöpfung und Energieerzeugung validiert. Die physische Portabilität ist eine fundamentale Eigenschaft dieser Laboratorien, um technische und pädagogische Mängel im Vergleich zum Fernunterricht zu überwinden. Zu den im Rahmen dieser Dissertation entwickelten Laboren gehören eine mobile E-Bike-PhotovoltaikLadestation, ein tragbarer Windkanal, und eine mobile Lernfabrik. Jeder Demonstrator ist dazu ausgelegt, eine Vielzahl von Zielgruppen nach seinem akademischen Niveau und Ausbildungszweck zu adressieren. Durch ansprechende Gestaltung und Features sowie intuitive Schnittstellen können z.B. Schüler motiviert werden, eine Hochschulausbildung im Bereich des Ingenieurwesens zu verfolgen. Andererseits können Studierende an Universitäten tiefe technische Kenntnisse in der Erzeugung erneuerbar Energien und nachhaltiger Produktion erwerben. Ungebildete Zielgruppen können Grundkenntnisse erlangen, die es ihnen ermöglichen, lokale Wertschöpfungsnetze zu generieren.

Table of Contents 1

INTRODUCTION .............................................................................................................. 1

1.1 Motivation ......................................................................................................................... 1 1.2 Research aims ................................................................................................................... 3 1.2.1 General objective ........................................................................................................ 3 1.2.2 Methodology .............................................................................................................. 4 1.3 Disambiguation of “Developing Countries” .................................................................. 5 1.4 Dissertation structure ...................................................................................................... 7 2 SUSTAINABILITY AND ITS IMPACT IN MANUFACTURING AND ENERGY GENERATION ........................................................................................................................ 10 2.1 Manufacturing ................................................................................................................ 11 2.1.1 Definition ................................................................................................................. 11 2.1.2 Relevance ................................................................................................................. 11 2.1.3 The Value Creation Module (VCM) ........................................................................ 13 2.1.4 Sustainable manufacturing ....................................................................................... 22 2.1.5 Challenges for developing countries ........................................................................ 24 2.2 Renewable Energies ....................................................................................................... 31 2.2.1 Technologies ............................................................................................................ 32 2.2.2 Relevance ................................................................................................................. 38 2.2.3 Challenges for renewables implementation in developing countries ....................... 41 2.3 Knowledge transfer partnerships ................................................................................. 42 3

EDUCATION ................................................................................................................... 49

3.1 Learning theories............................................................................................................ 50 3.1.1 Behaviorism ............................................................................................................. 50 3.1.2 Cognitivism .............................................................................................................. 51 3.1.3 Constructivism ......................................................................................................... 51 3.1.4 Experiential learning ................................................................................................ 52 3.1.5 Connectivism ............................................................................................................ 53 3.2 Didactic models ............................................................................................................... 54 3.3 Instructional design ........................................................................................................ 56 3.4 Educational technologies ............................................................................................... 58 3.4.1 Definition ................................................................................................................. 58 3.4.2 Digital resources ....................................................................................................... 59 3.4.3 Physical resources .................................................................................................... 59 3.4.4 Trends ....................................................................................................................... 60 3.5 Engineering Education .................................................................................................. 62

3.5.1 3.5.2 3.5.3 3.5.4

Curricula ................................................................................................................... 63 Learning styles ......................................................................................................... 65 Instructional Design Models in engineering ............................................................ 68 Laboratories .............................................................................................................. 70

3.6 Socio economic factors in developing countries’ education ....................................... 73 4

RESEARCH GAP ............................................................................................................ 75

5

CONCEPT ........................................................................................................................ 78

5.1 Instructional Design Model for Engineering Education (IDMEE)............................ 78 5.1.1 Learning objectives. ................................................................................................. 80 5.1.2 The “what” ............................................................................................................... 84 5.1.3 The “who” ................................................................................................................ 86 5.1.4 The “how” ................................................................................................................ 88 5.1.5 The “by which means” ............................................................................................. 91 5.2 Laboratory mobility ..................................................................................................... 102 6

