Electronic Spin Resonance combined with Electronic ... - Fapesp [PDF]

1 Jun 2015 - Materiais. O público alvo são os alunos egressos principalmente dos cursos de Ciências Exatas e Engenharias

5 downloads 31 Views 7MB Size

Recommend Stories


Electronic (PDF)
Don't fear change. The surprise is the only way to new discoveries. Be playful! Gordana Biernat

electronic
The happiest people don't have the best of everything, they just make the best of everything. Anony

electronic
In the end only three things matter: how much you loved, how gently you lived, and how gracefully you

Electronic Communication with Shareholders
When you talk, you are only repeating what you already know. But if you listen, you may learn something

[PDF] Download Electronic Devices
Keep your face always toward the sunshine - and shadows will fall behind you. Walt Whitman

Electronic Engineer Resume (PDF)
You have to expect things of yourself before you can do them. Michael Jordan

[PDF] Electronic Payment Systems
Courage doesn't always roar. Sometimes courage is the quiet voice at the end of the day saying, "I will

[PDF]Download Electronic Devices
Just as there is no loss of basic energy in the universe, so no thought or action is without its effects,

Electronic Export Information (PDF)
Do not seek to follow in the footsteps of the wise. Seek what they sought. Matsuo Basho

Electron Spin Resonance (ESR)
The happiest people don't have the best of everything, they just make the best of everything. Anony

Idea Transcript


Electronic Spin Resonance combined with Electronic Structure Calculation as a powerful tool for organic semiconductors characterization Carlos F.O. Graeff [email protected]

http://www.asi.riken.jp/en/laboratories/departments/emd/emerg/spin-theory/

Outline 1) Materials Science and Nanotechnology in UNESP 2) Light-Induced Structural Change in Iridium Complexes Studied by Electron Spin Resonance

3) Electronic structure calculations of ESR parameters for melanin monomers

[email protected]

01/06/2015

24 Campi

São Paulo State Population (2004): 40,000,000 Area: 250,000,000 km2

580 km 810 km [email protected]

01/06/2015

Nano at UNESP  The main Campi of UNESP working on Nanoscience and Nanotechnology are:

Main Areas: -

Synthesis; Composites; Sensors and catalyses; Nanoscale Electronics; Theoretical calculations Electron Microscopy

[email protected]

01/06/2015

Groups Working on Nano  Laboratório Interdisciplinar de Eletroquímica e Cerâmica (LIEC-Araraquara)

 Nanobionics (Araraquara)  Laboratório de Materiais Cerâmicos (Pres. Prudente)

 Laboratório de Materiais Avançados (Bauru)  Grupo de Polímeros (Ilha Solteira)  Laboratório de Compósitos e Cerâmicas Funcionais – LaCCeF (S.J.R. Preto) [email protected]

5

01/06/2015

CEPID/FAPESP: Multifunctional Materials • US$ 25 million for 5 years (2013-2018) possibility to extent up to 2023

[email protected]

01/06/2015

Executive Director Elson Longo - UNESP Deputy Director

José A. Varela - UNESP

Basic Research Division Elson Longo / José A. Varela UNESP

Innovation and Technology Transfer Division

Education and Knowledge Dissemination Division

Reginal Muccillo

Edson R. Leite

Antonio C. Hernandes

IPEN

UFSCar

USP

Synthesis

International School

Pilot Plant Director

Marketing Director

Ernesto C. Pereira

Lucia H. Mascaro

Emerson R. Camargo

Adilson J.A. Oliveira

UFSCar

UFSCar

UFSCar

UFSCar

Renewable Energy

International Colaboration

TTO-Condinator

Media Coordinator

Valmor Mastelaro

Carlos F.O. Graeff

Mario Cilense

Celly M.S. Izumi

USP

UNESP

UNESP

UFSCar

Health

International Advisory Commitee

Traditional Ceramics – Corordinator Projects

Dissemination of Scientific Knowledge

Fabricio R. Sensato

Joao B. Baldo

Talita Mazon

UNIFESP

UFSCar

CTI

Training of Industry Professionals

Summer / Winter Schools

Antonio J. Ramirez

UFABC

Carlos E. Vergani UNESP

Environment Sustainability Marcelo O. Orlandi UNESP

[email protected]

International Dissemination Division

Flavio L. de Souza

LNLS

01/06/2015

Renewable Energy

Health [email protected]

Environmental Sustainability

01/06/2015

Câmpus de Bauru

e Ciê n cia s Pá gina inicia l › Pós Gr a dua çã o › M e st r a d o/ D ou t ora d o › Ciê ncia e Te cn ologia de M a t e r ia is › H om e

