Plane Strain [PDF]

Plain Strain. We will derive the transformation equations that relate the strains in inclined directions to the strain i

6 downloads 5 Views 2MB Size

Recommend Stories


2.3 Plane Strain Compression Testing
Raise your words, not voice. It is rain that grows flowers, not thunder. Rumi

Adiabatic Shear Banding in Plane Strain Problems
The best time to plant a tree was 20 years ago. The second best time is now. Chinese Proverb

Stress strain PDF document
At the end of your life, you will never regret not having passed one more test, not winning one more

the plane the plane!
Where there is ruin, there is hope for a treasure. Rumi

PLANE STRAIN PROBLEM IN A ROTATING MICROSTRETCH THERMOELASTIC SOLID WITH
If you feel beautiful, then you are. Even if you don't, you still are. Terri Guillemets

ANISOTROPY OF STRENGTH IN SINGLE CRYSTALS UNDER PLANE STRAIN COMPRESSION
Ego says, "Once everything falls into place, I'll feel peace." Spirit says "Find your peace, and then

PENGARUH BENTUK SPESIMEN TERHADAP PEMBENTUKAN MEKANISME PLANE STRAIN
Happiness doesn't result from what we get, but from what we give. Ben Carson

on the use of photoelastic effect and plane strain or plane stress approximations for the description
No amount of guilt can solve the past, and no amount of anxiety can change the future. Anonymous

on the use of photoelastic effect and plane strain or plane stress approximations for the description
The only limits you see are the ones you impose on yourself. Dr. Wayne Dyer

In-plane Strain Measurement by Digital Image Correlation
Love only grows by sharing. You can only have more for yourself by giving it away to others. Brian

Idea Transcript


Plain Strain We will derive the transformation equations that relate the strains in inclined directions to the strain in the reference directions. State of plain strain - the only deformations are those in the xy plane, i.e. it has only three strain components εx, εy and γxy. Plain stress is analogous to plane stress, but under ordinary conditions they do not occur simultaneously, except when σx = -σy and when ν = 0

Strain components εx, εy, and γxy in the xy plane (plane strain).

Comparison of plane stress and plane strain.

Transformation Equations for Plain Strain Assume that the strain εx, εy and γxy associated with the xy plane are known. We need to determine the normal and shear strains (εx1 and γx1y1) associated with the x1y1 axis. εy1 can be obtained from the equation of εx1 by substituting θ + 90 for θ.

For an element of size δx δy In the x direction, the strain εx produces an elongation εx δx. The diagonal increases in length by εx δx cos θ. In the y direction, the strain εy produces an elongation εy δy. The diagonal increases in length by εy δy sin θ.

The shear strain γxy produces a distortion. The upper face moves γxy δy. This deformation results in an increase of the diagonal equal to: γxy δy cos θ

The total increase Δd of the diagonal is the sum of the preceding three expressions, thus:

Δd = εx δx cos θ + εy δy sin θ + γxy δy cos θ The normal strain εx1 in the x1 direction is equal to the increase in length divided by the initial length δs of the diagonal.

εx1 = Δd / ds = εx cos θ δx/δs + εy sin θ δy/δs + γxy cos θ δy/δs Observing that δx/δs = cos θ and δy/δs = sin θ

ε X 1 = ε X cos 2 θ + ε Y sin 2 θ + γ XY sin θ cos θ ε X1

⎛ γ XY = ε X cos θ + ε Y sin θ + ⎜ ⎝ 2 2

2

⎞ ⎟ 2 sin θ cos θ ⎠

Shear Strain γx1y1 associated with x1y1 axes. This strain is equal to the decrease in angle between lines in the material that were initially along the x1 and y1 axes. Oa and Ob were the lines initially along the x1 and y1 axis respectively. The deformation caused by the strains εx, εy and γxy caused the Oa and Ob lines to rotate and angle α and β from the x1 and y1 axis respectively. The shear strain γx1y1 is the decrease in angle between the two lines that originally were at right angles, therefore, γx1y1 = α+β.

γ

The angle α can be found from the deformations produced by the strains εx, εy and γxy . The strains εx and γxy produce a cwrotation, while the strain εy produces a ccw-rotation.

Let us denote the angle of rotation produced by εx , εy and γxy as α1 , α2 and α3 respectively. The angle α1 is equal to the distance εx δx sinθ divided by the length δs of the diagonal: α1 = εx sinθ dx/ds α2 = εy cosθ dy/ds α3 = γxy sinθ dy/ds Observing that dx/ds = cos θ and dy/ds = sin θ. The resulting ccwrotation of the diagonal is α = - α1 + α2 - α3 = - (εx – εy) sinθ cosθ - γxy sin2θ

The rotation of line Ob which initially was at at 90o to the line Oa can be found by substituting θ +90 for θ in the expression for α. Because β is positive when clockwise. Thus β = (εx – εy) sin(θ + 90) cos(θ + 90) + γxy sin2(θ +90) β = - (εx – εy) sinθ cosθ + γxy cos2θ Adding α and β gives the shear strain γx1y1 γx1y1 = α + β = - 2(εx – εy) sinθ cosθ + γxy (cos2θ - sin2θ) To put the equation in a more useful form:

γ X 1Y 1 2

= −ε X sin θ cos θ + ε Y sin θ cos θ +

ε X1 = ε X εY1 = ε X

⎛ γ XY cos θ + ε Y sin θ + ⎜ ⎝ 2 ⎛γ sin 2 θ + ε Y cos 2 θ − ⎜ XY ⎝ 2 2

2

γ XY 2

(cos

2

θ − sin θ )

⎞ ⎟ 2 sin θ cos θ ⎠ ⎞ ⎟ 2 sin θ cos θ ⎠

2

⎡ ⎤ 2 ⎡ cos ε θ ⎢ X1 ⎥ ⎢ ε ⎥ = ⎢ sin 2 θ ⎢ Y1 ⎥ ⎢ ⎢ γ X 1Y 1 ⎥ ⎢⎣− sin θ cosθ ⎢⎣ 2 ⎥⎦ ⎡ ⎤ ⎡ ⎤ ⎢ ε X1 ⎥ ⎢ εX ⎥ ⎢ ε ⎥ = [T ]× ⎢ ε ⎥ ⎢ Y1 ⎥ ⎢ Y ⎥ ⎢ γ X 1Y 1 ⎥ ⎢ γ XY ⎥ ⎢⎣ 2 ⎥⎦ ⎢⎣ 2 ⎥⎦ ⎡ ⎤ ⎡ ⎤ ⎢ εX ⎥ ⎢ ε X1 ⎥ ⎢ ε ⎥ = [T ]−1 × ⎢ ε ⎥ ⎢ Y ⎥ ⎢ Y1 ⎥ ⎢ γ XY ⎥ ⎢ γ X 1Y 1 ⎥ ⎢⎣ 2 ⎥⎦ ⎢⎣ 2 ⎥⎦

sin θ cos 2 θ sin θ cosθ 2

⎡ cos 2 θ [T ] = ⎢⎢ sin 2 θ ⎢− sin θ cosθ ⎣

⎡ ⎢ ε xx ⎢1 [ε ] = ⎢ γ xy ⎢2 ⎢1 γ ⎢⎣ 2 xz

⎡ ⎤ 2 sin θ cosθ ⎤ ⎢ ε X ⎥ ⎥⎢ − 2 sin θ cosθ ⎥ ε Y ⎥ ⎢ ⎥ 2 2 γ cos θ − sin θ ⎥⎦ ⎢ XY ⎥ ⎢⎣ 2 ⎥⎦

