Effect of reduction temperature on the preparation of zero-valent iron ... [PDF]

Abstract. Zero-valent iron (ZVI) aerogels have been synthesized by sol-gel method and supercritical CO2 drying, followed

2 downloads 13 Views 70KB Size

Recommend Stories


Effect of the catalytic ink preparation method on the performance of High Temperature Polymer
If you are irritated by every rub, how will your mirror be polished? Rumi

effect of rhodium additive on the reduction behaviour of iron oxide in carbon monoxide atmosphere
Come let us be friends for once. Let us make life easy on us. Let us be loved ones and lovers. The earth

Effect of endotoxin on iron absorption
Raise your words, not voice. It is rain that grows flowers, not thunder. Rumi

effect of endotoxin on iron absorption
Life isn't about getting and having, it's about giving and being. Kevin Kruse

Effect of temperature
Suffering is a gift. In it is hidden mercy. Rumi

Effect of Growth Temperature on the Biosynthesis of Chloroplastic Galactosyldiacylglycerol
The beauty of a living thing is not the atoms that go into it, but the way those atoms are put together.

Effect of temperature and pressure on the protonation of glycine
Seek knowledge from cradle to the grave. Prophet Muhammad (Peace be upon him)

effect of temperature on the synthesis of cerium chalcogenides
Live as if you were to die tomorrow. Learn as if you were to live forever. Mahatma Gandhi

Effect of Temperature Fluctuations on MOSFET Characteristics
Sorrow prepares you for joy. It violently sweeps everything out of your house, so that new joy can find

Effect of Temperature on Pratylenchus penetrans Development
Be like the sun for grace and mercy. Be like the night to cover others' faults. Be like running water

Idea Transcript


Effect of reduction temperature on the preparation of zero-valent iron aerogels for trichloroethylene dechlorination Korean Journal of Chemical Engineering November 2008, Volume 25, Issue 6, pp 1377–1384 | Cite as Jihye Ryu (2) Dong Jin Suh (1) Young-Kwon Park (2) Young-Woong Suh (1) Email author ([email protected]) 1. Clean Energy Research Center, Korea Institute of Science and Technology, Seoul, Korea 2. Faculty of Environmental Engineering, University of Seoul, Seoul, Korea Energy and Environmental Engineering First Online: 16 December 2008 Received: 07 January 2008 Accepted: 27 April 2008 118 Downloads 3 Citations

Abstract Zero-valent iron (ZVI) aerogels have been synthesized by sol-gel method and supercritical CO2 drying, followed by H2 reduction in the temperature range of 350–500 °C. When applied to trichloroethylene (TCE) dechlorination, the ZVI aerogel reduced at 370 °C showed the highest performance in the conditions employed in this study. Thus, the effect of reduction temperature in preparing ZVI aerogels has been investigated by several characterizations such as BET, XRD, TPR, and TEM analyses. As the reduction temperature decreased from 500 to 350 °C, the BET surface area of the resulting aerogels increased from 6 to 30 m2/g, whereas their Fe0 content decreased up to 64%. It was also found that H2 reduction at low temperatures such as 350 and 370 °C leads to the formation of ZVI aerogel particles consisting of both Fe0 and FeOx in the particle cores with a different amount ratio, where FeOx is a mixture of maghemite and magnetite. It is, therefore, suggested that reduction at 370 °C for ZVI aerogel preparation yielded particles homogeneously composed of Fe0 and FeOx in the amount ratio of 87/13, resulting in high TCE dechlorination rate. On the other hand, when Pd- and Ni-ZVI aerogels were prepared via cogellation and then applied for TCE dechlorination, we also observed a similar effect of reduction temperature. However, the reduction at 350 or 370 °C produced Pd- or Ni-ZVI aerogel particles in which Fe0 and Fe3O4 co-exist homogeneously. Since both Fe0 and Fe3O4 are advantageous in TCE dechlorination, the activities of Pd- and Ni-ZVI aerogels reduced at 350 °C were comparable to those of both aerogels reduced at 370 °C, although the former aerogels have less Fe0 content.

Key words Zero-valent Iron Aerogel Dechlorination Trichloroethylene Thermal Reduction

Preview Unable to display preview. Download preview PDF. Unable to display preview. Download preview PDF.

References 1.

