Home Page: Visual Neuroscience - Center for Neural Science [PDF]

(pdf). Class 5 – February 24, 2016 – LGN and subcortical visual pathways (Slides). Principal reading: Kaplan E, Shap

3 downloads 10 Views 61KB Size

Recommend Stories


Untitled - Center for Behavioral Neuroscience
The beauty of a living thing is not the atoms that go into it, but the way those atoms are put together.

dSaksharta: Home Page [PDF]
Whether you are a novice or have some experience on computers, Digital Literacy will help you develop strong fundamentals of computers relevant for day to day activities. Digital Literacy for All.

PDF Download Neural Data Science
If you want to become full, let yourself be empty. Lao Tzu

Neural Science
Every block of stone has a statue inside it and it is the task of the sculptor to discover it. Mich

Home Science
Don't fear change. The surprise is the only way to new discoveries. Be playful! Gordana Biernat

PDF Neuroscience
Keep your face always toward the sunshine - and shadows will fall behind you. Walt Whitman

visual neural simulator
The happiest people don't have the best of everything, they just make the best of everything. Anony

bachelor of science degree neuroscience
Those who bring sunshine to the lives of others cannot keep it from themselves. J. M. Barrie

Digital Home Multimedia Center
No amount of guilt can solve the past, and no amount of anxiety can change the future. Anonymous

Home Chemical Collection Center
Come let us be friends for once. Let us make life easy on us. Let us be loved ones and lovers. The earth

Idea Transcript


NEURL-GA 3042 – Spring Semester 2016 Visual Neuroscience Instructor:

Tony Movshon

Time:

Lectures: Wednesdays, 2:00-5:00 pm

Location:

Lectures: Meyer Hall (4 Washington Place), Rm. 815

A graduate course covering the basics of visual function from a neuroscience perspective. The visual system is one of the most successful models for studies of higher brain function. This course will explore two aspects of visual neuroscience: First, the function of brain mechanisms that encode information about the form, color, motion, and depth of visual objects and scenes; and second, the mechanisms that decode this information to generate perceptual experience and visually-guided action. The course will use a combined lecture and seminar format. Readings will be a mixture of primary source papers and review articles. Students will be expected to prepare a term paper and a class presentation. General background reading for those unfamiliar with the basics of vision can be found in Brian Wandell's excellent 1995 book Foundations of Vision, which is available in full on-line here. Even those familiar with vision can benefit from a look at this book.

Class 1 – January 27, 2016 – The elephants of early vision (Slides)(Movie) Principal reading: Adelson EH, Bergen J (1991). The plenoptic function and the elements of early vision. In Computational Models of Visual Processing, Landy MS, Movshon JA, eds. MIT Press. (pdf) Enroth-Cugell C, Robson JG (1966). The contrast sensitivity of retinal ganglion cells of the cat. J Physiol 187: 517-552. (pdf) Marr DC (1982). Vision: A Computational Investigation into the Human Representation and Processing of Visual Information, chapter 1. MIT press. (pdf)

Class 2 – February 3, 2016 – Retinal circuits 1 (Slides) Principal reading: Masland RH (2001). The fundamental plan of the retina. Nat Neurosci 4: 877-886. (pdf) Field GD, Chichilnisky EJ (2007). Information processing in the primate retina: circuitry and coding. Annu Rev Neurosci 30:1-30. (pdf) Supplementary reading: Field GD, Gauthier JL, Sher A, Greschner M, Machado TA, Jepson LH, Shlens J, Gunning DE, Mathieson K, Dabrowski W, Paninski L, Litke A, Chichilnisky EJ (2010). Functional connectivity in the retina at the resolution of photoreceptors. Nature 467: 673-678. (pdf) Cornsweet TN (1970). Visual Perception, chapter 2. Academic Press. (pdf)

