Fundamental Physical Constants - Physical Measurement Laboratory [PDF]

From: http://physics.nist.gov/constants. Fundamental Physical Constants — Extensive Listing. Relative std. Quantity. S

0 downloads 7 Views 113KB Size

Recommend Stories


physical constants
Never let your sense of morals prevent you from doing what is right. Isaac Asimov

Physical and Astronomical Constants
Silence is the language of God, all else is poor translation. Rumi

Precision measurement and fundamental constants
Never let your sense of morals prevent you from doing what is right. Isaac Asimov

[PDF] Laboratory Manual in Physical Geology
The happiest people don't have the best of everything, they just make the best of everything. Anony

Physical
Don’t grieve. Anything you lose comes round in another form. Rumi

physical
There are only two mistakes one can make along the road to truth; not going all the way, and not starting.

Physical Fitness Assessment [PDF]
BODY COMPOSITION. Body composition is an evaluation of the body's fat mass and fat-free mass. Fat-free mass is all tissues except fat: muscle, bone, ligament, tendon, etc. Fat mass includes all brown and white fat stores (those essential to survival

[PDF] Physical Biochemistry
You're not going to master the rest of your life in one day. Just relax. Master the day. Than just keep

[PDF]EPUB Physical Biochemistry
Don't be satisfied with stories, how things have gone with others. Unfold your own myth. Rumi

[PDF] Pediatric Physical Examination
You have to expect things of yourself before you can do them. Michael Jordan

Idea Transcript


From: http://physics.nist.gov/constants

Fundamental Physical Constants — Extensive Listing Quantity

Symbol

Value

Unit

Relative std. uncert. ur

UNIVERSAL m s−1 N A−2 N A−2 F m−1

(exact)

0

299 792 458 4π × 10−7 = 12.566 370 614... × 10−7 8.854 187 817... × 10−12

Z0

376.730 313 461...



(exact)

G G/¯ hc h

6.6742(10) × 10−11 6.7087(10) × 10−39 6.626 0693(11) × 10−34 4.135 667 43(35) × 10−15 1.054 571 68(18) × 10−34 6.582 119 15(56) × 10−16 197.326 968(17)

m3 kg−1 s−2 (GeV/c2 )−2 Js eV s Js eV s MeV fm

1.5 × 10−4 1.5 × 10−4 1.7 × 10−7 8.5 × 10−8 1.7 × 10−7 8.5 × 10−8 8.5 × 10−8

2.176 45(16) × 10−8 1.416 79(11) × 1032 1.616 24(12) × 10−35 5.391 21(40) × 10−44

kg K m s

7.5 × 10−5 7.5 × 10−5 7.5 × 10−5 7.5 × 10−5

speed of light in vacuum magnetic constant

c, c0 µ0

electric constant 1/µ0 c2 characteristicpimpedance of vacuum µ0 /0 = µ0 c Newtonian constant of gravitation Planck constant in eV s h/2π in eV s ¯hc in Mev fm

h ¯

Planck mass (¯ hc/G)1/2 Planck temperature (¯ hc5 /G)1/2 /k Planck length ¯h/mP c = (¯ hG/c3 )1/2 Planck time lP /c = (¯hG/c5 )1/2

mP TP lP tP

(exact) (exact)

ELECTROMAGNETIC elementary charge

e e/h

1.602 176 53(14) × 10−19 2.417 989 40(21) × 1014

C A J−1

8.5 × 10−8 8.5 × 10−8

magnetic flux quantum h/2e conductance quantum 2e2/h inverse of conductance quantum Josephson constant1 2e/h von Klitzing constant2 h/e2 = µ0 c/2α

Φ0 G0 G−1 0 KJ

2.067 833 72(18) × 10−15 7.748 091 733(26) × 10−5 12 906.403 725(43) 483 597.879(41) × 109

Wb S Ω Hz V−1

8.5 × 10−8 3.3 × 10−9 3.3 × 10−9 8.5 × 10−8

RK

25 812.807 449(86)



3.3 × 10−9

Bohr magneton e¯h/2me in eV T−1

µB

927.400 949(80) × 10−26 5.788 381 804(39) × 10−5 13.996 2458(12) × 109 46.686 4507(40) 0.671 7131(12)