C. M. Kao, S. C. Chen and J.K. Liu, Chemosphere, 43, 1071 (2001). CrossRef (https://doi.org/10.1016/S0045-6535(00)00190-9) Google Scholar (http://scholar.google.com/scholar_lookup? &author=C.%20M..%20Kao&author=S.%20C..%20Chen&author=J.K..%20Liu&journal=Chemosphere&volume=43&pages=1071&publicati on_year=2001)

2.

M.M. Scherer, S. Richter, R. L. Valentine and P. J. J. Alvarez, Critical Reviews in Environmental Science and Technology, 30(3), 363 (2000). CrossRef (https://doi.org/10.1080/10643380091184219) Google Scholar (http://scholar.google.com/scholar_lookup? &author=M.M..%20Scherer&author=S..%20Richter&author=R.%20L..%20Valentine&author=P.%20J.%20J..%20Alvarez&journal=Critical% 20Reviews%20in%20Environmental%20Science%20and%20Technology&volume=30&issue=3&pages=363&publication_year=2000)

3.

D. E. Meyer and D. Bhattacharyya, J. Phys. Chem. B, 111, 7142 (2007). CrossRef (https://doi.org/10.1021/jp070972u) Google Scholar (http://scholar.google.com/scholar_lookup? &author=D.%20E..%20Meyer&author=D..%20Bhattacharyya&journal=J.%20Phys.%20Chem.%20B&volume=111&pages=7142&publicatio n_year=2007)

4.

S. M. Ponder, J.G. Darab and T. E. Mallouk, Environ. Sci. Technol., 34, 2564 (2000). CrossRef (https://doi.org/10.1021/es9911420) Google Scholar (http://scholar.google.com/scholar_lookup? &author=S.%20M..%20Ponder&author=J.G..%20Darab&author=T.%20E..%20Mallouk&journal=Environ.%20Sci.%20Technol.&volume=34 &pages=2564&publication_year=2000)

5.

S. M. Ponder, J.G. Darab, J. Bucher, D. Caulder, I. Craig, L. Davis, N. Edelstein, W. Lukens, H. Nitsche, L. Rao, D.K. Shuh and T. E. Mallouk, Chem. Mater., 13, 479 (2001). CrossRef (https://doi.org/10.1021/cm000288r) Google Scholar (http://scholar.google.com/scholar_lookup? &author=S.%20M..%20Ponder&author=J.G..%20Darab&author=J..%20Bucher&author=D..%20Caulder&author=I..%20Craig&author=L..%20 Davis&author=N..%20Edelstein&author=W..%20Lukens&author=H..%20Nitsche&author=L..%20Rao&author=D.K..%20Shuh&author=T.%2 0E..%20Mallouk&journal=Chem.%20Mater.&volume=13&pages=479&publication_year=2001)

6.

B. Schrick, J. L. Blough, A. D. Jones and T. E. Mallouk, Chem. Mater., 14, 5140 (2002). CrossRef (https://doi.org/10.1021/cm020737i) Google Scholar (http://scholar.google.com/scholar_lookup? &author=B..%20Schrick&author=J.%20L..%20Blough&author=A.%20D..%20Jones&author=T.%20E..%20Mallouk&journal=Chem.%20Mat er.&volume=14&pages=5140&publication_year=2002)

7.

C. B. Wang and W. X. Zhang, Environ. Sci. Technol., 31, 2154 (1997). CrossRef (https://doi.org/10.1021/es970039c) Google Scholar (http://scholar.google.com/scholar_lookup? &author=C.%20B..%20Wang&author=W.%20X..%20Zhang&journal=Environ.%20Sci.%20Technol.&volume=31&pages=2154&publication _year=1997)

8.

J. T. Nurmi, P.G. Tratnyek, V. Sarathy, D. R. Baer, J. E. Amonette, K. Pecher, C. Wang, J. C. Linehan, D.W. Matson, R. L. Penn and M. D. Driessen, Environ. Sci. Technol., 39, 1221 (2005). CrossRef (https://doi.org/10.1021/es049190u) Google Scholar (http://scholar.google.com/scholar_lookup? &author=J.%20T..%20Nurmi&author=P.G..%20Tratnyek&author=V..%20Sarathy&author=D.%20R..%20Baer&author=J.%20E..%20Amonett e&author=K..%20Pecher&author=C..%20Wang&author=J.%20C..%20Linehan&author=D.W..%20Matson&author=R.%20L..%20Penn&auth or=M.%20D..%20Driessen&journal=Environ.%20Sci.%20Technol.&volume=39&pages=1221&publication_year=2005)

9.