Class 3 – February 10, 2016 – Retinal circuits 2 (Slides) Principal reading: Dacey DM (2004). Origins of perception: retinal ganglion cell diversity and the creation of parallel visual pathways. In M. S. Gazzaniga, ed. The Cognitive Neurosciences, 3rd Edition. Cambridge, MA: MIT Press. (pdf) Dacey DM, Joo HR, Peterson BB, Haun TJ (2010). Morphology, mosaics and targets of diverse ganglion cell populations in macaque retina: approaching a complete account. ARVO Poster. (jpg) Masland RH (2012). The neuronal organization of the retina. Neuron 76: 266-280. (pdf) Roska, B, & Meister, M (2014) The retina dissects the visual scene into distinct features. In The New Visual Neurosciences (Werner, JS, Chalupa, LM, eds), pp 163–182. Cambridge, MA: MIT Press. (pdf) Supplementary reading: Baden T, Berens P, Franke K, Román Rosón M, Bethge M, Euler T (2016). The functional diversity of retinal ganglion cells in the mouse. Nature 529:345-350. (pdf)

Class 4 – February 17, 2016 – Retinal processing of color and motion; the LGN (Slides) Principal reading: Barlow HB, Levick WR (1965). The mechanism of directionally selective units in the rabbit's retina. J Physiol 178: 477-504. (pdf) Briggman KL, Helmstaedter M, Denk W (2011). Wiring specificity in the direction-selectivity circuit of the retina. Nature 471:183-188. (pdf) Wiesel TN, Hubel, DH (1966). Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. J Neurophysiol 29: 1115-1156. (pdf) Field GD, Gauthier JL, Sher A, Greschner M, Machado TA, Jepson LH, Shlens J, Gunning DE, Mathieson K, Dabrowski W, Paninski L, Litke A, Chichilnisky EJ (2010). Functional connectivity in the retina at the resolution of photoreceptors. Nature 467: 673-678. (pdf) Supplementary reading: Cleland BG, Dubin MW, Levick WR (1971). Simultaneous recording of input and output of lateral geniculate neurones. Nat New Biol 231: 191-192. (pdf) Carandini M, Horton JC, Sincich LC (2007). Thalamic filtering of retinal spike trains by postsynaptic summation. J Vis. 7(14):20.1-11. (pdf) Crook JD, Manookin MD, Packer OS, Dacey DM (2011). Horizontal cell feedback without cone type-selective inhibition mediates “red–green” color opponency in midget ganglion cells of the primate retina. J Neurosci 31: 1762-1772. (pdf) Alitto HJ, Moore, BD 4th, Rathbun DL, Usrey WM (2011). A comparison of visual responses in the lateral geniculate nucleus of alert and anaesthetized macaque monkeys. J Physiol 589: 87-99. (pdf)

Class 5 – February 24, 2016 – LGN and subcortical visual pathways (Slides) Principal reading: Kaplan E, Shapley RM (1982). X and Y cells in the lateral geniculate nucleus of macaque monkeys. J Physiol 330: 125-143. (pdf) Mante V, Frazor RA, Bonin V, Geisler WS, Carandini M (2005). Independence of luminance and contrast in natural scenes and in the early visual system. Nat Neurosci 8: 1690-1697. (pdf) Schneider GE (1969).Two visual systems. Science. 163:895-902.(pdf) Wurtz RH, Albano JE (1980) Visual-motor function of the primate superior colliculus. Annu Rev Neurosci. 3:189-226. (pdf) Supplementary reading: Derrington AM, Lennie P (1984). Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. J Physiol 357: 219-240. (pdf) Mante V, Bonin V, Carandini M (2008). Functional mechanisms shaping lateral geniculate responses to artificial and natural stimuli. Neuron 58: 625-638. (pdf) Roy S, Jayakumar J, Martin PR, Dreher B, Saalmann YB, Hu D, Vidyasagar TR. (2009) Segregation of short-wavelength-sensitive (S) cone signals in the macaque dorsal lateral geniculate nucleus. Eur J Neurosci. 30: 1517-1526. (pdf) Dräger UC, Hubel DH. (1975) Responses to visual stimulation and relationship between visual, auditory, and somatosensory inputs in mouse superior colliculus. J Neurophysiol. 38:690713. (pdf)

