Model Order Reduction of Linear Control Systems - diss.fu-berlin.de [PDF]

Model Order Reduction of Linear. Control Systems: Comparison of Balance Truncation and. Singular Perturbation Approximat

4 downloads 15 Views 1MB Size

Recommend Stories


Model Predictive Control for Linear Impulsive Systems
Be like the sun for grace and mercy. Be like the night to cover others' faults. Be like running water

Model predictive control for perturbed max-plus-linear systems [PDF]
Abstract. Model predictive control (MPC) is a popular controller design technique in the process industry. Conventional MPC uses linear or nonlinear discrete-time models. Recently, we have extended MPC to a class of discrete event systems that can be

PID control, linear systems
Seek knowledge from cradle to the grave. Prophet Muhammad (Peace be upon him)

Hybrid PSO and GA for Model Order Reduction of Large Scale Linear Systems
The butterfly counts not months but moments, and has time enough. Rabindranath Tagore

Robust output feedback model predictive control of constrained linear systems
We may have all come on different ships, but we're in the same boat now. M.L.King

Control of Multiple Model Systems
Ask yourself: Is there an area of your life where you feel out of control? Especially in control? N

Quadratic Optimal Control of Linear Complementarity Systems
The butterfly counts not months but moments, and has time enough. Rabindranath Tagore

Modelling and Control of Dynamic Systems Stability of Linear Systems
Love only grows by sharing. You can only have more for yourself by giving it away to others. Brian

Model Order Reduction in Structural Mechanics
We may have all come on different ships, but we're in the same boat now. M.L.King

Model Order Reduction for Differential-Algebraic Equations
Almost everything will work again if you unplug it for a few minutes, including you. Anne Lamott

Idea Transcript


Model Order Reduction of Linear Control Systems: Comparison of Balance Truncation and Singular Perturbation Approximation with Application to Optimal Control

DISSERTATION Zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) am Fachbereich Mathematik & Informatik der Freien Universit¨at Berlin

vorgelegt von Adnan Farhan Sulaiman Daraghmeh

2016

Supervised By Prof. Dr. Carsten Hartmann (Freie Universit¨at Berlin, BTU Cottbus-Senftenberg) Gutachter 1. Prof. Dr. Carsten Hartmann (Freie Universit¨at Berlin, BTU Cottbus-Senftenberg) 2. Prof. Dr. Naji Qatanani (An-Najah National University) Tag der Verteidigung: 18. 07. 2016

Selbst¨ andigkeitserkl¨ arung I assure that all resources and aids that are used in this paper was authored independentily on this basis. My paper cannot have been submitted as part of an earlier doctoral procedure. Berlin, den

Adnan Farhan Sulaiman Daraghmeh

/ /2016

i

Summary In this thesis we have studied balanced model reduction techniques for linear control systems, specifically balanced truncation and singular perturbation approximation. A special feature of these methods, as compared to closely related rational approximation techniques for linear systems, is that they allow for an a priori L2 and (frequency domain) H ∞ bounds of the approximation error. These methods have been successfully applied for system with homogeneous initial conditions but only little attention has been paid to systems with inhomogeneous initial conditions or feedback systems. For open-loop control proplems, we have derived an L2 error bound for balanced truncation and singular perturbation approximation for system with nonhomogeneous initial condition, extending research work by Antoulas etal. The theoretical results have been validated numerically with extensive comparison between different systems and balanced truncation and singular perturbation model reduction. For closed-loop, one of the most important methods in control problems called linear quadratic regulator (LQR) has been introduced. This is used to find an optimal control that minimizes the quadratic cost function. In order to do that we have used formal asymptotics for the Pontryagin maximum principle (PMP) and the underlying algebraic Riccati equation. The outcome of this section are case description under which balanced truncation and the singular perturbation approximation give good closed-loop performance. The formal calculations are validated by numerical experiments, illustrating that the reduced-order can be used to approximate the optimal control of the original system. Finally, we studied two different test cases to demonstrate the validity of the theoritical results.

ii

Zusammenfassung Diese Dissertation behandelt balancierte Modellreduktionsverfahren f¨ ur lineare Differentialgleichungen, speziell das balancierte Abschneiden (”balanced truncation”) sowie die Approximation im Rahmen der Theorie singul¨ar gest¨orter Systeme (”singular perturbation approximation”). Balancierte Modellreduktionsverfahren zeichnen sich gegen¨ uber vergleichbaren rationalen Approximationsverfahren dadurch aus, dass sie a priori Fehlerschranken im L2 -Sinne sowie im H ∞ (Frequenzraum) f¨ ur Systeme mit homogenen Anfangsbedingungen haben Allerdings gibt es bislang kaun Untersuchungen zu Systemen mit inhomogenen Anfangsbedingungen oder Feedback-Steuerung. Im ersten Teil dieser Arbeit wurden ausgehend von Resultaten von Antoulas et al. L2 Fehlerschranken f¨ ur lineare gesteuerte Systeme (”open loop control”) mit inhomogenen Anfangswerten hergeleitet und f¨ ur verschiedene Approximationen (”truncation”, ”singular perturbation approximation”) anhand numerischer Beispiele in Bezug auf den tats¨achlichen Approximationsfehler miteinander verglichen. Im zweiten Teil der Arbeit wurde untersucht, inwieweit balancierte Modellreduktionsverfahren im Zusammenhang mit linearen Regelungsproblemen (”closed loop control”) eingesetzt werden k¨ onnen. Dazu wurden reduzierte Modelle des linear quadratischen Reglers (LQ-Reglers) mit Hilfe formaler asymptotischer Methoden und dem Pontryagin’schen Maximumsprinzip hergeleitet. Als ein zentrales Resultat dieses Teils der Arbeit wurden verschiedene Parameterregime f¨ ur das balancierte Ausgangsmodell identifiziert, in denen die formale Asymptotik f¨ ur den LQ-Regler mit den Riccati-Gleichungen f¨ ur die reduzierten Modelle aus dem ersten Teil der Arbeit u ¨bereinstimmt. Die formalen Argumente wurden mit numerischen Experimenten untermauert und zeigen, dass die reduzierten Modelle sehr gute Approximationen der optimalen Steuerung des vollen Systems liefern k¨ onnen. S¨amtliche theoretischen Resultate in der Arbeit wurden durch geeigntete numerische Testbeispiele validiert.