G. N. Glavee, K. J. Klabunde, C.M. Sorensen and G. C. Hadjipanayis, Inorg. Chem., 34, 28 (1995). CrossRef (https://doi.org/10.1021/ic00105a009) Google Scholar (http://scholar.google.com/scholar_lookup? &author=G.%20N..%20Glavee&author=K.%20J..%20Klabunde&author=C.M..%20Sorensen&author=G.%20C..%20Hadjipanayis&journal=In org.%20Chem.&volume=34&pages=28&publication_year=1995)

10.

N. Duxin, O. Stephan, C. Petit, P. Bonville, C. Colliex and M. P. Pileni, Chem. Mater., 9, 2096 (1997). CrossRef (https://doi.org/10.1021/cm9701567) Google Scholar (http://scholar.google.com/scholar_lookup? &author=N..%20Duxin&author=O..%20Stephan&author=C..%20Petit&author=P..%20Bonville&author=C..%20Colliex&author=M.%20P..% 20Pileni&journal=Chem.%20Mater.&volume=9&pages=2096&publication_year=1997)

11.

N. Duxin, M. P. Pileni, W. Wernsdorfer, B. Barbara, A. Benoit and D. Mailly, Langmuir, 16, 11 (2000). CrossRef (https://doi.org/10.1021/la9810049) Google Scholar (http://scholar.google.com/scholar_lookup? &author=N..%20Duxin&author=M.%20P..%20Pileni&author=W..%20Wernsdorfer&author=B..%20Barbara&author=A..%20Benoit&author= D..%20Mailly&journal=Langmuir&volume=16&pages=11&publication_year=2000)

12.

E. E. Carpenter, S. Calvin, R. M. Stroud and V. G. Harris, Chem. Mater., 15, 3245 (2003). CrossRef (https://doi.org/10.1021/cm034131l) Google Scholar (http://scholar.google.com/scholar_lookup? &author=E.%20E..%20Carpenter&author=S..%20Calvin&author=R.%20M..%20Stroud&author=V.%20G..%20Harris&journal=Chem.%20Ma ter.&volume=15&pages=3245&publication_year=2003)

13.

M. Uegami, J. Kawano, T. Okita, Y. Fujii, K. Okinaka, K. Kakuya and S. Yatagai, US Patent 7,022,256 (2006). Google Scholar (https://scholar.google.com/scholar? q=M.%20Uegami%2C%20J.%20Kawano%2C%20T.%20Okita%2C%20Y.%20Fujii%2C%20K.%20Okinaka%2C%20K.%20Kakuya%20and %20S.%20Yatagai%2C%20US%20Patent%207%2C022%2C256%20%282006%29.)

14.

Y. Liu, H. Choi, D. Dionysiou and G.V. Lowry, Chem. Mater., 17, 5315 (2005). CrossRef (https://doi.org/10.1021/cm0511217) Google Scholar (http://scholar.google.com/scholar_lookup? &author=Y..%20Liu&author=H..%20Choi&author=D..%20Dionysiou&author=G.V..%20Lowry&journal=Chem.%20Mater.&volume=17&pa ges=5315&publication_year=2005)

15.

P.D. Mackenzie, D. P. Horney and T.M. Sivavec, J. Hazard. Mater., 68, 1 (1999). CrossRef (https://doi.org/10.1016/S0304-3894(99)00029-1) Google Scholar (http://scholar.google.com/scholar_lookup? &author=P.D..%20Mackenzie&author=D.%20P..%20Horney&author=T.M..%20Sivavec&journal=J.%20Hazard.%20Mater.&volume=68&pag es=1&publication_year=1999)

16.

C.-C. Liu, D.-H. Tseng and C.-Y. Wang, J. Hazard. Mater. B, 136, 706 (2006). CrossRef (https://doi.org/10.1016/j.jhazmat.2005.12.045) Google Scholar (http://scholar.google.com/scholar_lookup?&author=C.-C..%20Liu&author=D.-H..%20Tseng&author=C.Y..%20Wang&journal=J.%20Hazard.%20Mater.%20B&volume=136&pages=706&publication_year=2006)

17.

T. L. Johnson, W. Fish, Y.A. Gorby and P.G. Tratnyek, J. Contam. Hydrol., 29, 379 (1998). CrossRef (https://doi.org/10.1016/S0169-7722(97)00063-6) Google Scholar (http://scholar.google.com/scholar_lookup? &author=T.%20L..%20Johnson&author=W..%20Fish&author=Y.A..%20Gorby&author=P.G..%20Tratnyek&journal=J.%20Contam.%20Hydr ol.&volume=29&pages=379&publication_year=1998)

18.