(

)

sin 2 θ cos 2 θ sin θ cosθ

1 γ yx 2

ε yy 1 γ yz 2

2 sin θ cosθ − 2 sin θ cosθ cos 2 θ − sin 2 θ

(

⎤ ⎥ ⎥ ⎥ ⎦

)

1 ⎤ γ zx ⎥ 2 1 ⎥ γ zy ⎥ = Strain _ Tensor 2 ⎥ ε zz ⎥ ⎥⎦

Transformation Equations for Plain Strain Using known trigonometric identities, the transformation equations for plain strain becomes:

(ε X

γ XY + ε Y ) (ε X − ε Y ) cos 2θ + sin 2θ ε X1 = + 2 2 2 (ε X − ε Y ) γ X 1Y 1 γ XY =− sin 2θ + cos 2θ 2 2 2 These equations are counterpart of the equations for plane stress where εx1, εx, γx1y1 and γxy correspond to σx1, σx, τx1y1 and τxy respectively. There are also counterparts for principal stress and Mohr’s circle. εx1 + εy1 = εx+ εy

Principal Strains The angle for the principal strains is The value for the principal strains are

γ XY tan 2θ P = ε X − εY

( ε X + εY ) + ε1 =

⎛ ε X − ε Y ⎞ ⎛ γ XY ⎞ ⎜ ⎟ +⎜ ⎟ 2 ⎝ ⎠ ⎝ 2 ⎠

(ε X + ε Y ) ε2 = −

⎛ ε X − ε Y ⎞ ⎛ γ XY ⎞ ⎜ ⎟ +⎜ ⎟ 2 ⎝ ⎠ ⎝ 2 ⎠

2

2

2

2

2

2

Maximum Shear The maximum shear 2 2 strains in the xy plane γ MAX ⎛ ε X − ε Y ⎞ ⎛ γ XY ⎞ =+ ⎜ ⎟ +⎜ ⎟ or γ MAX = (ε1 − ε 2 ) are associated with 2 ⎝ 2 ⎠ ⎝ 2 ⎠ axes at 45o to the γ MAX (ε1 − ε 2 ) = directions of the 2 2 principal strains:

Mohr’s Circle for Plane Strain

Example An element of material in plane strain undergoes the following strains: εx=340x10-6 εy=110x10-6 γxy=180x10-6 Determine the following: (a) the strains of an element oriented at an angle θ = 30o ; (b) the principal strains and (c) the maximum shear strains. Solution

ε X1 = γ X 1Y 1 2

(ε X

+ ε Y ) (ε X − ε Y ) γ + cos 2θ + XY sin 2θ 2 2 2 (ε − ε Y ) γ =− X sin 2θ + XY cos 2θ 2 2

Then εx1 = 225x10-6 + (115x10-6) cos 60o + (90x10-6) sin 60o = 360x10-6 ½ γx1y1 = - (115x10-6) (sin 60o ) + ( 90x10-6)(cos 60o) = - 55x10-6 Therefore γx1y1 = - 110x10-6 The strain εy1 can be obtained from the equation εx1 + εy1 = εx+ εy εy1 = (340 + 110 -360)10-6 = 90x10-6 (b) Principal Strains The principal strains are readily ε1 = determine from the following equations: ε1 = 370x10-6

ε2 = 80x10-6

ε2 =

(ε X + ε Y ) 2

(ε X + ε Y ) 2

⎛ ε X − εY ⎞

+ ⎜ ⎝

2

2

⎛ γ XY ⎞

2

⎟ ⎟ +⎜ 2 ⎠ ⎠ ⎝

⎛ ε − ε Y ⎞ ⎛ γ XY ⎞ − ⎜ X ⎟ ⎟ +⎜ 2 2 ⎠ ⎠ ⎝ ⎝ 2

2

(c) Maximum Shear Strain The maximum shear strain is calculated from the equation: ½ γmax = SQR[((εx – εy)/2)2 + ( ½ γxy)2]

or

γmax = (ε1 – ε2 )

Then γmax = 290x10-6 The normal strains of this element is εaver = ½ (εx + εy) = 225x10-6

For 3-D problems Which is a symmetrical matrix. As in the case of stresses: ⎡ ⎢ε x − ε ⎢1 ⎢ γ yx ⎢2 ⎢ 1γ ⎢⎣ 2 zx

εy −ε

εx −ε

1 γ xy 2

1 γ yx 2 1 γ zx 2

εy −ε

1 γ xy 2 1 γ zy 2

1 γ zy 2

⎤ ⎥ k 0 ⎥⎡ ⎤ ⎡ ⎤ ⎥ ⎢ l ⎥ = ⎢0 ⎥ ⎥⎢ ⎥ ⎢ ⎥ ⎢⎣m⎥⎦ ⎢⎣0⎥⎦ ⎥ εz −ε ⎥⎦ 1 γ xz 2 1 γ yz = 0 2 1 γ xz 2 1 γ yz 2

εz −ε

⎡ ⎢ εx ⎢1 [ε ] = ⎢ γ yx ⎢2 ⎢1 γ ⎢⎣ 2 zx

ε 1 〉ε 2 〉ε 3

1 γ xy 2

εy 1 γ zy 2

1 ⎤ γ xz ⎥ 2 1 ⎥ γ yz ⎥ 2 ⎥ ε z ⎥⎥ ⎦

ε 3 − I1 ⋅ ε 2 + I 2 ⋅ ε − I 3 = 0 I1 = ε x + ε y + ε z ⎛ γ xy ⎞ ⎛ γ xz ⎞ ⎛ γ yz ⎞ ⎟⎟ ⎟⎟ − ⎜ ⎟ − ⎜⎜ I 2 = ε x ⋅ ε y + ε y ⋅ ε z + ε x ⋅ ε z − ⎜⎜ ⎝ 2 ⎠ ⎝ 2 ⎠ ⎝ 2 ⎠ 2

2

2

⎛ γ xy ⎞ ⎛ γ yz ⎞ ⎛ γ xy ⎞ ⎛ γ xz ⎞ ⎛ γ yz ⎞ ⎛ γ xz ⎞ ⎟⎟ ⎟⎟ − ε y ⋅ ⎜ ⎟ − ε z ⋅ ⎜⎜ ⎟⎟ − ε x ⋅ ⎜⎜ ⎟⎟ ⋅ ⎜ ⎟ ⋅ ⎜⎜ I 3 = ε x ⋅ ε y ⋅ ε z + 2 ⋅ ⎜⎜ ⎝ 2 ⎠ ⎝ 2 ⎠ ⎝ 2 ⎠ ⎝ 2 ⎠ ⎝ 2 ⎠ ⎝ 2 ⎠ 2