Class 6 – March 2, 2016 – Primary visual cortex 1 (Guest lecturer: Mike Hawken) (Slides) Principal reading: Hubel DH, Wiesel TN (1977). Ferrier lecture. Functional architecture of macaque monkey visual cortex. Proc R Soc Lond B 198: 1-59. (pdf) Douglas RJ, Martin KAC (2004). Neuronal circuits of the neocortex. Annu Rev Neurosci 27: 419-451. (pdf) Lennie P, Movshon JA (2005). Coding of color and form in the geniculostriate visual pathway. J Opt Soc Am A 22: 2013-2033. (pdf)

Class 7 – March 9, 2016 – Primary visual cortex 2 (Slides) Principal reading: Lennie P, Movshon JA (2005). Coding of color and form in the geniculostriate visual pathway. J Opt Soc Am A 22: 2013-2033. (pdf) Priebe NJ, Ferster D (2008). Inhibition, spike threshold, and stimulus selectivity in primary visual cortex. Neuron 57: 482-497. (pdf) Supplementary reading: Hubel DH, Wiesel TN (1962). Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol. 160: 106-154. (pdf) Hubel DH, Wiesel TN (1968). Receptive fields and functional architecture of monkey striate cortex. J Physiol. 195: 215-243. (pdf) Adams DL, Horton JC (2003). A precise retinotopic map of primate striate cortex generated from the representation of angioscotomas. J Neurosci. 23: 3771-3789.(pdf) De Valois RL, Albrecht DG, Thorell LG (1982). Spatial frequency selectivity of cells in macaque visual cortex. Vision Res. 22: 545-459. (pdf) Carandini M, Heeger DJ, Movshon JA (1997). Linearity and normalization in simple cells of the macaque primary visual cortex. J Neurosci. 17: 8621-8644. (pdf)

Class 8 – March 23, 2016 – Image statistics and neural representation (Guest lecturer: Eero Simoncelli)(Slides) Principal reading: Simoncelli EP, Olshausen BA (2001). Natural image statistics and neural representation. Annu Rev Neurosci. 24: 1193-1216. (pdf) Supplementary reading: Olshausen BA, Field DJ (1996) Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381:607-609. (pdf) Ruderman DL (1994) The statistics of natural images. Network 5: 517-548. (pdf) Schwartz O, Simoncelli EP (2001). Natural signal statistics and sensory gain control. Nat Neurosci. 4:819-825. (pdf)

Class 9 – March 30, 2016 – Introduction to extrastriate cortex (Slides) Principal reading: Felleman DJ, Van Essen DC (1991). Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1-47. (pdf) Markov NT, Ercsey-Ravasz M, Van Essen DC, Knoblauch K, Toroczkai Z, Kennedy H. (2013) Cortical high-density counterstream architectures. Science. 342:1238406. (pdf) Supplementary reading: Van Essen DC, Lewis JW, Drury HA, Hadjikhani N, Tootell RB, Bakircioglu M, Miller MI (2001). Mapping visual cortex in monkeys and humans using surface-based atlases. Vision Res 41: 1359-1378. (pdf) Markov NT, Ercsey-Ravasz MM, Ribeiro Gomes AR, Lamy C, Magrou L, Vezoli J, Misery P, Falchier A, Quilodran R, Gariel MA, Sallet J, Gamanut R, Huissoud C, Clavagnier S, Giroud P, Sappey-Marinier D, Barone P, Dehay C, Toroczkai Z, Knoblauch K, Van Essen DC, Kennedy H. A weighted and directed interareal connectivity matrix for macaque cerebral cortex. Cereb Cortex. 24:17-36. (pdf)