A.G. B. Williams and M. M. Scherer, Environ. Sci. Technol., 38, 4782 (2004). CrossRef (https://doi.org/10.1021/es049373g) Google Scholar (http://scholar.google.com/scholar_lookup? &author=A.G.%20B..%20Williams&author=M.%20M..%20Scherer&journal=Environ.%20Sci.%20Technol.&volume=38&pages=4782&publ ication_year=2004)

19.

W.X. Zhang, C. B. Wang and H. L. Lien, Cata. Today, 40(4), 387 (1998). CrossRef (https://doi.org/10.1016/S0920-5861(98)00067-4) Google Scholar (http://scholar.google.com/scholar_lookup? &author=W.X..%20Zhang&author=C.%20B..%20Wang&author=H.%20L..%20Lien&journal=Cata.%20Today&volume=40&issue=4&pages =387&publication_year=1998)

20.

E.K. Nyer and D. B. Vance, Ground Water Monit. Rem., 21(2), 41 (2001). CrossRef (https://doi.org/10.1111/j.1745-6592.2001.tb00298.x) Google Scholar (http://scholar.google.com/scholar_lookup? &author=E.K..%20Nyer&author=D.%20B..%20Vance&journal=Ground%20Water%20Monit.%20Rem.&volume=21&issue=2&pages=41&pu blication_year=2001)

21.

A. E. Gash, T. M. Tillotson, J. H. Satcher Jr., J. F. Poco, L.W. Hrubesh and R. L. Simpson, Chem. Mater., 13, 999 (2001). CrossRef (https://doi.org/10.1021/cm0007611) Google Scholar (http://scholar.google.com/scholar_lookup? &author=A.%20E..%20Gash&author=T.%20M..%20Tillotson&author=J.%20H..%20Satcher&author=J.%20F..%20Poco&author=L.W..%20Hr ubesh&author=R.%20L..%20Simpson&journal=Chem.%20Mater.&volume=13&pages=999&publication_year=2001)

22.

O. J. Wimmers, P. Arnoldy and J.A. Moulijn, J. Phys. Chem., 90, 1331 (1986). CrossRef (https://doi.org/10.1021/j100398a025) Google Scholar (http://scholar.google.com/scholar_lookup? &author=O.%20J..%20Wimmers&author=P..%20Arnoldy&author=J.A..%20Moulijn&journal=J.%20Phys.%20Chem.&volume=90&pages=13 31&publication_year=1986)

23.

M. J. Tiernan, P.A. Barnes and G. M. B. Parkes, J. Phys. Chem., 105, 220 (2001). Google Scholar (http://scholar.google.com/scholar_lookup? &author=M.%20J..%20Tiernan&author=P.A..%20Barnes&author=G.%20M.%20B..%20Parkes&journal=J.%20Phys.%20Chem.&volume=105 &pages=220&publication_year=2001)

24.

E. E. Carpenter, J.W. Long, D. R. Rolison, M. S. Logan, K. Pettigrew, R. M. Stroud, L. T. Kuhn, B.R. Hansen and S. Morup, J. Appl. Phys., 99, 08N711 (2006). Google Scholar (http://scholar.google.com/scholar_lookup? &author=E.%20E..%20Carpenter&author=J.W..%20Long&author=D.%20R..%20Rolison&author=M.%20S..%20Logan&author=K..%20Petti grew&author=R.%20M..%20Stroud&author=L.%20T..%20Kuhn&author=B.R..%20Hansen&author=S..%20Morup&journal=J.%20Appl.%20 Phys.&volume=99&pages=08N711&publication_year=2006)

Copyright information © Springer 2008

About this article Cite this article as: Ryu, J., Suh, D.J., Park, YK. et al. Korean J. Chem. Eng. (2008) 25: 1377. https://doi.org/10.1007/s11814-008-0226-8 DOI (Digital Object Identifier) https://doi.org/10.1007/s11814-008-0226-8 Publisher Name Springer US Print ISSN 0256-1115 Online ISSN 1975-7220 About this journal Reprints and Permissions

Personalised recommendations

© 2017 Springer International Publishing AG. Part of Springer Nature. Not logged in Not affiliated 185.191.229.108

Smile Life

When life gives you a hundred reasons to cry, show life that you have a thousand reasons to smile

Get in touch

© Copyright 2015 - 2024 PDFFOX.COM - All rights reserved.