J T−1 eV T−1 Hz T−1 m−1 T−1 K T−1

8.6 × 10−8 6.7 × 10−9 8.6 × 10−8 8.6 × 10−8 1.8 × 10−6

5.050 783 43(43) × 10−27 3.152 451 259(21) × 10−8 7.622 593 71(65) 2.542 623 58(22) × 10−2 3.658 2637(64) × 10−4

J T−1 eV T−1 MHz T−1 m−1 T−1 K T−1

8.6 × 10−8 6.7 × 10−9 8.6 × 10−8 8.6 × 10−8 1.8 × 10−6

µB /h µB /hc µB /k nuclear magneton e¯h/2mp in eV T−1

µN µN /h µN /hc µN /k

ATOMIC AND NUCLEAR General

Page 1

Source: Peter J. Mohr and Barry N. Taylor, CODATA Recommended Values of the Fundamental Physical Constants: 2002, published in Review of Modern Physics 77, 1 (2005).

From: http://physics.nist.gov/constants

Fundamental Physical Constants — Extensive Listing Quantity

Symbol

Value

Unit

Relative std. uncert. ur

fine-structure constant e2/4π0 ¯ hc inverse fine-structure constant

α α−1

7.297 352 568(24) × 10−3 137.035 999 11(46)

Rydberg constant α2 me c/2h

R∞ R∞ c R∞ hc

10 973 731.568 525(73) 3.289 841 960 360(22) × 1015 2.179 872 09(37) × 10−18 13.605 6923(12)

m−1 Hz J eV

6.6 × 10−12 6.6 × 10−12 1.7 × 10−7 8.5 × 10−8

a0

0.529 177 2108(18) × 10−10

m

3.3 × 10−9

Eh

4.359 744 17(75) × 10−18 27.211 3845(23) 3.636 947 550(24) × 10−4 7.273 895 101(48) × 10−4

J eV m2 s−1 m2 s−1

1.7 × 10−7 8.5 × 10−8 6.7 × 10−9 6.7 × 10−9

GeV−2

8.6 × 10−6

R∞ hc in eV Bohr radius α/4πR∞ = 4π0 ¯ h2/me e2 2 Hartree energy e /4π0 a0 = 2R∞ hc = α2 me c2 in eV quantum of circulation

h/2me h/me

3.3 × 10−9 3.3 × 10−9

Electroweak Fermi coupling constant3 weak mixing angle4 θW (on-shell scheme) sin2 θW = s2W ≡ 1 − (mW /mZ )2

GF /(¯ hc)3

1.166 39(1) × 10−5

sin2 θW

0.222 15(76)

3.4 × 10−3

Electron, e− 9.109 3826(16) × 10−31

kg

1.7 × 10−7

me c

5.485 799 0945(24) × 10−4 8.187 1047(14) × 10−14 0.510 998 918(44)

u J MeV

4.4 × 10−10 1.7 × 10−7 8.6 × 10−8

electron-muon mass ratio electron-tau mass ratio electron-proton mass ratio electron-neutron mass ratio electron-deuteron mass ratio electron to alpha particle mass ratio

me /mµ me /mτ me /mp me /mn me /md me /mα

4.836 331 67(13) × 10−3 2.875 64(47) × 10−4 5.446 170 2173(25) × 10−4 5.438 673 4481(38) × 10−4 2.724 437 1095(13) × 10−4 1.370 933 555 75(61) × 10−4

electron charge to mass quotient electron molar mass NA me Compton wavelength h/me c λC /2π = αa0 = α2/4πR∞ classical electron radius α2 a0 Thomson cross section (8π/3)re2

−e/me M (e), Me λC λC re σe

−1.758 820 12(15) × 1011 5.485 799 0945(24) × 10−7 2.426 310 238(16) × 10−12 386.159 2678(26) × 10−15 2.817 940 325(28) × 10−15 0.665 245 873(13) × 10−28

C kg−1 kg mol−1 m m m m2

8.6 × 10−8 4.4 × 10−10 6.7 × 10−9 6.7 × 10−9 1.0 × 10−8 2.0 × 10−8

electron magnetic moment to Bohr magneton ratio to nuclear magneton ratio electron magnetic moment anomaly |µe |/µB − 1 electron g-factor −2(1 + ae )

