From Cryptanalysis to Cognitive Neuroscience [PDF]

From Cryptanalysis to Cognitive Neuroscience. A hidden legacy of ... An Enigma Machine ... Analogy between sensory decod

4 downloads 5 Views 5MB Size

Recommend Stories


Cognitive Neuroscience
The greatest of richness is the richness of the soul. Prophet Muhammad (Peace be upon him)

Cognitive psychology and cognitive neuroscience
You have to expect things of yourself before you can do them. Michael Jordan

Cognitive neuroscience and risk
No amount of guilt can solve the past, and no amount of anxiety can change the future. Anonymous

Cognitive Neuroscience Sequence
Where there is ruin, there is hope for a treasure. Rumi

Cognitive Neuroscience Hemispheric Specialization
Seek knowledge from cradle to the grave. Prophet Muhammad (Peace be upon him)

Read book Cognitive Neuroscience
Your big opportunity may be right where you are now. Napoleon Hill

The neuroscience of cognitive enhancement
Kindness, like a boomerang, always returns. Unknown

Research Methods in Cognitive Neuroscience
Life isn't about getting and having, it's about giving and being. Kevin Kruse

I. How Should Law Prepare to Respond to Cognitive Neuroscience?
Ask yourself: How could I be a better friend to people? Next

PDF Neuroscience
Keep your face always toward the sunshine - and shadows will fall behind you. Walt Whitman

Idea Transcript


From Cryptanalysis to Cognitive Neuroscience A hidden legacy of Alan Turing

The Ratio Club 

The Ratio Club 

An Enigma Machine

Bletchley Park

Hut 8

Bayes‐Laplace “I now send you an essay which I have found among the papers of our deceased friend Mr Bayes, and which, in my opinion, has great merit....” Essay towards solving a problem in the doctrine of chances (1764) Phil. Trans. Roy. Soc.

Rev. Thomas Bayes

Pierre‐Simon Laplace

(1702-1761)

(1749‐1827)

Bayesian statistics

Inference based on uncertain information

Bayesian Inference  Data e.g. sensory input

Beliefs Prior knowledge e.g. memory

Probabilities represent degrees of belief – Strength of a belief is given a value between 0 and 1 – P(A) = belief in proposition A – P(dice shows six)=1/6 Conditional probability – P(A|B)= Probability of A being true given that B is true – P (dice shows six| dice is even)=1/3

Bayes Rule Data = sensory input Beliefs Prior knowledge = expectation

Prior

Likelihood P(belief | sensory input) = P(sensory input | belief) P(belief)

P(sensory input)

Posterior

Decoding under uncertainty The Brain  decodes  the state of the  world Cryptanalysis decodes the Enigma

As for code breakers, a Bayesian perspective on the  brain provides a  means of starting with a theory of  how parameters produce data and inverts it into a  theory of how the data can be used to reveal the  parameters that caused it

A central concern in systems neuroscience is to formulate  precise models of the brain’s model making processes

“The human mind is the equivalent not to 

the brain itself, but instead to the pattern  of information processing supported by  the brain” Alan Turing  1950

Outline 

Perceptual inference 

Uncertainty and perceptual experience Belief Encoding Models of self and others Inferring what goes on inside the brain (‘a mathematical microscope’) 

Sensory Evidence Accumulation •

Random dot motion task:  decide between two opposite directions of motion. 

Sensory Evidence Accumulation •

Random dot motion task: decide between two opposite directions of motion. 

Evidence Accumulation •

Random dot motion task:  decide between two opposite directions of motion. 

Evidence Accumulation •

Random dot motion: decide between two opposite directions of motion. 

Neural Evidence

Decisions are made based on a decision variable (DV), usually log likelihood ratio (log LR12 =  log P(e|h1)/P(e|h2) ).  Evidence is collected until DV > threshold, then decision is made

Analogy between sensory decoding and cryptanalysis    noisy data; sequential sampling; weight of evidence for  alternative hypotheses; a criterion to determine acceptance of  evidence in favour of one  or other hypothesis

Outline 

Perceptual inference 

Uncertainty and perceptual experience Belief Encoding Models of self and others Inferring what goes on inside the brain (‘a mathematical microscope’) 

Low uncertainty

Computational perspectives on  psychopathology and ageing

High uncertainty

Uncertainty and pain anticipation in the brain 

Uncertainty and brain response to receipt of pain

Outline 

Perceptual inference 

Uncertainty and perceptual experience Belief Encoding Models of self and others Inferring what goes on inside the brain (‘a mathematical microscope’) 

fixation

+

cues

+

choice

+

outcome gain

Degrees of belief under uncertainty

Daniel Bernoulli 1700 ‐ 1782

Dopamine and Belief 

cues

+

choice

+

outcome gain

+

Win £1.00

Dopamine

Left

Right

Choose Action probabilities:

Action values: Left:

£0.50 nil + prediction error £0.75

Right:   nil Learning rate = 0.5

Left: 0.622 0.5 0.680 Right: 0.320 0.5 0.378 Choice parameter = 1

Reward Prediction

Outline 

Perceptual inference 

Uncertainty and perceptual experience Belief Encoding Models of self and others Inferring what goes on inside the brain (‘a mathematical microscope’) 

13th September 1848

Value representation

P( X | D)

B B B B

X

Value based decision  for self  and for other

Acting for self and another

P( X | D)

X

V =

M (1 + K × d )

A. Value choosing for self

B. Value choosing for other

Outline 

Perceptual inference 

Uncertainty and perceptual experience Belief Encoding Models of self and others Inferring what goes on inside the brain (‘a mathematical microscope’) 

The Brain decodes the world Cryptanalysts  decode the Enigma

The Neuroscientist decodes the Brain

Electrical  Signals

The Role of Different Receptors In Maintenance

Neurotransmitter Chemical Signals: Synapse

Electrical Signals

Receptors

The Holding things in mind & ? Memory

Target Image 300 ms

300 ms

*

77 76

Probe  Image

4 sec

% Accuracy

75 74 73

2 sec

72 71

Titration

70 69 68

Placebo

L‐Dopa

e.g. match

The Enigm Sensors above the scalp record electromagnetic activity During maintenance

How does this activity reveal the underlying causes of the enhanced maintenance effect?

The Role of Different Receptors In Maintenance Sustained Activity in Prefrontal cortex

Fast excitatory receptor: AMPA

The Role of Different Rec In Maintenance Sustained Activity in Prefrontal cortex, Subject to interference

Fast excitatory receptor: AMPA Fast inhibitory receptor: GABAa

The Role of Different Rec In Maintenance Sustained Activity in Prefrontal cortex, Sustained with prolonged postsynaptic activation

Fast excitatory receptor: AMPA Fast inhibitory receptor: GABAa Slow excitatory receptor: NMDA

Inference Probability of receptors given the data:  p(θ y) ∝ p(y θ )p(θ )

y:  remote data

f (θ AMPA , θ GABA , θ NMDA ) Δθ : Reduced Response at AMPA receptors Δθ : Enhanced Response at GABAa receptors Δθ : Enhanced Response at NMDA receptors

Individual Differences in parameters predict behavioural improvement 0.12

0.3

0.1

0.2

NMDA

0.08

0

0.06 0.04 0.02

‐0.1

0

‐0.2

‐0.02 ‐0.04

‐0.3

‐0.06 ‐0.08

‐0.4

‐10

‐5

0

5

10

15

‐10

20

‐5

0

5

10

Performance Increase

Performance Increase

L‐Dopa : Memory – No Memory 

MAP Parameter estimates

AMPA

0.1

0

0.16

0.08

‐0.01

0.14

0.07

0.12

0.06

0.1

0.05

0.08

0.04

0.06

0.03

0.04

0.02

‐0.08

0.02

0.01

‐0.09

0

0

‐0.02 ‐0.03 ‐0.04 ‐0.05 ‐0.06 ‐0.07

AMPA

GABA 

NMDA

15

20

The  brain is an inferential machine

Some elements:

Ramon y Cajal 1899

Computational Neuroscience Theoretical Neurobiology

Turing  posed a fundamental challenge   What algorithm is “the brain” running?

“It would be quite possible for the machine 

to try out variations of behaviour and  accept or reject them in the manner you  describe and I have been hoping to make a  machine like this”.  Correspondence with Ross Ashby

“If I understand it right, the idea is that by 

different training certain of the paths could be  made effective and the others ineffective.  How  much information could be stored in the brain  this way?  The answer is simply MN binary bits  where there are M paths each capable of two  states” 8th February 1951, correspondence with JZ Young

The National Hospital  for Nervous Diseases circa 1950

“We can only see a short distance ahead, but we can see plenty there that needs to be done” “Computing Machinery and Intelligence”, Mind, October 1950.

Acknowledgements • • • • • • • • •

Karl Friston Peter Dayan Rosalyn Moran Ben Seymour Wako Yoshida Tim Behrens Antoinette Nicolle Miriam Klein‐Flugge Many Others

Smile Life

When life gives you a hundred reasons to cry, show life that you have a thousand reasons to smile

Get in touch

© Copyright 2015 - 2024 PDFFOX.COM - All rights reserved.