2

p

Dilatation (Volume strain) Under pressure: the volume will change

ΔV Δ= = εx +εy +εz V

p

p V-ΔV

p

2

Strain Deviator

Mean strain

Δ εx +εy +εz = 3 3

It produces a volume change (not a shape change)

1 1 1 ⎡ ⎤ − Δ ε γ γ xy xz ⎥ ⎢ x 3 2 2 ⎢ 1 ⎥ Strain Deviator Matrix 1 1 [Dε ] = ⎢ γ yx ε y − Δ γ yz ⎥ 3 2 ⎢ 2 ⎥ 1 1 ⎥ ⎢ 1γ γ zy ε z − Δ⎥ 1 ⎡ ⎤ zx ⎢ 0 0 ⎥ 2 3 ⎦ ⎣ 2 ⎢ε 1 − 3 Δ ⎢ ⎥ 1 0 ⎥ [Dε ] = ⎢ 0 ε2 − Δ 3 ⎢ ⎥ 1 ⎥ ⎢ 0 0 ε 3 − Δ⎥ ⎢⎣ 3 ⎦

Application : Strain Gauge and Strain Rosette

Relationships between Stress and Strain

(Hooke’s Law) When strains are small, most of materials are linear elastic. Tensile: σ=Εε Shear:

Poisson’s ratio

Δl z εz = l0 z

Δl x εx = − l0 x Nominal lateral strain (transverse strain)

lateral strain ε x =− Poisson’s ratio: ν = − tensile strain εz

τ=Gγ

Relationships between Stress and Strain An isotropic material has a stress-strain relationships that are independent of the orientation of the coordinate system at a point. A material is said to be homogenous if the material properties are the same at all points in the body For isotropic materials Elastic Stress-Strain Relationships

Uniaxial

Principal Stresses σ 1 = Eε1 σ2 = 0 σ3 = 0

Principal Strains ε1 =

σ1 E

ε 2 = −ν ε 3 = −ν

σ1 E

σ1 E

Uniaxial Stresses

⎧σ x ⎫ ⎪σ ⎪ ⎪ y⎪ ⎪⎪σ z ⎪⎪ [σ ] = ⎨ ⎬ ⎪τ yz ⎪ ⎪τ zx ⎪ ⎪ ⎪ ⎪⎩τ xy ⎪⎭

⎧σ x ⎫ ⎪0⎪ ⎪ ⎪ ⎪⎪ 0 ⎪⎪ [σ ] = ⎨ ⎬ ⎪0⎪ ⎪0⎪ ⎪ ⎪ ⎪⎩ 0 ⎪⎭

⎧εx ⎫ ⎪ε ⎪ ⎪ y⎪ ⎪⎪ ε z ⎪⎪ [ε ] = ⎨ ⎬ ⎪γ yz ⎪ ⎪γ zx ⎪ ⎪ ⎪ ⎪⎩γ xy ⎪⎭

⎧ε x ⎫ ⎪ε ⎪ ⎪ y⎪ ⎪⎪ε z ⎪⎪ [ε ] = ⎨ ⎬ ⎪0⎪ ⎪0⎪ ⎪ ⎪ ⎪⎩ 0 ⎪⎭

εx =

σ σx E

= Eε x

x

ε y = −ν

⎡ 1 ⎢ E ⎢ υ ⎧ε x ⎫ ⎢− ⎪ε ⎪ ⎢ E ⎪ y⎪ ⎢ υ ⎪⎪ε z ⎪⎪ ⎢− E ⎨ ⎬=⎢ ⎪0⎪ ⎢ 0 ⎪0⎪ ⎢ ⎪ ⎪ ⎢ 0 ⎪⎩ 0 ⎪⎭ ⎢ ⎢ ⎢⎣ 0



σx E

υ

E 1 E



ε z = −ν

υ

E 0

− −

υ E

υ

E 1 E 0

σx E

0

0

0

0

0

0

1 G

0

0

0

0

1 G

0

0

0

0

⎤ 0⎥ ⎥ 0 ⎥ ⎧σ x ⎫ ⎥⎪ 0 ⎪ ⎪ ⎪ 0 ⎥⎪ 0 ⎪ ⎥⎪ ⎪ ⎥⎨ 0 ⎬ 0 ⎥⎪ ⎪ ⎥⎪ 0 ⎪ 0 ⎥ ⎪⎪⎩ 0 ⎪⎪⎭ ⎥ 1⎥ G ⎥⎦

Principal Stresses Biaxial

σ2 σ3 Triaxial

E (ε 1 + νε 2 ) 1+ν 2 E (ε 2 + νε 1 ) = 1+ν 2 = 0

σ1 =

Principal Stresses

ε 1 (1 − ν ) + ν (ε 2 + ε 3 ) σ1 = E 1 − ν − 2ν 2 ε 2 (1 − ν ) + ν (ε 1 + ε 3 ) σ2 = E 1 − ν − 2ν 2 ε 3 (1 − ν ) + ν (ε 1 + ε 2 ) σ3 = E 1 − ν − 2ν 2

Principal Strains σ1 σ2 ε 1 = −ν E

ε2 =

σ2 E

ε 3 = −ν

E

−ν

σ1

σ1

−ν

E

E

σ2 E

Principal Strains

ε1 = ε2 = ε3 =

σ1 E

σ2 E

σ3 E

−ν

σ2

−ν

σ1

−ν

σ1

E

E

E

−ν

σ3

−ν

σ3

−ν

σ2

E

E

E

Triaxial Stresses

⎧σ x ⎫ ⎪σ ⎪ ⎪ y⎪ ⎪⎪σ z ⎪⎪ [σ ] = ⎨ ⎬ ⎪τ yz ⎪ ⎪τ zx ⎪ ⎪ ⎪ ⎪⎩τ xy ⎪⎭ ⎧εx ⎫ ⎪ε ⎪ ⎪ y⎪ ⎪⎪ ε z ⎪⎪ [ε ] = ⎨ ⎬ ⎪γ yz ⎪ ⎪γ zx ⎪ ⎪ ⎪ ⎪⎩γ xy ⎪⎭

⎧σ x ⎫ ⎪σ ⎪ ⎪ y⎪ ⎪⎪σ z ⎪⎪ [σ ] = ⎨ ⎬ ⎪0⎪ ⎪0⎪ ⎪ ⎪ ⎪⎩ 0 ⎪⎭ ⎧ε x ⎫ ⎪ε ⎪ ⎪ y⎪ ⎪⎪ε z ⎪⎪ [ε ] = ⎨ ⎬ ⎪0⎪ ⎪0⎪ ⎪ ⎪ ⎪⎩ 0 ⎪⎭