VALIDATION ............................................................................................................... 106

6.1 Seminar on photovoltaics............................................................................................. 106 6.1.1 What ....................................................................................................................... 106 6.1.2 Who ........................................................................................................................ 107 6.1.3 How ........................................................................................................................ 110 6.1.4 By which means ..................................................................................................... 111 6.2 Wind energy course ...................................................................................................... 122 6.2.1 What ....................................................................................................................... 122 6.2.2 Who ........................................................................................................................ 123 6.2.3 How ........................................................................................................................ 123 6.2.4 By which means ..................................................................................................... 124 6.3 Practical course on sustainable manufacturing ......................................................... 141 6.3.1 What ....................................................................................................................... 141 6.3.2 Who ........................................................................................................................ 142 6.3.3 How ........................................................................................................................ 144 6.3.4 By which means ..................................................................................................... 146 7

SUMMARY AND OUTLOOK ..................................................................................... 156

8

REFERENCES ............................................................................................................... 160

9

GLOSSARY ..................................................................................................................... 192

10

APPENDIXES ............................................................................................................... 199

10.1

Appendix: PV solar charging station ..................................................................... 199

10.1.1 10.1.2

Market research .................................................................................................. 199 Development of alternatives and concept evaluation ......................................... 201

10.2

Appendix: Back-end PCB Schematic PV Solar station ........................................ 202

10.3

Appendix: Back-end monitor program .................................................................. 203

10.4

Appendix: Front-end program documentation ..................................................... 214

10.5

Appendix: Commercially available wind laboratories ......................................... 224

10.6

Selection process MLS machines and workstations .............................................. 225

List of figures Figure 1: UN's Sustainable Development Goals [UN-15] ......................................................... 2 Figure 2: Dissertation structure .................................................................................................. 8 Figure 3: Greenhouse gas emissions by industries and households. Year 2012 [EUS-13]...... 11 Figure 4: Value creation factors, modules and networks [SEL-10] ......................................... 13 Figure 5: Classification of DIN 8580 and sub-norms of the separating process [DIN-8580] . 14 Figure 6: Assembly operations according to VDI guideline 2860 [VDI-2869]; [WIE-15] ..... 15 Figure 7: Classification of manufacturing machinery [SPU-86].............................................. 16 Figure 8: Seven phases of the VDI 5200 Method [VDI-2869] ................................................ 19 Figure 9: Types of layouts: (a) fixed-position layout; (b) process layout; (c) cellular layout; (d) product layout [GRO-10] .................................................................................................... 20 Figure 10: Ecological deficit / reserve per country. Year 2010 [GFN-16] .............................. 23 Figure 11: Sustainable development paths for developing and industrialised nations [SEL-12] .................................................................................................................................................. 24 Figure 12: CO2 emissions from fossil fuel and cement production. Year 2013. Adapted from [OLI-13] ................................................................................................................................... 25 Figure 13: Social returns and costs of state education in developing countries [TOD-12]...... 27 Figure 14: Social returns and costs of private education in developing countries [TOD-12] .. 28 Figure 15: Advanced Manufacturing Competency Model. Adapted from [SME-12] ............. 29 Figure 16: Share of renewable energy technologies within total renewables world's power generation. Year 2013 [REN-15]; [IEA-15]............................................................................. 31 Figure 17: Main components of a wind turbine. Adapted from [WID-15]]............................. 35 Figure 18: Kinetic energy represented as air tube [LIE-15] ..................................................... 36 Figure 19: Global jobs in renewables [IRE-15b] ..................................................................... 40 Figure 20: Renewable energy relevant curriculum content per education stage ...................... 41 Figure 21: Knowledge transfer method's aims and gap ........................................................... 48 Figure 22: Kolb's cycle of learning [KOL-84] ......................................................................... 53 Figure 23: The Dick and Carey Instructional Design Model [DIC-90] ................................... 57 Figure 24: Architecture of standard remote labs [SAN-11]. .................................................... 72 Figure 25: Instructional Design Model for Engineering Education (IDMEE) ......................... 79 Figure 26: Original Bloom's cognitive taxonomy [BLO-56] ................................................... 81 Figure 27: Revised Bloom's cognitive taxonomy [AND-00] ................................................... 82 Figure 28: Learning objectives' vector field for sustainability ................................................. 83 Figure 29: Goff's Four Stage Improvement Cycle [GOF-15] .................................................. 84 Figure 30: Example of IDMEE's categorization of learning objectives................................... 85 Figure 31: Learning theories according to learning objectives ................................................ 89 Figure 32: Determination of educational technology according to learning objectives and didactic principles .................................................................................................................... 92 Figure 33: Select or Design decision-making process for educational technologies ............... 94 Figure 34: PV charging station ............................................................................................... 114 Figure 35: Charging station electrical system components .................................................... 116 Figure 36: Front-end interface - Mobile solar charging station ............................................. 118 Figure 37: Customized PV modules heating system .............................................................. 119 Figure 38: Solar charging station in transport mode .............................................................. 121 Figure 39: Eiffel tunnel basic components. Adapted from [ECK-97] ................................... 129 Figure 40: Wind speed distribution in a wind tunnel [GAS-05]. ........................................... 130 Figure 41: Test section design ................................................................................................ 131 Figure 42: Nozzle and settling chamber ................................................................................. 133 Figure 43: WindLab Diffuser ................................................................................................. 133