µe µe /µB µe /µN

−928.476 412(80) × 10−26 −1.001 159 652 1859(38) −1838.281 971 07(85)

J T−1

8.6 × 10−8 3.8 × 10−12 4.6 × 10−10

ae ge

1.159 652 1859(38) × 10−3 −2.002 319 304 3718(75)

electron mass in u, me = Ar (e) u (electron relative atomic mass times u) energy equivalent in MeV

Page 2

me 2

2.6 × 10−8 1.6 × 10−4 4.6 × 10−10 7.0 × 10−10 4.8 × 10−10 4.4 × 10−10

3.2 × 10−9 3.8 × 10−12

Source: Peter J. Mohr and Barry N. Taylor, CODATA Recommended Values of the Fundamental Physical Constants: 2002, published in Review of Modern Physics 77, 1 (2005).

From: http://physics.nist.gov/constants

Fundamental Physical Constants — Extensive Listing Quantity

Symbol

electron-muon magnetic moment ratio electron-proton magnetic moment ratio electron to shielded proton magnetic moment ratio (H2 O, sphere, 25 ◦ C) electron-neutron magnetic moment ratio electron-deuteron magnetic moment ratio electron to shielded helion5 magnetic moment ratio (gas, sphere, 25 ◦ C) electron gyromagnetic ratio 2|µe |/¯ h

Value

Unit

Relative std. uncert. ur

µe /µµ

206.766 9894(54)

2.6 × 10−8

µe /µp

−658.210 6862(66)

1.0 × 10−8

µe /µ0p

−658.227 5956(71)

1.1 × 10−8

µe /µn

960.920 50(23)

2.4 × 10−7

µe /µd

−2143.923 493(23)

1.1 × 10−8

µe /µ0h

864.058 255(10)

1.2 × 10−8

γe γe /2π

1.760 859 74(15) × 1011 28 024.9532(24)

s−1 T−1 MHz T−1

8.6 × 10−8 8.6 × 10−8

1.883 531 40(33) × 10−28

kg

1.7 × 10−7

mµ c

0.113 428 9264(30) 1.692 833 60(29) × 10−11 105.658 3692(94)

u J MeV

2.6 × 10−8 1.7 × 10−7 8.9 × 10−8

muon-electron mass ratio muon-tau mass ratio muon-proton mass ratio muon-neutron mass ratio muon molar mass NA mµ

mµ /me mµ /mτ mµ /mp mµ /mn M (µ), Mµ

206.768 2838(54) 5.945 92(97) × 10−2 0.112 609 5269(29) 0.112 454 5175(29) 0.113 428 9264(30) × 10−3

kg mol−1

2.6 × 10−8 1.6 × 10−4 2.6 × 10−8 2.6 × 10−8 2.6 × 10−8

muon Compton wavelength h/mµ c λC,µ /2π muon magnetic moment to Bohr magneton ratio to nuclear magneton ratio

λC,µ λC,µ µµ µµ /µB µµ /µN

11.734 441 05(30) × 10−15 1.867 594 298(47) × 10−15 −4.490 447 99(40) × 10−26 −4.841 970 45(13) × 10−3 −8.890 596 98(23)

aµ gµ

1.165 919 81(62) × 10−3 −2.002 331 8396(12)

5.3 × 10−7 6.2 × 10−10

µµ /µp

−3.183 345 118(89)

2.8 × 10−8

Muon, µ− muon mass in u, mµ = Ar (µ) u (muon relative atomic mass times u) energy equivalent in MeV

muon magnetic moment anomaly |µµ |/(e¯h/2mµ ) − 1 muon g-factor −2(1 + aµ ) muon-proton magnetic moment ratio

mµ 2

m m J T−1

2.5 × 10−8 2.5 × 10−8 8.9 × 10−8 2.6 × 10−8 2.6 × 10−8

Tau, τ − tau mass6 in u, mτ = Ar (τ) u (tau relative atomic mass times u) energy equivalent

Page 3

mτ 2

mτ c

3.167 77(52) × 10−27

kg

1.6 × 10−4

1.907 68(31) 2.847 05(46) × 10−10

u J

1.6 × 10−4 1.6 × 10−4

Source: Peter J. Mohr and Barry N. Taylor, CODATA Recommended Values of the Fundamental Physical Constants: 2002, published in Review of Modern Physics 77, 1 (2005).