ν ν 1 σx − σy − σz E E E ν ν 1 εy = − σx + σy − σz E E E ν ν 1 εz = − σx − σ y + σz E E E

εx =

⎡ 1 ⎢ E ⎢ υ ε ⎧ x ⎫ ⎢− ⎪ε ⎪ ⎢ E ⎪ y⎪ ⎢ υ ⎪⎪ε z ⎪⎪ ⎢− E ⎨ ⎬=⎢ ⎪0⎪ ⎢ 0 ⎪0⎪ ⎢ ⎪ ⎪ ⎢ 0 ⎪⎩ 0 ⎪⎭ ⎢ ⎢ ⎢⎣ 0



υ

E 1 E



υ

E 0

− −

υ E

υ

E 1 E 0

0

0

0

0

0

0

1 G

0

0

0

0

1 G

0

0

0

0

⎤ 0⎥ ⎥ 0 ⎥ ⎧σ x ⎫ ⎥ ⎪σ y ⎪ ⎪ ⎪ ⎥ 0 ⎪σ ⎪ ⎥⎪ z ⎪ ⎥⎨ 0 ⎬ 0 ⎥⎪ ⎪ ⎥⎪ 0 ⎪ 0 ⎥ ⎪⎪⎩ 0 ⎪⎪⎭ ⎥ 1⎥ G ⎥⎦

For an isotropic material, the principal axes for stress and the principal axes for strain coincide. 1 εx −εy =

γ XY tan 2θ ε = ε X − εY

γ xy =

τ xy

τ xy

E

(1 −ν )(σ x − σ y )

G

2τ xy γ XY E G tan 2θ ε = = = ⋅ = tan 2θσ ε X − ε Y 1 (1 −ν )(σ − σ ) 2G (1 − ν ) (σ x − σ y ) x y E

1 (σ x −νσ y ) E 1 ε y = (σ y −νσ x ) E

Plane Stress ε x =

γ xy =

Plane Strain

τ xy

εz = −

ν

γ yz = 0

E



x

+σ y )

γ zx = 0

G

[

]

σz =

[

]

τ yz = 0

E (1 −ν )ε x +νε y σx = (1 +ν )(1 − 2ν ) E (1 −ν )ε y +νε x σy = (1 +ν )(1 − 2ν ) τ xy = Gγ xy

νE

(1 +ν )(1 − 2ν )

τ xz = 0



x

+εy)

Tensors and Elasticity Common misconception Æ Cubic materials are isotropic, i.e. they have  the same properties in every direction. Many properties are isotropic  in cubic crystal, but elasticity,  electrostriction and magnetostriction are anisotropic even in cubic crystals. Example turbine blade  (single crystal). Ni  based with cuboidal Ni3Ti intermetallic. It  shows variation in the  elastic constant with  the directions in the  material. 

Some polycrystalline materials  develop preferred orientations  during processing. They will show a  degree of anisotropy that is  dependent on the degree of  preferred orientation or texture.

Tensor: A specific type of matrix representation that can relate the  directionality of either a material property (property tensors – conductivity, elasticity) or a condition/state (condition tensors – stress,  strain). Tensor of zero‐rank: scalar quantity (density, temperature). Tensor of first‐rank: vector quantity (force, electric field, flux of atoms). Tensor of second‐rank: relates two vector quantities (flux of atoms with  concentration gradient).

Tensor third‐rank: relates vector with a second rank tensor (electric  field with strain in a piezoelectric material) Tensor Fourth‐rank: relates two second rank tensors (relates strain  and stress – Elasticity)   The key to understanding property or condition tensors is to recognize  that tensors can be specified with reference to some coordinate system  which is usually defined in 3‐D space by orthogonal axes that obey a  right‐hand rule. Rotation Matrix and Euler Angles: Several schemes can be used to  produce a rotation matrix. The three Euler angles are given as three  counterclockwise rotations:  (a)A rotation about a z‐axis, defined as φ1  (b)A rotation about the new x‐axis, defined as Φ (c)A rotation about the second z‐position, defined as φ2

The rotation matrix a is given by the matrix multiplication of the  rotation matrices of each individual rotations: 0 0 ⎤ ⎡ cos φ1 sin φ1 0⎤ ⎡ cos φ2 sin φ2 0⎤ ⎡1 [a ] = aφ 2 ⋅ aΦ ⋅ aφ1 = ⎢⎢− sin φ2 cosφ2 0⎥⎥ × ⎢⎢0 cos Φ sin Φ ⎥⎥ × ⎢⎢− sin φ1 cosφ1 0⎥⎥ ⎢⎣ 0 0 1⎥⎦ 0 1⎥⎦ ⎢⎣0 − sin Φ cos Φ ⎥⎦ ⎢⎣ 0 cos φ2 sin φ1 + cos Φ cos φ1 sin φ2 sin Φ sin φ2 ⎤ ⎡ cos φ2 cos φ1 − cos Φ sin φ1 sin φ2 [a ] = ⎢⎢− sin φ2 cosφ1 − cos Φ sin φ1 cosφ2 − sin φ2 sin φ1 + cos Φ cosφ1 cosφ2 sin Φ cosφ2 ⎥⎥ ⎢⎣ − sin Φ cos φ1 sin Φ sin φ1 cos Φ ⎥⎦

Stereographic Projection Crystallographic directions, plane normals and  planes can be all represented in the stereographic  projection.

2 31

Locating a pole in a stereographic projection: Find the angle of the pole with the three  axes:

⎡1 0 0 ⋅ 2 3 1⎤ o cos -1 ⎢ ⎥ = 57.6 ⎣ 1 14 ⎦ ⎡ 0 1 0 ⋅ 2 3 1⎤ o cos -1 ⎢ ⎥ = 36.7 ⎣ 1 14 ⎦ ⎡ 0 0 1 ⋅ 2 3 1⎤ o cos ⎢ ⎥ = 74.5 ⎣ 1 14 ⎦ -1

Example The relationship between orientation and applied stress is important  in describing the mechanical performance of many crystalline metals  and composites. The relationship between applied stress and crystal direction is essential in interpreting the microscopic deformation mechanisms operating in deforming crystals. ⎡2 0 0 ⎤ Consider a property‐tensor or a condition tensor T [T ] = ⎢0 3 0 ⎥ ⎢ ⎥ in the original {x y z} axes given by:  

⎢⎣0 0 − 1⎥⎦

Find the tensor T’ , for the rotation  shown below from the initial [100],  [010], [001] axes of a cubic crystal