Figure 44: Nozzle and diffuser in transport modus ................................................................ 134 Figure 45: WindLab's wind turbine ........................................................................................ 134 Figure 46: Arduino Due [ARD-16] ........................................................................................ 135 Figure 47: Introduction layout ................................................................................................ 137 Figure 48: Power curve experiment ....................................................................................... 138 Figure 49: Exemplary WindLab airfoil prototypes ................................................................ 139 Figure 50: WindLab components; Left - Transport cases; Right - Tunnel, turbine, electronics and PC. ................................................................................................................................... 140 Figure 51: MLF course structure ............................................................................................ 145 Figure 52: Sonnenrepublik's CliccLite [CLI-15] ................................................................... 148 Figure 53: CliccLite's value creation process ......................................................................... 149 Figure 54: Arrangement of equipment inside the individual boxes ....................................... 150 Figure 55: Average score - welcome test ............................................................................... 151 Figure 56: Students' layout of the second production round .................................................. 153 Figure 57: Students' layout of the third production round ..................................................... 154 Figure 58: Good bye test results ............................................................................................. 155 Figure 59: Concept drafts mobile PV solar station ................................................................ 201 Figure 60: Back-end PCB schematic mobile PV charging station ......................................... 202

List of tables Table 1: UN's classification of developing countries per region [DPA-12]; [DESA-15] .......... 6 Table 2: Tradeoffs in manufacturing strategy [SKI-69] ........................................................... 18 Table 3: Human resources and output indicators – 2011 [UNE-15a]; [TWB-16]; [ROD-13]; [VDI-12]; [SAR-14]; [NAK-11]; [CHO-11]; UNE-15b]. ........................................................ 30 Table 4: Advantages and disadvantages of knowledge transfer methods ................................ 46 Table 5: Didactic models according to Flechsig [FLE-96] ...................................................... 54 Table 6: Classification of education technologies according to NMC [NMC-16]................... 61 Table 7: Dimensions of learning styles [FEl-87]. .................................................................... 66 Table 8: Educational goals for laboratory learning [ELA-09] ................................................. 71 Table 9: Comparison between laboratories types [NED-15]. .................................................. 73 Table 10: Action verbs and objectives based on Bloom's taxonomy [FSU-16]. ...................... 82 Table 11: Properties' comparison between learning theories ................................................... 89 Table 12: C & E decision-making matrix example ................................................................ 101 Table 13: On-site vs. mobile on-site real laboratories ........................................................... 104 Table 14: Learning objectives PV course............................................................................... 107 Table 15: Government expenditure per secondary student (USD)[UNE-15a] ...................... 109 Table 16: Design specifications - Mobile solar charging station ........................................... 112 Table 17: Learning objectives "Utilization of Wind Energy". Adapted from [GPE-15] ....... 