From: http://physics.nist.gov/constants

Fundamental Physical Constants — Extensive Listing Quantity

Symbol

Value 1776.99(29)

in MeV

Unit

Relative std. uncert. ur

MeV

1.6 × 10−4

tau-electron mass ratio tau-muon mass ratio tau-proton mass ratio tau-neutron mass ratio tau molar mass NA mτ

mτ /me mτ /mµ mτ /mp mτ /mn M (τ), Mτ

3477.48(57) 16.8183(27) 1.893 90(31) 1.891 29(31) 1.907 68(31) × 10−3

kg mol−1

1.6 × 10−4 1.6 × 10−4 1.6 × 10−4 1.6 × 10−4 1.6 × 10−4

tau Compton wavelength h/mτ c λC,τ /2π

λC,τ λC,τ

0.697 72(11) × 10−15 0.111 046(18) × 10−15

m m

1.6 × 10−4 1.6 × 10−4

1.672 621 71(29) × 10−27

kg

1.7 × 10−7

u J MeV

1.3 × 10−10 1.7 × 10−7 8.6 × 10−8

C kg−1 kg mol−1

4.6 × 10−10 2.6 × 10−8 1.6 × 10−4 5.8 × 10−10 8.6 × 10−8 1.3 × 10−10

Proton, p proton mass in u, mp = Ar (p) u (proton relative atomic mass times u) energy equivalent in MeV

mp

mp c

1.007 276 466 88(13) 1.503 277 43(26) × 10−10 938.272 029(80)

proton-electron mass ratio proton-muon mass ratio proton-tau mass ratio proton-neutron mass ratio proton charge to mass quotient proton molar mass NA mp

mp /me mp /mµ mp /mτ mp /mn e/mp M (p), Mp

1836.152 672 61(85) 8.880 243 33(23) 0.528 012(86) 0.998 623 478 72(58) 9.578 833 76(82) × 107 1.007 276 466 88(13) × 10−3

proton Compton wavelength h/mp c λC,p /2π proton rms charge radius proton magnetic moment to Bohr magneton ratio to nuclear magneton ratio

λC,p λC,p Rp µp µp /µB µp /µN

1.321 409 8555(88) × 10−15 0.210 308 9104(14) × 10−15 0.8750(68) × 10−15 1.410 606 71(12) × 10−26 1.521 032 206(15) × 10−3 2.792 847 351(28)

proton g-factor 2µp /µN proton-neutron magnetic moment ratio shielded proton magnetic moment (H2 O, sphere, 25 ◦ C) to Bohr magneton ratio to nuclear magneton ratio proton magnetic shielding correction 1 − µ0p /µp (H2 O, sphere, 25 ◦ C)

gp

5.585 694 701(56)

µp /µn µ0p

−1.459 898 05(34) 1.410 570 47(12) × 10−26

µ0p /µB µ0p /µN

1.520 993 132(16) × 10−3 2.792 775 604(30)

1.1 × 10−8 1.1 × 10−8

σp0

25.689(15) × 10−6

5.7 × 10−4

γp γp /2π

2.675 222 05(23) × 108 42.577 4813(37)

s−1 T−1 MHz T−1

8.6 × 10−8 8.6 × 10−8

γp0

2.675 153 33(23) × 108

s−1 T−1

8.6 × 10−8

proton gyromagnetic ratio 2µp /¯ h shielded proton gyromagnetic ratio 2µ0p /¯h (H2 O, sphere, 25 ◦ C)

Page 4

2

m m m J T−1

6.7 × 10−9 6.7 × 10−9 7.8 × 10−3 8.7 × 10−8 1.0 × 10−8 1.0 × 10−8 1.0 × 10−8

−1

JT

2.4 × 10−7 8.7 × 10−8

Source: Peter J. Mohr and Barry N. Taylor, CODATA Recommended Values of the Fundamental Physical Constants: 2002, published in Review of Modern Physics 77, 1 (2005).