φ1 = 45

o

Φ = 54.7 o

φ2 = 0 o

cos φ2 sin φ1 + cos Φ cos φ1 sin φ2 sin Φ sin φ2 ⎤ ⎡ cos φ2 cos φ1 − cos Φ sin φ1 sin φ2 [a ] = ⎢⎢− sin φ2 cosφ1 − cos Φ sin φ1 cosφ2 − sin φ2 sin φ1 + cos Φ cosφ1 cosφ2 sin Φ cosφ2 ⎥⎥ ⎢⎣ − sin Φ cos φ1 sin Φ sin φ1 cos Φ ⎥⎦ cos 0 sin 45 + cos 54.7 cos 45 sin 0 sin 54.7 sin 0 ⎤ ⎡ cos 0 cos 45 − cos 54.7 sin 45 sin 0 [a ] = ⎢⎢− sin 0 cos 45 − cos 54.7 sin 45 cos 0 − sin 0 sin 45 + cos 54.7 cos 45 cos 0 sin 54.7 cos 0⎥⎥ ⎢⎣ sin 54.7 sin 45 cos 54.7 ⎥⎦ − sin 54.7 cos 45 cos 45 sin 45 0 ⎤ ⎡ 1 ⎡ 1 ⎤ ⎢ ⎥ 0 [a ] = ⎢− cos 54.7 sin 45 + cos 54.7 cos 45 sin 54.7 ⎥ ⎢ 2 ⎥ 2 ⎢ ⎥ ⎢⎣ sin 54.7 sin 45 − sin 54.7 cos 45 cos 54.7 ⎥⎦ 1 1 2

[a ] = ⎢− ⎢ 6 ⎢ 1 ⎢ ⎣ 3

T = [a ]× T × [a ]

T

'

⎡ 1 ⎢ 2 ⎢ 1 [T ' ] = ⎢− ⎢ 6 ⎢ 1 ⎢ ⎣ 3

1 2 1 6 1 − 3

⎤ ⎡ 0 ⎥ ⎢ 2 0 0 ⎡ ⎤ ⎥ ⎢ 2 ⎥ ⎢ × ⎢0 3 0 ⎥⎥ × ⎢ ⎢ 6⎥ 1 ⎥ ⎢⎣0 0 − 1⎥⎦ ⎢ ⎥ ⎢ 3⎦ ⎣

1 2 1 2 0



1 6 1 6 2 6

6 1 − 3

⎥ 6⎥ 1 ⎥ ⎥ 3⎦

1 ⎤ 3 ⎥ ⎡ 2.5 0.289 − 0.408⎤ ⎥ 1 ⎥ ⎢ − = ⎢ 0.289 0.167 − 1.65 ⎥⎥ 3⎥ 1 ⎥ ⎢⎣− 0.408 − 1.65 1.33 ⎥⎦ ⎥ 3 ⎦

Isotropic Materials

εx =

σx E

ε y = −ν ε z = −ν

σy

−ν

σx E

σx E

E +

σy

−ν

1 γ yz = τ yz G 1 γ zx = τ zx G 1 γ xy = τ xy G

−ν

E

σz E

−ν

σy E

+

σz E

σz E

ε x = S11σ x + S12σ y + S13σ z + S14τ yz + S15τ zx + S16τ xy

ε y = S 21σ x + S 22σ y + S 23σ z + S 24τ yz + S 25τ zx + S 26τ xy

ε z = S31σ x + S32σ y + S33σ z + S34τ yz + S35τ zx + S36τ xy γ yz = S 41σ x + S 42σ y + S 43σ z + S 44τ yz + S 45τ zx + S 46τ xy

γ zx = S51σ x + S52σ y + S53σ z + S54τ yz + S55τ zx + S56τ xy γ xy = S61σ x + S62σ y + S63σ z + S64τ yz + S65τ zx + S66τ xy ⎧ ε x ⎫ ⎡ S11 ⎪ε ⎪ ⎢ S 21 y ⎪ ⎪ ⎢ ε = S σ ⎪ ⎪ ⎪ ε z ⎪ ⎢ S31 ⎨ ⎬=⎢ ⎪γ yz ⎪ ⎢ S 41 ⎪γ zx ⎪ ⎢ S51 S is the compliance matrix ⎪ ⎪ ⎢ ⎪⎩γ xy ⎪⎭ ⎢⎣ S61

[ ] [ ][ ]

S12 S 22 S32

S13 S 23 S33

S14 S 24 S34

S15 S 25 S35

S 42 S52 S62

S 43 S53 S63

S 44 S54 S64

S 45 S55 S65

S16 ⎤ ⎧σ x ⎫ ⎪σ ⎪ ⎥ S 26 ⎥ ⎪ y ⎪ S36 ⎥ ⎪⎪σ z ⎪⎪ ⎥⎨ ⎬ S 46 ⎥ ⎪τ yz ⎪ S56 ⎥ ⎪τ zx ⎪ ⎥⎪ ⎪ S66 ⎥⎦ ⎪⎩τ xy ⎪⎭

Isotropic Materials An isotropic material has stress-strain relationships that are independent of the orientation of the coordinate system at a point. The isotropic material requires only two independent material constants, namely the Elastic Modulus and the Poisson’s Ratio. ν ν ⎤ ⎡ 1 0 0 0 − − ⎥ ⎢ E E E ⎥ ⎢ ν 1 ν ⎧ ε x ⎫ ⎢− 0 0 0 ⎥ ⎧σ x ⎫ − ⎪σ ⎪ ⎪ε ⎪ ⎢ E E E ⎥ y⎪ ⎪ ⎪ y⎪ ⎢ ν 1 ν ⎥ 0 0 0 − − ⎪⎪ ε z ⎪⎪ ⎢ ⎥ ⎪⎪σ z ⎪⎪ E E E ⎨ ⎬=⎢ ⎥ ⎨τ ⎬ 1 γ ⎪ yz ⎪ ⎢ 0 0 0 0 0 ⎥ ⎪ yz ⎪ G ⎪γ zx ⎪ ⎢ ⎥ ⎪τ zx ⎪ 1 ⎪ ⎪ ⎪ ⎪ ⎢ 0 ⎥ 0 0 0 0 τ xy ⎪⎭ ⎪ ⎪⎩γ xy ⎪⎭ ⎢ ⎩ ⎥ G ⎢ 1⎥ 0 0 0 0 0 ⎢⎣ G ⎥⎦

⎡ E (1 − ν ) ⎧σ x ⎫ ⎢⎢ (1 + ν )(1 − 2ν ) ⎪σ ⎪ ⎢ Eν ⎪ y ⎪ ⎢ (1 + ν )(1 − 2ν ) ⎪⎪σ z ⎪⎪ ⎢ Eν ⎨ ⎬=⎢ ⎪τ yz ⎪ ⎢ (1 + ν )(1 − 2ν ) ⎪τ zx ⎪ ⎢ 0 ⎪ ⎪ ⎢ ⎪⎩τ xy ⎪⎭ 0 ⎢ 0 ⎢⎣

Eν (1 + ν )(1 − 2ν ) E (1 − ν ) (1 + ν )(1 − 2ν ) Eν (1 + ν )(1 − 2ν ) 0 0 0

[σ ] = [C ][ε ] C is the elastic or stiffness matrix

Eν 0 (1 + ν )(1 − 2ν ) Eν 0 (1 + ν )(1 − 2ν ) E (1 − ν ) 0 (1 + ν )(1 − 2ν ) 0 G 0 0

0 0

⎤ 0 0⎥ ε ⎥ ⎧⎪ x ⎫ ⎪ ⎥ ε 0 0 ⎪ y⎪ ⎥⎪ ⎪ ⎥⎪ ε z ⎪ 0 0 ⎥ ⎨γ ⎬ yz ⎥⎪ ⎪ 0 0 ⎥ ⎪γ zx ⎪ ⎪ ⎪ ⎥ G 0 ⎪⎩γ xy ⎪⎭ ⎥ 0 G ⎥⎦

The isotropic material requires only two independent material constants, namely the Elastic Modulus and the Poisson’s Ratio.