iii

Acknowledgements First of all, I would like to express my sincere thanks and gratitude to my main supervisor Prof. Dr. Carsten Hartmann for introducing me to the beautiful world of dynamical systems and for his continuous help and support, excellent guidance and encouragement. My sincere and deep gratitude goes also to my co-supervisor Prof. Dr. Naji Qatanani of An-Najah National University for his everlasting support and guidance, his invaluable advice and care. The distinguished personality of my supervisors both at personal and professional levels has contributed to finish my work successfully. I am very grateful to the Erasmus Mundus Service for granting me the scholarship to pursue my doctoral studies. I am deeply indebted to my home university, An - Najah National University for their encouragement and support, in particular to Dr. Mohammad Al-Amleh ( the vice-president for academic affairs) for his friendly support. Now, I would like to express my deep obligation to my father, mother, brothers, sisters and friends in Palestine. Their consistent moral supports have always been the strong source for me during my Ph.D. I would never forget to thank my wife Anwar, son Mohammad and daughters Leen, Jana and Rand Without their love, patience, and understanding, this work would be unthinkable.

iv

Dedicated to my Parents, my wife Anwar, son Mohammad and daughters Leen, Jana and Rand

Contents

Selbst¨ andigkeitserkl¨ arung

i

Summary

ii

Zusammenfassung

iii

Acknowledgements

iv

Contents

vi

1 Introduction

1

2 Preliminaries 2.1 State equations for the dynamical system . . . . . . . . . . . 2.2 The output equation . . . . . . . . . . . . . . . . . . . . . . 2.3 Stability of a continuous–time system . . . . . . . . . . . . . 2.4 The Laplace transform . . . . . . . . . . . . . . . . . . . . . 2.5 The derivative and integral of matrix and matrix exponential 2.6 The state transition matrix . . . . . . . . . . . . . . . . . . 2.7 The transfer–function matrix of the dynamical system . . . . 2.8 Solution of the state and output space equations . . . . . . 2.9 Lyapunov equations . . . . . . . . . . . . . . . . . . . . . . . 2.10 Controllability and observability . . . . . . . . . . . . . . . . 2.11 Kalman canonical decomposition . . . . . . . . . . . . . . . 3

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

Model Order Reduction of Linear Time-Invariant Continuous Homogeneous Dynamical System on Infinite-Time Horizon 3.1 State space realization for transfer function . . . . . . . . . . . . . 3.2 The amount of energy for controlling or an observing state . . . . . 3.3 Balancing for linear system . . . . . . . . . . . . . . . . . . . . . . . 3.4 Error bounds using balance truncation . . . . . . . . . . . . . . . . vi

4 4 5 6 7 9 10 11 12 14 15 22 29 29 30 31 35

Contents 3.5 3.6

vii

The reciprocal system of a linear dynamical system . . . . . . . . . 37 Model reduction using singular perturbation approximation . . . . . 41

4 Model Order Reduction of Linear Time-Invariant Continuous Non-Homogeneous Dynamical System on Infinite-Time Horizon 4.1 An error bound for non-homogeneous system using balance truncation model reduction (BTMR) . . . . . . . . . . . . . . . . . . . . . 4.2 New error bound for non-homogeneous system using the balance truncation model reduction (BTMR) . . . . . . . . . . . . . . . . . 4.3 The reciprocal system of a linear continuous dynamical system . . . 4.4 Error bound of a non-homogeneous linear control system using the singular perturbation approximation method (SPA) . . . . . . . . . 5 Optimal Control 5.1 Linear quadratic regulator optimal control (LQR) . . . . . 5.2 Optimal control for reduced order model of different types 5.2.1 Singular perturbation requlator problem of type(1) 5.2.2 Singular perturbation requlator problem of type(2) 5.2.3 Singular perturbation requlator problem of type(3) 6 Numerical Examples 6.1 Mass-spring damping 6.2 CD-player . . . . . . 6.3 Numerical results . . 6.4 Conclusion . . . . . . Bibliography

system . . . . . . . . . . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

49 49 53 60 64

. . . . .

70 70 74 74 78 82

. . . .

87 87 92 93 99 101

Chapter 1 Introduction

Many physical, mechanical and artificial processes can be described by dynamical systems, which can be used for simulation or control. The modeling of many physical, chemical or biological phenomena resulting from discretized partial differential equations lead to the well-known representation of a linear time-invariant (LTI) system x˙ = Ax + Bu y = Cx + Du x(t0 ) = x0 where A ∈

Smile Life

When life gives you a hundred reasons to cry, show life that you have a thousand reasons to smile

Get in touch

© Copyright 2015 - 2024 PDFFOX.COM - All rights reserved.