122 Table 18: Design specifications WindLab ............................................................................. 125 Table 19: Learning objectives -mobile mini learning factory ................................................ 142 Table 20: Example of teaching content. Academic vs. non- academic.................................. 143 Table 21: MLF learning objectives vs. technological requirements ...................................... 147 Table 22: Commercially available PV laboratories ............................................................... 200 Table 23: Concept alternatives' evaluation............................................................................. 201 Table 24: Comercially available wind laboratories................................................................ 224 Table 25: Product comparison. MLF production technologies .............................................. 225

List of abbreviations AECT aka API APPC BMS CAD CAE CAI CAM CBT CCS CdTe CEDEFOP CFC CIGS CIM CIRP CIS CNN CNC CO2 CPL CPS CSP DAS DC DFM DGS DIN DMAIC DPAD EC EEA EPA ERP ESD EU FTE GDP GFN GIZ GNI GOLC GPE GWEC

Association for Educational Communication and Technology also known as Application Programming Interface Adaptive Production Planning and Control Battery Management system Computer-Aided Design Computer-Aided Engineering Computer-Aided Instruction Computer-Aided Manufacturing Computer Based Training Carbon Capture and Storage Cadmium Telluride Centre Européen pour le Développement de la Formation Professionnelle (French: European Centre for the Development of Vocational Training) Chlorofluorocarbons Copper Indium Galium Selenide Computer Integrated Manufacturing College International pour la Recherche en Productique (French: International Academy for Production Engineering) Copper Indium Diselenide Cable News Network Computerized Numerical Control Carbon Dioxide Cyber-Physical Laboratories Cyber-Physical Systems Concentrating Solar Power > CSS Inside the “Style” tag is the CSS code that determines the position of the graphical elements. A typical example follows: .label-inclination{ position:absolute; left: 6000px; top: 45px; } This defines the position of the label that shows the angle of inclination of the solar modules. As with most graphical elements of the interface, its position is “absolute” as it was designed with the the specific resolution of the Solar Station’s tablet in mind. The “left” and “top” values define its location in the screen. Additional parameters such as “z-index”, height, width or shadow properties are also defined in the CSS section for elements that require it. Body

220 | A p p e n d i x e s

Following the “Style” section is the “Body” part of the HTML document, where the elements are placed in the screen, starting with a declaration of layout and interface-specific scripts: They add the jQuery Javascript library, as well as the seven segment displays found for power, voltage and current measurements. Additionally, the Draggabilly package is loaded to allow for drag-and-drop functionality of shading elements. Navigation Bar The navigation bar is defined next in the following code: Solar Charging Station
  • Home
  • Components
  • Experiments
The active tab is set as the “Experiments” one. Further development of “Home” and “Components” sections would be added to the bar in this section. Button menu Next is a Bootstrap Jumbotron element inside a column of size 2. This contains the buttons visible on the left side of the screen, which allow the display and hiding of measurement labels such as “Intensity”, “Temperature” and “Inclination”. Every button has an identification specified in the form on an “id” tag, as the following example shows: id="btnIntensity" This identification is used later in the Javascript section to map each button to its function. Finally, the “Download” and “Record” buttons are defined as follows:

Smile Life

When life gives you a hundred reasons to cry, show life that you have a thousand reasons to smile

Get in touch

© Copyright 2015 - 2024 PDFFOX.COM - All rights reserved.