KINEMATICS OF RIGID BODIES [PDF]

acceleration of B for the instant represented. ... For an interval of its motion the hydraulic cylinder gives the piston

0 downloads 12 Views 2MB Size

Recommend Stories


equilibrium of rigid bodies
Learn to light a candle in the darkest moments of someone’s life. Be the light that helps others see; i

kinetics of rigid bodies
The only limits you see are the ones you impose on yourself. Dr. Wayne Dyer

16 Planar Kinematics of a Rigid Body
The beauty of a living thing is not the atoms that go into it, but the way those atoms are put together.

Robot Kinematics - Polimi [PDF]
3. Kinematics. Two types of kinematics: Forward kinematics (angles to position): what are you given: the length of each link the angle of each joint what you can find: the position of any point (i.e., its (x,y,z) coordinates). Inverse Kinematics (pos

rigid industries rigid industries
Make yourself a priority once in a while. It's not selfish. It's necessary. Anonymous

Kinematics
If you are irritated by every rub, how will your mirror be polished? Rumi

Kinematics of Machines
Knock, And He'll open the door. Vanish, And He'll make you shine like the sun. Fall, And He'll raise

The Kinematics of Machinery
The beauty of a living thing is not the atoms that go into it, but the way those atoms are put together.

Kinematics of Machines
Don't fear change. The surprise is the only way to new discoveries. Be playful! Gordana Biernat

Running kinematics of triathletes
Knock, And He'll open the door. Vanish, And He'll make you shine like the sun. Fall, And He'll raise

Idea Transcript


KINEMATICS OF RIGID BODIES

PROBLEMS 1. The center O of the disk has the velocity and acceleration shown. If the disk rolls without slipping on the horizontal surface, determine the velocity of A and the acceleration of B for the instant represented.

2. For an interval of its motion the hydraulic cylinder gives the piston rod A a velocity vA = 1.2 m/s which is increasing by 0.9 m/s each second for the instant when    = 60°. For this instant, determine the angular acceleration of link BC.

3. The center O of the disk rolling without slipping on the horizontal surface has the velocity and acceleration shown. Radius of the disk is 4.5 cm. Calculate the velocity and acceleration of point B.

vo=45 cm/s

O 37o

A

y

x

x=2 cm

ao=90 cm/s2

4.5 cm

6 cm

B 1 y  x2 4

4 cm

Disk: d 

45  10 rad / s 4.5

d 

90  20 rad / s 2 4.5

10 cm

VELOCITY: 





Disk v A  vO  v A / O

     v A  45i  10k   4 cos 37i  4 sin 37 j        

   v A  21i  32 j

 3.2i  2.4 j

Link AB

   vB  v A  vB / A

      v B   21i  32 j    AB k   10i  6 j 

     v B  21i  32 j  10 AB j  6 AB i 1

Particle B

dy 2 x  dx 4

1 = 2

x2 

 i  j

dy 1  dx

  45

  45 o

o

 vB



21  6 AB  0.707v B



32  10 AB  0.707v B vo=45 cm/s 37o

v B  35.5 cm / s

4 cm

ao=90 cm/s2

4.5 cm

6 cm

  d  10k 

B 1 y  x2 4

 AB  0.688 rad / s

O

A

y

     v B  v B  cos 45i  sin 45 j   0.707v B i  0.707v B j

x  v B x=2 cm

10 cm

  d  20k 

2

ACCELERATION: 





Disk a A  aO  a A / O Link AB

   aB  a A  aB / A



 



Particle B

a B n

2 3 / 2

  dy  1     2   dx   d y 1 dy 1 ,    dx dx 2 2 d2y

  45 o

a B t

 



         a A  90i  10k  10k   3.2i  2.4 j    20k   3.2i  2.4 j     a A  362i  304 j           a B  362i  304 j   0.688k   0.688k   10i  6 j   AB k   10i  6 j

 



 



     a B  366.73i  301.16 j  10 AB j  6 AB i  5.657 cm

dx 2

3

v B2

35.5 2 a B n    222.78 cm / s 2  5.657

     a B  a B t  cos 45i  sin 45 j   a B n  cos 45i  sin 45 j       a B  0.707a B t i  0.707a B t j  157.53i  157.53 j 4