Anisotropic Materials Up to this point we have limited the study of the properties of materials to isotropic materials. For the most general linearly elastic anisotropic materials, a particular component of stress is assumed to depend of all six components of strain.

σ x = C11ε x + C12ε y + C13ε z + C14γ yz + C15γ zx + C16γ xy Where Cij are constants if the material is homogeneous

⎧σ x ⎫ ⎡C11 ⎪σ ⎪ ⎢ ⎪ y ⎪ ⎢C21 ⎪⎪σ z ⎪⎪ ⎢C31 ⎨ ⎬=⎢ ⎪τ yz ⎪ ⎢C41 ⎪τ zx ⎪ ⎢C51 ⎪ ⎪ ⎢ ⎪⎩τ xy ⎪⎭ ⎢⎣C61

C12 C22 C32 C42 C52 C62

C13 C14 C23 C24 C33 C34 C43 C44 C53 C54 C63 C64

C15 C25 C35 C45 C55 C65

C16 ⎤ ⎧ ε x ⎫ ⎪ε ⎪ ⎥ C26 ⎥ ⎪ y ⎪ C36 ⎥ ⎪⎪ ε z ⎪⎪ ⎥⎨ ⎬ C46 ⎥ ⎪γ yz ⎪ C56 ⎥ ⎪γ zx ⎪ ⎥⎪ ⎪ C66 ⎥⎦ ⎪⎩γ xy ⎪⎭

Taking energy considerations the coefficients of this matrix are symmetric. Hence, instead of 36 independent constant, we have 21 independent constants

⎧σ x ⎫ ⎡C11 ⎪σ ⎪ ⎢ ⎪ y ⎪ ⎢C12 ⎪⎪σ z ⎪⎪ ⎢C13 ⎨ ⎬=⎢ ⎪τ yz ⎪ ⎢C14 ⎪τ zx ⎪ ⎢C15 ⎪ ⎪ ⎢ ⎪⎩τ xy ⎪⎭ ⎢⎣C16

C12

C13

C14

C15

C22 C23 C24 C25

C23 C33 C34 C35

C24 C34 C44 C45

C25 C35 C45 C55

C26

C36

C46

C56

C is referred to as the elastic matrix or stiffness matrix.

C16 ⎤ ⎧ ε x ⎫ ⎪ε ⎪ ⎥ C26 ⎥ ⎪ y ⎪ C36 ⎥ ⎪⎪ ε z ⎪⎪ ⎥⎨ ⎬ C46 ⎥ ⎪γ yz ⎪ C56 ⎥ ⎪γ zx ⎪ ⎥⎪ ⎪ C66 ⎥⎦ ⎪⎩γ xy ⎪⎭

⎡C11 ⎢C ⎢ 12 ⎢C [C ] = ⎢ 13 ⎢C14 ⎢C15 ⎢ ⎢⎣C16

C12 C22

C13 C14 C23 C24

C15 C25

C23 C24 C25 C26

C33 C34 C35 C36

C35 C45 C55 C56

C34 C44 C45 C46

C16 ⎤ C26 ⎥⎥ C36 ⎥ ⎥ C46 ⎥ C56 ⎥ ⎥ C66 ⎥⎦

Hence, we can also write

[ε ] = [S ][σ ] ⎧ ε x ⎫ ⎡ S11 ⎪ε ⎪ ⎢ ⎪ y ⎪ ⎢ S12 ⎪⎪ ε z ⎪⎪ ⎢ S13 ⎨ ⎬=⎢ ⎪γ yz ⎪ ⎢ S14 ⎪γ zx ⎪ ⎢ S15 ⎪ ⎪ ⎢ ⎪⎩γ xy ⎪⎭ ⎢⎣ S16

S12 S 22 S 23 S 24

S13 S 23 S33 S 34

S14 S 24 S 34 S 44

S15 S 25 S35 S 45

S 25 S 26

S 35 S36

S 45 S 46

S55 S56

S16 ⎤ ⎧σ x ⎫ ⎪σ ⎪ ⎥ S 26 ⎥ ⎪ y ⎪ S36 ⎥ ⎪⎪σ z ⎪⎪ ⎥⎨ ⎬ S 46 ⎥ ⎪τ yz ⎪ S56 ⎥ ⎪τ zx ⎪ ⎥⎪ ⎪ S 66 ⎥⎦ ⎪⎩τ xy ⎪⎭

The matrix S is referred to as the compliance matrix and the elements of S are the compliances.

21 elastic constants are required to describe the most general anisotropic material (fully anisotropic). This is in contrast to an isotropic material for which there are only two independent elastic constants (typically the Young Modulus and the Poisson’s ratio).

E (1 − ν ) Eν σx = εx + (ε y + ε z ) (1 + ν )(1 − 2ν ) (1 + ν )(1 − 2ν ) E (1 − ν )ε x + ν (ε y + ε z ) σx = (1 + ν )(1 − 2ν )

[

]

Many materials of practical interest contain certain material symmetries with respect to their elastic properties (elastic symmetries). Other type of symmetries are possible optical, electrical and thermal properties. Let us determine the structure of the elastic matrix for a material with a single plane of elastic symmetry. Crystals whose crystalline structure is monoclinic as examples of materials possessing a single plane of elastic symmetry. Example Iron aluminide, gypsum, talc, ice, selenium Materials with one plane of symmetry are referred to as Monoclinic materials.

Crystal Systems Crystallographers have shown that only seven different types of unit cells are necessary to create all point lattice Cubic a= b = c ; α = β = γ = 90 Tetragonal a= b ≠ c ; α = β = γ = 90 Rhombohedral a= b = c ; α = β = γ ≠ 90 Hexagonal a= b ≠ c ; α = β = 90, γ =120 Orthorhombic a≠ b ≠ c ; α = β = γ = 90 Monoclinic a≠ b ≠ c ; α = γ = 90 ≠ β Triclinic a≠ b ≠ c ; α ≠ γ ≠ β ≠ 90

Monoclinic Materials Let us assume that the z-plane is the plane of elastic symmetry. For such a material the elastic coefficients in the stress-strain law must remain unchanged when subjected to a transformation that represents a reflection in the symmetry plane. For monoclinic materials (due to one plane of elastic symmetry) the number of independent elastic constants is reduced from 21 to 13.

