Crystal struCture determInatIOn frOm X-ray POwder dIffraCtIOn data [PDF]

X-ray diffraction is one of the most powerful techniques for characterizing the structural properties of crystalline sol

5 downloads 12 Views 2MB Size

Recommend Stories


Structure Determination of Drugs from Powder Data
You miss 100% of the shots you don’t take. Wayne Gretzky

X-ray Diffraction and Crystal Structure ray Diffraction and Crystal Structure Determination Recap of
Those who bring sunshine to the lives of others cannot keep it from themselves. J. M. Barrie

electronic reprint Improved performance of crystal structure solution from powder diffraction data
There are only two mistakes one can make along the road to truth; not going all the way, and not starting.

Crystal Structure Determination I
Your big opportunity may be right where you are now. Napoleon Hill

Crystal Structure Determination II
And you? When will you begin that long journey into yourself? Rumi

Benchtop Powder Diffraction
Before you speak, let your words pass through three gates: Is it true? Is it necessary? Is it kind?

Structure determination of crystalline substances by diffraction
This being human is a guest house. Every morning is a new arrival. A joy, a depression, a meanness,

Combined method for ab initio structure solution from powder diffraction data
Life is not meant to be easy, my child; but take courage: it can be delightful. George Bernard Shaw

Phase determination and Patterson maps from multiwave powder data
Keep your face always toward the sunshine - and shadows will fall behind you. Walt Whitman

Determination of long range antiferromagnetic order by powder neutron diffraction
Ask yourself: What would I like to stop worrying about? What steps can I take to let go of the worry?

Idea Transcript


CASE STUDY

Crystal structure determination from X-ray powder diffraction data for polycrystalline materials Materials Studio enables the complete workflow of structure solution from X-ray powder data in one integrated environment alongside atomistic simulation

Key Products

In a poster presented at the Ab Initio Modeling in Solid State Chemistry 2004 conference, London, researchers reported on the structure determination of the C

• X-Cell • Reflex Plus (Containing Powder Solve

polymorph of palmitic acid from conventional X-ray powder diffraction data. Using Accelrys’ Reflex Plus and CASTEP software, they were able to validate the results of powder analysis against the theoretical structure of the C polymorph of palmitic acid,

• CASTEP

and so establish a method to solve the structures of the longer members of the family.

Industry sector • Pharmaceutical

Organizations • Universitat de Barcelona • Accelrys Ltd

E. Moreno, C. Conesa-Moratilla, T. Calvet, M. A. CuevasDiarte, I. Morrison.

X-ray diffraction is one of the most powerful techniques for characterizing the structural properties of crystalline solids; single crystal

• Institute for Materials Research

X-ray diffraction, in particular, is widely

• University of Salford

used. Unfortunately, for many important crystalline solids it is difficult to grow a single crystal of sufficient size and quality for analysis by this method. High-quality polycrystalline samples are often easier to obtain, allowing the option of using powder diffraction patterns to determine crystal structures. However, the information content in such patterns is significantly

accelrys.com

reduced in comparison with single crystal X-ray diffraction, and data problems can make solving a crystal structure difficult. Palmitic acid is a long chain compound from the family of n-carboxylic acids with a general formula CH3(CH2)14COOH. Four different forms, named A, B, E and C are mentioned in the literature.1-2 The knowledge of the structure of compounds like these is crucial for gaining understanding of more complex systems such as polymers, or biological substances such as lipids. The C polymorph consists of a monoclinic unit cell (P21/c, Z=4) that

1

CASE STUDY: Materials Studio

Figure 1: Structure obtained after optimization with CASTEP (K 1x4x2 PW480eV cutoff GGA-PBE) and X-ray powder diffraction comparison with experimental data.

Figure 2: Structure obtained after Rietveld refinement and X-ray powder diffraction comparison with experimental dat

contains two dimers held together by hydrogen bonds. In this

have been treated as a quasi-rigid body with one internal degree

form, the hydrocarbon chains assume an all-trans conformation .

of freedom involving the torsion angle between O-C1-C2-C3.

The powder diffraction pattern of the C polymorph of palmitic

After the structure solution step, Rietveld6 refinement is

acid was indexed with X-Cell . Among others solutions, a

done. Usually the information contained in the pattern is not

monoclinic unit cell (P21/c) was obtained, in agreement with

enough to refine all the discrete atomic coordinates; instead,

3

4

that in the literature. After Pawley refinement of the P21/c cell,

the refinement has to be assessed considering the molecule

the structure solution was attempted by a direct space Monte

as a rigid body. In such cases, the use of first-principles DFT

Carlo simulated-annealing approach, and full-profile comparison

calculations7-8 are a valuable tool to optimize the crystal structure,

method implemented in Powder Solve5. Following the global

since they provide fairly accurately atomic positions, which are

optimization algorithm, the trial structures are continuously

a valuable guidance in a subsequent Rietveld refinement.

generated by modifying specified degrees of freedom in order to find the trial structure that yields the best agreement between calculated and experimental patterns. In this case, the molecules

accelrys.com

Indexing, refinement and structure solution steps were carried out using the Reflex Plus software package for crystal structure determination from powder X-ray

2

CASE STUDY: Materials Studio

diffraction, implemented in the PC modeling environment Materials Studio. The input files for the DFT calculations were generated with CASTEP module, implemented in the same Materials Studio modeling environment.

In summary, elucidation of the crystal structure was possible with systematic use of software tools: • Unit cell index with X-Cell2 • Space group determination, based on systematic absences and density considerations

Reference 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.

Moreno, E.; Calvet, T. et al, (Awaiting publication). Von Sydow, E., Arkiv for Kemi; 1955, 9, 231-254. Moreno, E., et al, (Awaiting publication). Neumann, M.A., J. Appl. Cryst. 2003, 36, 356-365. Engel, G. E., et al. J. Appl. Cryst. 1999. 32, 1169-1179. Young, R. A., The Rietveld Method, Oxford University Press; Oxford, 1995. Hohenberg, P., Kohn,W., Phys. Rev. 1964, 136, B864-871. Kohn,W., Sham, L., Phys. Rev. 1965, 140, A1133-1138. Delley, B., J. Chem. Phys. 1990, 92, 508-517. Delley, B., J. Chem. Phys. 2000,113, 7756-7764.

• Pawley refinement • Simulated annealing using PowderSolve (Reflex Plus) • Structure refinement using the Rietveld method • Optimization of atomic coordinates by DFT calculations using DMol3 or CASTEP • Rietveld refinement with fixed atomic coordinates The final structure was validated by comparing the results with those obtained by single crystal X-ray diffraction2. To learn more about Materials Studio by Accelrys, go to accelrys.com/materials-studio

accelrys.com

© 2011 Accelrys Software Inc. All brands or product names may be trademarks of their respective holders.

CS-8067-1211

3

Smile Life

When life gives you a hundred reasons to cry, show life that you have a thousand reasons to smile

Get in touch

© Copyright 2015 - 2024 PDFFOX.COM - All rights reserved.