From: http://physics.nist.gov/constants

Fundamental Physical Constants — Extensive Listing Quantity

Unit

Relative std. uncert. ur

MHz T−1

8.6 × 10−8

1.674 927 28(29) × 10−27

kg

1.7 × 10−7

u J MeV

5.5 × 10−10 1.7 × 10−7 8.6 × 10−8

kg mol−1

7.0 × 10−10 2.6 × 10−8 1.6 × 10−4 5.8 × 10−10 5.5 × 10−10

Symbol

Value

γp0 /2π

42.576 3875(37) Neutron, n

neutron mass in u, mn = Ar (n) u (neutron relative atomic mass times u) energy equivalent in MeV

mn

mn c

1.008 664 915 60(55) 1.505 349 57(26) × 10−10 939.565 360(81)

neutron-electron mass ratio neutron-muon mass ratio neutron-tau mass ratio neutron-proton mass ratio neutron molar mass NA mn

mn /me mn /mµ mn /mτ mn /mp M (n), Mn

1838.683 6598(13) 8.892 484 02(23) 0.528 740(86) 1.001 378 418 70(58) 1.008 664 915 60(55) × 10−3

neutron Compton wavelength h/mn c λC,n /2π neutron magnetic moment to Bohr magneton ratio to nuclear magneton ratio

λC,n λC,n µn µn /µB µn /µN

1.319 590 9067(88) × 10−15 0.210 019 4157(14) × 10−15 −0.966 236 45(24) × 10−26 −1.041 875 63(25) × 10−3 −1.913 042 73(45)

neutron g-factor 2µn /µN neutron-electron magnetic moment ratio neutron-proton magnetic moment ratio neutron to shielded proton magnetic moment ratio (H2 O, sphere, 25 ◦ C) neutron gyromagnetic ratio 2|µn |/¯h

gn

−3.826 085 46(90)

2.4 × 10−7

µn /µe

1.040 668 82(25) × 10−3

2.4 × 10−7

µn /µp

−0.684 979 34(16)

2.4 × 10−7

µn /µ0p

−0.684 996 94(16)

2.4 × 10−7

γn γn /2π

1.832 471 83(46) × 108 29.164 6950(73)

2

m m J T−1

6.7 × 10−9 6.7 × 10−9 2.5 × 10−7 2.4 × 10−7 2.4 × 10−7

s−1 T−1 MHz T−1

2.5 × 10−7 2.5 × 10−7

3.343 583 35(57) × 10−27

kg

1.7 × 10−7

u J MeV

1.7 × 10−10 1.7 × 10−7 8.6 × 10−8

kg mol−1

4.8 × 10−10 2.0 × 10−10 1.7 × 10−10

Deuteron, d deuteron mass in u, md = Ar (d) u (deuteron relative atomic mass times u) energy equivalent in MeV

md

md c

2.013 553 212 70(35) 3.005 062 85(51) × 10−10 1875.612 82(16)

deuteron-electron mass ratio deuteron-proton mass ratio deuteron molar mass NA md

md /me md /mp M (d), Md

3670.482 9652(18) 1.999 007 500 82(41) 2.013 553 212 70(35) × 10−3

deuteron rms charge radius deuteron magnetic moment to Bohr magneton ratio to nuclear magneton ratio

Rd µd µd /µB µd /µN

2.1394(28) × 10−15 0.433 073 482(38) × 10−26 0.466 975 4567(50) × 10−3 0.857 438 2329(92)

Page 5

2

m J T−1

1.3 × 10−3 8.7 × 10−8 1.1 × 10−8 1.1 × 10−8

Source: Peter J. Mohr and Barry N. Taylor, CODATA Recommended Values of the Fundamental Physical Constants: 2002, published in Review of Modern Physics 77, 1 (2005).