⎧σ x ⎫ ⎡C11 C12 ⎪σ ⎪ ⎢ ⎪ y ⎪ ⎢C12 C22 ⎪⎪σ z ⎪⎪ ⎢C13 C23 ⎨ ⎬=⎢ 0 ⎪τ yz ⎪ ⎢ 0 ⎪τ zx ⎪ ⎢ 0 0 ⎪ ⎪ ⎢ ⎪⎩τ xy ⎪⎭ ⎢⎣C16 C26

C13 C23 C33

0 0 0

0 0 0

0 0 C36

C44 C45 0

C45 C55 0

C16 ⎤ ⎧ ε x ⎫ ⎪ε ⎪ ⎥ C26 ⎥ ⎪ y ⎪ C36 ⎥ ⎪⎪ ε z ⎪⎪ ⎥⎨ ⎬ 0 ⎥ ⎪γ yz ⎪ 0 ⎥ ⎪γ zx ⎪ ⎥⎪ ⎪ C66 ⎥⎦ ⎪⎩γ xy ⎪⎭

KEY TO NOTATION

TRICLINIC (21)

MONOCLINIC (13)

ORTHORHOMBIC (9)

(7)

TETRAGONAL

CUBIC (3)

(6)

HEXAGONAL (5)

(7)

ISOTROPIC (2)

TRIGONAL

(6)

Orthotropic Materials Let us consider a material with a second plane of elastic symmetry. The y-plane and the z-plane are the planes of elastic symmetry and are perpendicular to each other. Again, for such a material the elastic coefficients in the stress-strain law must remain unchanged when subjected to a transformation that represents a reflection in the symmetry plane. For orthotropic materials (due to the two planes of elastic symmetry) the number of independent elastic constants is reduced from 21 to 9.

⎧σ x ⎫ ⎡C11 C12 ⎪σ ⎪ ⎢ ⎪ y ⎪ ⎢C12 C22 ⎪⎪σ z ⎪⎪ ⎢C13 C23 ⎨ ⎬=⎢ 0 ⎪τ yz ⎪ ⎢ 0 ⎪τ zx ⎪ ⎢ 0 0 ⎪ ⎪ ⎢ 0 ⎪⎩τ xy ⎪⎭ ⎢⎣ 0

C13 C23 C33

0 0 0

0 0 0

0 0 0

C44 0 0

0 C55 0

⎤⎧ ε x ⎫ ⎥⎪ ε ⎪ ⎥⎪ y ⎪ ⎥ ⎪⎪ ε z ⎪⎪ ⎥⎨ ⎬ 0 ⎥ ⎪γ yz ⎪ 0 ⎥ ⎪γ zx ⎪ ⎥⎪ ⎪ C66 ⎥⎦ ⎪⎩γ xy ⎪⎭ 0 0 0

Materials possessing two perpendicular planes of elastic symmetry must also possess a third mutually perpendicular plane of elastic symmetry. Materials having three mutually perpendicular planes of elastic symmetry are referred to as orthotropic (orthogonally anisotropic) materials. Long Fiber Composite

Transversely Isotropic Materials Materials that are isotropic in a plane. Transversely isotropic materials require five independent material constants. 0 0 ⎤⎧ ε ⎫ ⎧σ x ⎫ ⎡C11 C12 C13 0 x ⎢ ⎥ ⎪σ ⎪ C12 C11 C13 0 ⎪ε ⎪ 0 0 ⎥⎪ y ⎪ ⎪ y⎪ ⎢ ⎥⎪ ε ⎪ 0 0 ⎪⎪σ z ⎪⎪ ⎢C13 C13 C33 0 ⎪ z⎪ ⎢ ⎥ = ⎨ ⎬ ⎨ ⎬ 0 0 0 0 0 C 44 ⎥ ⎪γ yz ⎪ ⎪τ yz ⎪ ⎢ ⎥⎪ ⎪ 0 0 0 C44 0 ⎪τ zx ⎪ ⎢ 0 γ zx ⎢ ⎥ ( C11 − C12 ) ⎪ ⎪ ⎪ ⎪ ⎢ ⎥ ⎪⎩γ xy ⎪⎭ 0 0 0 0 0 ⎪⎩τ xy ⎪⎭ ⎣ 2 ⎦

Isotropic Materials The isotropic material requires only two independent material constants, namely the Elastic Modulus and the Poisson’s Ratio. 0 0 0 ⎡C11 C12 C12 ⎤ ⎥⎧ ε x ⎫ ⎧σ x ⎫ ⎢C C C 0 0 0 11 12 ⎥⎪ ⎪ ⎪σ ⎪ ⎢ 12 ⎥⎪ ε y ⎪ 0 0 0 ⎪ y ⎪ ⎢C12 C12 C11 ⎥ ⎪⎪ ε ⎪⎪ ⎪⎪σ z ⎪⎪ ⎢ ( C11 − C12 ) z 0 0 0 0 0 ⎢ ⎥ ⎨ ⎬= ⎨ ⎬ 2 τ ⎥ ⎪γ yz ⎪ ⎪ yz ⎪ ⎢ (C11 − C12 ) ⎥ ⎪γ ⎪ ⎪τ zx ⎪ ⎢ 0 0 0 0 0 zx ⎢ ⎥ 2 ⎪ ⎪ ⎪ ⎪ ⎪⎩τ xy ⎪⎭ ⎢ ( C11 − C12 ) ⎥ ⎪⎩γ xy ⎪⎭ 0 0 0 0 ⎢0 ⎥ 2 ⎣ ⎦ C11 =

E (1 − ν ) (1 + ν )(1 − 2ν )

C12 =

Eν (1 + ν )(1 − 2ν )

(C11 − C12 ) = 2

E =G 2(1 + ν )

Engineering Material Constants for Orthotropic Materials The quantities appearing in the coefficient matrix can be written in terms of well understood engineering constants such as the Young Modulus and the Poisson’s ratio. σ x = E xε x For the x, y and z coordinate axes we can write: Where the Young Modulus in the x-, y- and zdirections are not necessarily equal. Any extension in the x-axis is accompanied by a contraction in the y- and z- axis. However, this quantities are not necessarily equal in orthotropic materials. Where νxy is the contraction in the y-direction due to the stress in the x-direction

σ y = E yε y σ z = Ezε z

ε y = −ν xyε x ε z = −ν xzε x

[ε ] = [S ][σ ]

If all three stresses are applied simultaneously, then: ν yx ν zx 1 εx = σx − σ y − σz Ex

Ey

⎧ ε x ⎫ ⎡ S11 ⎪ε ⎪ ⎢ ⎪ y ⎪ ⎢ S12 ⎪⎪ ε z ⎪⎪ ⎢ S13 ⎨ ⎬=⎢ ⎪γ yz ⎪ ⎢ 0 ⎪γ zx ⎪ ⎢ 0 ⎪ ⎪ ⎢ ⎪⎩γ xy ⎪⎭ ⎢⎣ 0