Ciê n cia e Te cn ologia de M a t e r ia is Apr e se n t a çã o

o or m a s

a

is

O Programa de Pós-graduação em Ciência e Tecnologia de Materiais (POSMAT) tem caráter institucional e integra as atividades de pesquisa em materiais de diversos campi da UNESP. O programa POSMAT conta atualmente com a participação de sete unidades da UNESP listadas abaixo. A criação dos cursos de Mestrado e Doutorado foi aprovada pela Capes em setembro de 2003. O programa foi avaliado com conceito 6 no período 2010-2012 pela Capes e desenvolve atividades em diversas linhas de pesquisa experimentais e teóricas em Ciência e Tecnologia de Materiais. O público alvo são os alunos egressos principalmente dos cursos de Ciências Exatas e Engenharias, tais como: Física, Química, Matemática, Computação, Engenharia de Materiais, Química, Elétrica, Civil, Mecânica, Produção ou outras áreas afins, que tenham experiência na área de Materiais. Pr ogr a m a : Ciência e Tecnologia de Materiais Gr a n de Ár e a n a CAPES: Multidisciplinar Ár e a : Materiais Con ce it o: 6 (triênio 2010-2013).

I N FORM AÇÕES SOBRE O PROCES SO SELETI VO 2 º / 2 0 1 5

• Multi campi Graduate College Un ida de s Pa r t icipa n t e s • 44 Supervisors Faculdade de Ciências - Bauru • 120 students

Faculdade de Ciências e Tecnologia - Presidente Prudente Faculdade de Engenharia - Bauru Faculdade de Engenharia - Ilha Solteira Instituto de Biociências - Botucatu Instituto de Química - Araraquara Campus Experimental - Sorocaba

çõe s

[email protected]

01/06/2015

1) Light-Induced Structural Change in Iridium Complexes Studied by Electron Spin Resonance

2) Electronic structure calculations of ESR parameters for melanin monomers

[email protected]

01/06/2015

Motivation Iridium Complexes • Efficient photoluminescent materials for OLEDs; • Oxygen sensing; • Catalytic applications

Open questions Photodegradation of Ir compounds

Basic principles of ESR 1 – Without application of magnetic field (Degenerate energy levels)



separation of degenerate levels 3 – Constant microwave radiation applied (E = hv) 2 – Application of magnetic field

4 – Energy absorption when hv = gµBH

Origin of ESR signal H≠0

http://www.intechopen.com/books/ferromagnetic -resonance-theory-andapplications/ferromagnetic-resonance

Photoinduced Charge Transfer Processes Two independent spin charge Separated Charges Singlet Extended Exciton Exciton Charge Transfer is Initiated

carriers

LUMO

HOMO

σ+ σ--.)* . (D D * + A)* A + D ------ A A

Two possible ESR signals

Materials

Host Matrices

Results

Remark: Line shape and ESR parameters are quite similar

independent of Ircomplex and matrix

Batagin-Neto, A. et al. J. Phys. Chem. A (2014), 118, 3717-3725

The centers experience very similar chemical environments

(Signal Amplitude Decay) x (Elapsed Time of Photoexcitation Interruption)

Goodamplitude Fit: by a second-order exponential with photoexcitation two components: a fast-temperature Signal dependence with elapseddecay time after interruption for the independent decay, τ , and a slow-temperature dependent decay, τ (T). A similar behavior 1 Remark: system FIrpic+PS in 0different temperatures (peak-to-peak difference between the was observed for all systems maximum and minimum of the central transition) LESR signal is associated with The decay photogenerated metastable paramagnetic suggests states that:

Delocalization of the LESR-spins on the complex ligands In general, ESR spectra on the literature have: broad line shapes and strong hyperfine interactions

paramagnetic centers close to the Ir atoms

Delocalization of the LESR-spins on the complex ligands Our data:

Assumption:

of our data they shouldand be gIt is compatible with lower hyperfine coupling constant

LESR-induced paramagnetic delocalized values closer to the free electron , as observed.on the spins experience complex ligands weaker interactions with Ir

Paramagnetic Center Formation Considering that: it is located on the Ir-complex ligands. The similarity between the spectra of : Ir(ppy)3 and FIrppy

Phenylpyridine (ppy)

Unpaired Spins are located on similar ligands

Difluorophenylpyridine (2Fppy)

Paramagnetic Center Formation Complex−Matrix Interactions: Intense signals in (Ir(ppy)3+PS )and (Ir(ppy)3+PMMA ) complex −matrix interactions facilitate the paramagnetic center formation

Possibly:

by Charge Transfer followed by Charge Trapping

Batagin-Neto, A. et al. J. Phys. Chem. A (2014), 118, 3717-3725

Electronic Structure Calculations Considering distinct complexes structures: • Cationic and anionic ground state optimized species: FIrpic− FIrpic+ Ir(ppy)3− Ir(ppy)3+ • Optimized and Nonoptimized subproducts coming from ligand decomplexation: Ir(ppy)2• ppy• • Negatively and positively charged distorted species: Ir(ppy)3-Nrot+ Batagin-Neto, A. et al. J. Phys. Chem. A (2014), 118, 3717-3725