3 = 4 vo=45 cm/s 37o A

y

4 cm 4.5 cm

ao=90 cm/s2

 i   j

366.73  6 AB  157.53  0.707a B t 301.16  10 AB  157.53  0.707a B t

6 cm

 AB  23.79 rad / s 2

B

1 y  x2 4

O

x x=2 cm

10 cm

a B t

 539.63 cm / s 2



4. The elements of a power hacksaw are shown in the figure. The saw blade is mounted in a frame which slides along the horizontal guide. If the motor turns the flywheel at a constant counterclockwise speed of 60 rev/min,

determine the

acceleration of the blade for the position where  = 90°, and find the corresponding angular acceleration of the link AB.

 f  60

f

2  6.28 rad / s 60

  90o

B 100 mm O A

100 mm

O

438 mm 



















Velocity Analysis VB  VO  VB / O   f  rB / O  6.28k   0.1i  0.628 j

























Link AB V A  VB  V A / B  0.628 j   AB   0.1 j  0.438i  0.628 j  0.1 AB i  0.438 AB j Blade

  VA  VAi 2

Acceleration Analysis



1 = 2

1

VA 0.143m/ s , AB 1.43rad/ s

           a A  a B  a A / B   f   AB  rB / O    AB   AB  rA / B    AB  rA / B       

 



a



aA/ B

   B        a A  6.28k  6.28k   0.1i    1.43k   1.43k   0.1 j  0.438i    AB k   0.1 j  0.438i 

      a A i  3.943i  0.2045 j  0.895i  0.1 AB i  0.438 AB j  i  j

 

a A  3.943  0.895  0.1 AB    0  0.2045  0.438 AB

a A  4.885 m / s 2

 AB  0.467 rad / s 2

5. At a given instant, the gear has the angular motion shown. Determine the acceleration of points A and B on the link and the link’s angular acceleration at this instant.

VELOCITY Gear

     v  6  3   i    18 i Center O O      v A  18i  6k   2 j   6i

   v A  vO  v A / O Member AB

        v B  6i   AB k  8 cos 60i  8 sin 60 j   6i  4 AB j  6.93 AB i 1   

   vB  v A  vB / A   Collar B v B  v B i  i 1 = 2  j

4i  6.93 j

2

 

6  6.93 AB  v B 4 AB  0

 AB  0 v B  6 cm / s

ACCELERATION Gear



 





Center O aO  12  3  i  36i



Member AB



3 = 4

 i  j



          a B  12i  72 j   AB k   AB k  4i  6.93 j    AB k  4i  6.93 j 

   aB  a A  aB / A   Collar B a B  a B i



         a A  36i  6k  6k   2 j   12k   2 j   12i  72 j

   a A  aO  a A / O

     a B  12i  72 j  4 AB j  6.93 AB i

3

4

 

12  6.93 AB  a B 4 AB  72  0

 AB  18 rad / s

2

a B  112.74 cm / s 2

  AB  18k   a B  112.74i 

6. The rotation of link AB creates an oscillating movement of gear F. If AB has a constant angular velocity of AB=6 rad/s, determine the angular velocity and angular acceleration of gear F at the instant shown. Gear E is rigidly attached to arm CD and pinned to a fixed point.

Link AB

VELOCITY:     v B  6k  75 j  450i

   vB  v A  vB / A Link BC

   v C  v B  vC / B

        vC  450i   BC k  100 cos 30i  100 sin 30 j   450i  86.6 BC j  50 BC i 1      86.6i  50 j

Member CDG

    vC   E k  150 j  150 E i

   vC  v D  vC / D

1 = 2

 i  j



450  50 BC  150 E



50 BC  0

2

 BC  0  E  3 rad / s Gear F

vG   E 100   F 25

 F  12 rad / s

G

  F  12k 

  E  3k 

Link AB

ACCELERATION:





     a B  6k  6k  75 j  2700 j

   aB  a A  aB / A Link BC

   aC  a B  aC / B

          aC  2700 j   BC k  86.6i  50 j  2700 j  86.6 BC j  50 BC i

Member CDG



3 = 4

 i  j



        aC  3k  3k  150 j   E k  150 j  1350 j  150 E i

   aC  a D  aC / D 

50 BC  150 E



2700  86.6 BC  1350

4

 BC  15.58 rad / s 2  E  5.196 rad / s 2 Gear F

aG t   E 100   F 25  F  20.785 rad / s

G

2

  F  20.785k 

3

Smile Life

When life gives you a hundred reasons to cry, show life that you have a thousand reasons to smile

Get in touch

© Copyright 2015 - 2024 PDFFOX.COM - All rights reserved.