Class 10 – April 6, 2016 – V2 and IT (Slides) Principal reading: Merigan WH, Nealey TA, Maunsell JH (1993). Visual effects of lesions of cortical area V2 in macaques. J Neurosci. 13: 3180-3191. (pdf) Sincich LC, Horton JC (2005). The circuitry of V1 and V2: integration of color, form, and motion. Annu Rev Neurosci. 28: 303-326. (pdf) Supplementary reading: Movshon JA, Simoncelli EP (2015). Representation of naturalistic image structure in the primate visual cortex. Cold Spring Harb Symp Quant Biol. 79:115-22. (pdf) O'Herron P, von der Heydt R (2013). Remapping of border ownership in the visual cortex. J Neurosci. 33: 1964-1974. (pdf) Lu HD, Chen G, Tanigawa H, Roe AW (2010). A motion direction map in macaque V2. Neuron 68: 1002-1013. (pdf) Rust NC, DiCarlo JJ (2012). Balanced increases in selectivity and tolerance produce constant sparseness along the ventral visual stream. J Neurosci 32: 10170-10182. (pdf)

Class 11 – April 13, 2016 – Dorsal stream and MT (Slides) Principal reading: Born RT, Bradley DC (2005). Structure and function of visual area MT. Annu Rev Neurosci 28: 157-189. (pdf) DiCarlo JJ, Cox, DD (2007). Untangling invariant object recognition. Trends Cog Sci 11: 333-341. (pdf) Supplementary reading: Simoncelli EP, Heeger DJ (1998). A model of neuronal responses in visual area MT. Vision Res 38: 743-761. (pdf) Rust NC, Mante V, Simoncelli EP, Movshon JA (2006). How MT cells analyze the motion of visual patterns. Nat Neurosci 9: 1421-1431. (pdf) Nishimoto S, Gallant JL (2011). A three-dimensional spatiotemporal receptive field model explains responses of area MT neurons to naturalistic movies. J Neurosci 31:14551-14564 (pdf)

Class 12 – April 20, 2016 – MST and Visual-Vestibular Interaction; Visual control of eye movement (Slides) Principal reading: [to follow]

Class 13 – April 27, 2016 – Perceptual decision making (Slides) Principal reading: Parker AJ, Newsome WT (1998). Sense and the single neuron: probing the physiology of perception. Annu Rev Neurosci. 21:227-277. (pdf) Gold JI, Shadlen MN (2007). The neural basis of decision making. Annu Rev Neurosci. 30: 535-574. (pdf) Supplementary reading: Kiani R, Shadlen MN (2009). Representation of confidence associated with a decision by neurons in the parietal cortex. Science 324: 759-764. (pdf) Nienborg H, Cumming BG (2009). Decision-related activity in sensory neurons reflects more than a neuron's causal effect. Nature 459: 89-92. (pdf)

Class 14 – May 4, 2016 – Comparative visual neuroscience (Slides) Principal reading: Roska, B, & Meister, M (2014) The retina dissects the visual scene into distinct features. In The New Visual Neurosciences (Werner, JS, Chalupa, LM, eds), pp 163–182. Cambridge, MA: MIT Press. (pdf) Krubitzer L (2007) The magnificent compromise: Cortical field evolution in mammals. Neuron 56:201-208. (pdf) Huberman AD, Niell CM (2011) What can mice tell us about how vision works? Trends in Neurosciences 34: 464-473. (pdf) Supplementary reading: Wallace DJ, Greenberg DS, Sawinski J, Rulla S, Notaro G, Kerr JN. (2013) Rats maintain an overhead binocular field at the expense of constant fusion. Nature 498:65-69. (pdf)

Smile Life

When life gives you a hundred reasons to cry, show life that you have a thousand reasons to smile

Get in touch

© Copyright 2015 - 2024 PDFFOX.COM - All rights reserved.