Ir(ppy)3-Nrot-

Electronic Structure Calculations - Summary The most suitable set of parameters for: Ir(ppy)3-Nrot−fac

Ir’s hyperfine interaction

Quartet structure of the LESR signal

Ligand Rotation – Distorted Structures

Uncommon CT processes

Photoexcitation

Triplet transitions (MLCT MC)

Batagin-Neto, A. et al. J. Phys. Chem. A (2014), 118, 3717-3725

Metastable distorted structures

Paramagnetic States

Metastable Structures Thermally activated signal decay

From the fitting:

Ea values

τ1 ∼ 5−7 s

τ2 = τ2 (T) s

energy required for conformational relaxation: The large values of (τ) in the order of seconds its temperature dependent

TBP structures

ground-state (GS)

ESR signal quenching can be associated with structural relaxation small additional relaxation processes induced by the CT process

Thermally activated signal decay

Considering the enthalpy difference between ground state (GS) and TBP structures (ΔH), the energy required for conformational regeneration is supposed to be:

ETBP-GS = EGS-TBP − ΔH

EGS-TBP ~ 0.3−0.5 eV

Compatible with our result!!!

Batagin-Neto, A. et al. J. Phys. Chem. A (2014), 118, 3717-3725

1) Light-Induced Structural Change in Iridium Complexes Studied by Electron Spin Resonance

2) Electronic structure calculations of ESR parameters for melanin monomers

[email protected]

01/06/2015

Mix conductor (ionic + electronic) Bioelectronic potential

M. d’ Ischia, et al., Angewandte Chemie 48, 3914-21 (2009).

Melanin’s EPR spectra: pH dependence (H2O suspensions)

EPR signal

CHIO, S.; HYDE, J. S.; SEALY, R. C. Archives Biochem. Biophys. (1982), 215(1), 100–106.

g-factor

Spin concentration

Signal linewidth

Melanin’s EPR spectra: pH dependence (pellets)

MOSTERT, A. B. et al. J. Phys. Chem. B (2013), 117(17), 4965–4972.

Melanin’s EPR spectra: pH dependence Comproportionation Reaction

Carbon centered Signal (CC) (~2.003)

??? MOSTERT, A. B. et al. J. Phys. Chem. B (2013), 117(17), 4965–4972.

Semiquinone signal (SQ) (~2.005)

Electronic structure calculations Objective:

• Evaluate the origin of ESR signal in melanins monomers; Methodology: • Geometry optimization: Molecular dynamics (Amber99 force field) Semi-empirical method (PM6 – MOPAC2012) DFT approach (B3LYP/6-31G) • Spin Hamiltonian parameters: g-factors: DFT/B3LYP and PBE0/6-31G** hyperfine constants: DFT/B3LYP and PBE0/EPRII) Batagin-Neto, A. et al. PCCP (2015), 17, 7264-7274

Monomeric structures considered in calculations

• Anionic and cationic structures: HQ, IQ, QI • Radicalar structures: SQa, SQb and Ndef

g-factors Anionic structures

Batagin-Neto, A. et al. PCCP (2015), 17, 7264-7274

g-factors Cationic structures

Batagin-Neto, A. et al. PCCP (2015), 17, 7264-7274

g-factors Radicalar structures

Batagin-Neto, A. et al. PCCP (2015), 17, 7264-7274

Two groups:

g-factors

• g < 2.0040 (compatible with CC signal): - radicals: Ndef-DHI and Ndef-DHICA; - anions: HQ-DHI and HQ-DHICA; - cations: HQ-DHI, HQ-DHICA, QI-DHI and QI-DHICA;

• g > 2.0040 (compatible with SQ signal): - radicals: SQa-DHI, SQb-DHICA, SQa-DHI and SQb-DHICA; - anions: IQ-DHI, IQ-DHICA, QI-DHI* e QI-DHICA*; - cations: IQ-DHI e IQ-DHICA; * Intermediary values Batagin-Neto, A. et al. PCCP (2015), 17, 7264-7274

Hyperfine interaction - DHI

Hyperfine interaction - DHICA

Hyperfine interaction Higher hyperfines:

CC signals: larger line width SQ signals: smaller line width

Most compatible structures g-factors and Aiso

CC signal: - Ndef-DHI - Ndef-DHICA - HQ-DHI (anion) SQ signal: • SQa-DHI • SQb-DHI • SQa-DHICA • SQb-DHICA • IQ-DHI (anion) • IQ-DHICA (anion)

Thank you for your attention!

[email protected]

01/06/2015

[email protected]

01/06/2015

Smile Life

When life gives you a hundred reasons to cry, show life that you have a thousand reasons to smile

Get in touch

© Copyright 2015 - 2024 PDFFOX.COM - All rights reserved.