From: http://physics.nist.gov/constants

Fundamental Physical Constants — Extensive Listing Quantity

Symbol

deuteron-electron magnetic moment ratio deuteron-proton magnetic moment ratio deuteron-neutron magnetic moment ratio

Value

Unit

Relative std. uncert. ur

µd /µe

−4.664 345 548(50) × 10−4

1.1 × 10−8

µd /µp

0.307 012 2084(45)

1.5 × 10−8

µd /µn

−0.448 206 52(11)

2.4 × 10−7

Helion, h 5.006 412 14(86) × 10−27

kg

1.7 × 10−7

mh c

3.014 932 2434(58) 4.499 538 84(77) × 10−10 2808.391 42(24)

u J MeV

1.9 × 10−9 1.7 × 10−7 8.6 × 10−8

mh /me mh /mp M (h), Mh µ0h

5495.885 269(11) 2.993 152 6671(58) 3.014 932 2434(58) × 10−3 −1.074 553 024(93) × 10−26

kg mol−1 J T−1

2.0 × 10−9 1.9 × 10−9 1.9 × 10−9 8.7 × 10−8

µ0h /µB µ0h /µN

−1.158 671 474(14) × 10−3 −2.127 497 723(25)

1.2 × 10−8 1.2 × 10−8

µ0h /µp

−0.761 766 562(12)

1.5 × 10−8

µ0h /µ0p

−0.761 786 1313(33)

4.3 × 10−9

γh0

2.037 894 70(18) × 108

s−1 T−1

8.7 × 10−8

γh0 /2π

32.434 1015(28)

MHz T−1

8.7 × 10−8

6.644 6565(11) × 10−27

kg

1.7 × 10−7

mα c

4.001 506 179 149(56) 5.971 9194(10) × 10−10 3727.379 17(32)

u J MeV

1.4 × 10−11 1.7 × 10−7 8.6 × 10−8

mα /me mα /mp M (α), Mα

7294.299 5363(32) 3.972 599 689 07(52) 4.001 506 179 149(56) × 10−3

kg mol−1

4.4 × 10−10 1.3 × 10−10 1.4 × 10−11

helion mass5 in u, mh = Ar (h) u (helion relative atomic mass times u) energy equivalent in MeV

mh

helion-electron mass ratio helion-proton mass ratio helion molar mass NA mh shielded helion magnetic moment (gas, sphere, 25 ◦ C) to Bohr magneton ratio to nuclear magneton ratio shielded helion to proton magnetic moment ratio (gas, sphere, 25 ◦ C) shielded helion to shielded proton magnetic moment ratio (gas/H2 O, spheres, 25 ◦ C) shielded helion gyromagnetic ratio 2|µ0h |/¯h (gas, sphere, 25 ◦ C)

2

Alpha particle, α alpha particle mass in u, mα = Ar (α) u (alpha particle relative atomic mass times u) energy equivalent in MeV alpha particle to electron mass ratio alpha particle to proton mass ratio alpha particle molar mass NA mα

mα 2

PHYSICO-CHEMICAL Avogadro constant atomic mass constant 1 mu = 12 m(12 C) = 1 u

Page 6

NA , L

6.022 1415(10) × 1023

mol−1

1.7 × 10−7

mu

1.660 538 86(28) × 10−27

kg

1.7 × 10−7

Source: Peter J. Mohr and Barry N. Taylor, CODATA Recommended Values of the Fundamental Physical Constants: 2002, published in Review of Modern Physics 77, 1 (2005).

From: http://physics.nist.gov/constants

Fundamental Physical Constants — Extensive Listing Quantity

Symbol

= 10−3 kg mol−1/NA energy equivalent in MeV Faraday constant7 NA e

1.7 × 10−7 8.6 × 10−8 8.6 × 10−8

k/h k/hc

3.990 312 716(27) × 10−10 0.119 626 565 72(80) 8.314 472(15) 1.380 6505(24) × 10−23 8.617 343(15) × 10−5 2.083 6644(36) × 1010 69.503 56(12)

J s mol−1 J m mol−1 J mol−1 K−1 J K−1 eV K−1 Hz K−1 m−1 K−1

6.7 × 10−9 6.7 × 10−9 1.7 × 10−6 1.8 × 10−6 1.8 × 10−6 1.7 × 10−6 1.7 × 10−6

Vm n0 Vm

22.413 996(39) × 10−3 2.686 7773(47) × 1025 22.710 981(40) × 10−3

m3 mol−1 m−3 m3 mol−1

1.7 × 10−6 1.8 × 10−6 1.7 × 10−6

S0 /R

−1.151 7047(44) −1.164 8677(44)

σ c1 c1L c2

5.670 400(40) × 10−8 3.741 771 38(64) × 10−16 1.191 042 82(20) × 10−16 1.438 7752(25) × 10−2

W m−2 K−4 W m2 W m2 sr−1 mK

7.0 × 10−6 1.7 × 10−7 1.7 × 10−7 1.7 × 10−6

b

2.897 7685(51) × 10−3

mK

1.7 × 10−6

NA h NA hc R k

molar volume of ideal gas RT /p T = 273.15 K, p = 101.325 kPa Loschmidt constant NA /Vm T = 273.15 K, p = 100 kPa Sackur-Tetrode constant (absolute entropy constant)8 5 2 3/2 kT1 /p0 ] 2 + ln[(2πmu kT1 /h ) T1 = 1 K, p0 = 100 kPa T1 = 1 K, p0 = 101.325 kPa Stefan-Boltzmann constant (π2 /60)k 4/¯h3 c2 first radiation constant 2πhc2 first radiation constant for spectral radiance 2hc2 second radiation constant hc/k Wien displacement law constant b = λmax T = c2 /4.965 114 231...

Relative std. uncert. ur

J MeV C mol−1

F

molar gas constant Boltzmann constant R/NA in eV K−1

Unit

1.492 417 90(26) × 10−10 931.494 043(80) 96 485.3383(83)

mu c2

molar Planck constant

Value

3.8 × 10−6 3.8 × 10−6

1

See the “Adopted values” table for the conventional value adopted internationally for realizing representations of the volt using the Josephson effect. 2 See the “Adopted values” table for the conventional value adopted internationally for realizing representations of the ohm using the quantum Hall effect. 3 Value recommended by the Particle Data Group (Hagiwara, et al., 2002). 4 Based on the ratio of the masses of the W and Z bosons mW /mZ recommended by the Particle Data Group (Hagiwara, et al., 2002). The value for sin2 θW they recommend, which is based on a particular variant of the modified minimal subtraction (MS) scheme, is sin2 θˆW (MZ ) = 0.231 24(24). 5 The helion, symbol h, is the nucleus of the 3 He atom. 6 This and all other values involving mτ are based on the value of mτ c2 in MeV recommended by the Particle Data Group, (Hagiwara, et al., 2002), but with a standard uncertainty of 0.29 MeV rather than the quoted uncertainty of −0.26 MeV, +0.29 MeV. 7 The numerical value of F to be used in coulometric chemical measurements is 96 485.336(16) [1.7 × 10−7 ] when the relevant current is measured in terms of representations of the volt and ohm based on the Josephson and quantum Hall effects and the internationally adopted conventional values of the Josephson and von Klitzing constants KJ−90 and RK−90 given in the “Adopted values” table. 8 The entropy of an ideal monoatomic gas of relative atomic mass Ar is given by S = S0 + 23 R ln Ar − R ln(p/p0 ) + 52 R ln(T /K). 9 The relative atomic mass Ar (X) of particle X with mass m(X) is defined by Ar (X) = m(X)/mu , where mu = m(12 C)/12 = Mu /NA = 1 u is the atomic mass constant, NA is the Avogadro constant, and u is the atomic mass unit. Thus the mass of particle X in u is m(X) = Ar (X) u and the molar mass of X is M (X) = Ar (X)Mu .

Page 7

Source: Peter J. Mohr and Barry N. Taylor, CODATA Recommended Values of the Fundamental Physical Constants: 2002, published in Review of Modern Physics 77, 1 (2005).

From: http://physics.nist.gov/constants

10

This is the value adopted internationally for realizing representations of the volt using the Josephson effect. This is the value adopted internationally for realizing representations of the ohm using the quantum Hall effect. a This is the lattice parameter (unit cell edge length) of an ideal single crystal of naturally occurring Si free of impurities and imperfections, and is deduced from measurements on extremely pure and nearly perfect single crystals of Si by correcting for the effects of impurities. 11

Page 8

Source: Peter J. Mohr and Barry N. Taylor, CODATA Recommended Values of the Fundamental Physical Constants: 2002, published in Review of Modern Physics 77, 1 (2005).

Smile Life

When life gives you a hundred reasons to cry, show life that you have a thousand reasons to smile

Get in touch

© Copyright 2015 - 2024 PDFFOX.COM - All rights reserved.