Ez

ν xy

ν zy 1 εy = − σx + σy − σz Ex Ey Ez ν yz

ν xz

S12 S 22 S 23

S13 S 23 S33

0 0 0

0 0 0

0 0 0

0 0 0

S 44 0 0

0 S55 0

⎤ ⎧σ x ⎫ ⎥ ⎪σ ⎪ ⎥⎪ y ⎪ ⎥ ⎪⎪σ z ⎪⎪ ⎥⎨ ⎬ 0 ⎥ ⎪τ yz ⎪ 0 ⎥ ⎪τ zx ⎪ ⎥⎪ ⎪ S 66 ⎥⎦ ⎪⎩τ xy ⎪⎭ 0 0 0

1 εy = − σx − σy + σz Ex Ey Ez

S11 =

1 Ex

S12 = −

ν yx Ey

=−

ν xy Ex

Comparing with the compliance matrix for orthotropic materials: 1 1 S 22 = S33 = Ey Ez

S13 = −

ν zx Ez

=−

ν xz Ex

S 23 = −

ν zy Ez

=−

ν yz Ey

Where νxy is the contraction in the y-direction due to the stress in the x-direction

Whereas with 1 γ xy = τ xy isotropic materials Gxy the relationship 1 between shear S 44 = G yz stress and shear strain is the same in ⎡ 1 any coordinate ⎢ ⎢ Ex planes, for ⎢ ν xy orthotropic ⎧ ε x ⎫ ⎢− E x materials these ⎪ε ⎪ ⎢ relationships are not ⎪ y ⎪ ⎢ − ν xz ⎪⎪ ε z ⎪⎪ ⎢ E x the same. ⎨ ⎬=⎢ ⎪γ yz ⎪ ⎢ 0 ⎪γ zx ⎪ ⎢ ⎪ ⎪ ⎢ ⎪⎩γ xy ⎪⎭ ⎢ 0 ⎢ ⎢ ⎢ 0 ⎢⎣

γ yz

1 τ yz = G yz

1 γ zx = τ zx Gzx

1 S55 = Gzx −

ν yx

Ey 1 Ey



ν yz Ey

− −

ν zx Ez

ν zy

Ez 1 Ez

1 S 66 = Gxy 0

0

0

0

0

0 0

0

0

1 G yz

0

0

0

1 Gzx

0

0

0

0

⎤ 0 ⎥ ⎥ ⎥ 0 ⎥ ⎧σ ⎫ x ⎥ ⎪σ ⎪ ⎥⎪ y ⎪ 0 ⎥ ⎪σ ⎪ ⎪ z⎪ ⎥⎨ ⎬ τ yz ⎪ ⎥ ⎪ 0 ⎥ ⎪τ zx ⎪ ⎥⎪ ⎪ 0 ⎥ ⎪⎩τ xy ⎪⎭ ⎥ 1 ⎥ ⎥ Gxy ⎥⎦

⎡ 1 − ν yzν zy ⎢ E EΔ y z ⎧σ x ⎫ ⎢ ⎪σ ⎪ ⎢ν xy + ν xzν zy ⎪ y⎪ ⎢ E E Δ x z ⎪⎪σ z ⎪⎪ ⎢ ⎨ ⎬ = ⎢ν xz + ν xyν yz ⎪τ yz ⎪ ⎢ Ex E y Δ ⎪τ zx ⎪ ⎢ 0 ⎪ ⎪ ⎢ ⎪⎩τ xy ⎪⎭ ⎢ 0 ⎢ 0 ⎢⎣

Δ=

ν yx + ν zxν yz

ν zx + ν yxν zy

E y Ez Δ 1 − ν zxν xz Ex Ez Δ ν yz + ν xzν yx Ex E y Δ 0 0

E y Ez Δ ν zy + ν zxν xy Ex Ez Δ 1 − ν xyν yx Ex E y Δ 0 0

0

0

0

0

0

0

0

0

G yz 0

0 Gzx

0

0

⎤ 0 ⎥ ⎥⎧ ε x ⎫ ⎥⎪ ⎪ 0 ⎥⎪ ε y ⎪ ⎥ ⎪⎪ ε z ⎪⎪ 0 ⎥ ⎨γ yz ⎬ ⎥⎪ ⎪ ⎥ 0 ⎥ ⎪⎪γ zx ⎪⎪ 0 ⎥ ⎪⎩γ xy ⎪⎭ ⎥ Gxy ⎥⎦

1 − ν xyν yx − ν yzν zy − ν zxν xz − 2ν xyν yzν zx Ex E y Ez

In 2-D ⎡ 1 ⎢ E ⎧εx ⎫ ⎢ x ⎪ ⎪ ⎢ ν xy ⎨ ε y ⎬ = ⎢− ⎪γ ⎪ ⎢ E x ⎩ xy ⎭ ⎢ ⎢ 0 ⎣



ν yx

Ey 1 Ey 0

⎤ 0 ⎥ ⎥ ⎧σ x ⎫ ⎥⎪ ⎪ 0 ⎥ ⎨σ y ⎬ ⎥ ⎪τ xy ⎪ 1 ⎥⎩ ⎭ Gxy ⎥⎦

⎡ Ex ⎢ 1 −ν xyν yx ⎧σ x ⎫ ⎢ ⎪ ⎪ ⎢ ν xy E y ⎨σ y ⎬ = ⎢ ⎪τ ⎪ ⎢1 −ν xyν yx ⎩ xy ⎭ ⎢ 0 ⎢ ⎣

⎧σ x ⎫ ⎡C11 C12 ⎪ ⎪ ⎢ ⎨σ y ⎬ = ⎢C12 C22 ⎪τ ⎪ ⎢ 0 0 ⎩ xy ⎭ ⎣

ν yx E x 1 −ν xyν yx Ey 1 −ν xyν yx 0

⎤ 0 ⎥ ⎥⎧ ε x ⎫ ⎥⎪ ⎪ 0 ⎥⎨ ε y ⎬ ⎥ ⎪γ xy ⎪ Gxy ⎥ ⎩ ⎭ ⎥ ⎦

0 ⎤⎧ ε x ⎫ ⎪ ⎪ ⎥ 0 ⎥⎨ ε y ⎬ C33 ⎥⎦ ⎪⎩γ xy ⎪⎭

Neumann’s Principle This is the most important concept in crystal physics. It states;  ……………... the symmetry of any physical property of a crystal must  include the symmetry elements of the point group of the crystal. This  means that measurements made in symmetry‐related directions will  give the same property coefficients. Example: NaCl belongs to the m3m group . The [100] and [010]  directions are equivalent. Since these directions are physically  the same, it should be expected that  measurements of permittivity,  elasticity or any other physical property  will be the same in these two  directions.

7 Crystal Systems cubic

monoclinic

orthorhombic tetragonal

triclinic

trigonal

hexagonal

Crystal System

External Minimum Symmetry

Unit Cell Properties

Triclinic Monoclinic Orthorhombic Tetragonal Trigonal Hexagonal Cubic

None One 2‐fold axis, || to b (b unique)  Three perpendicular 2‐folds One 4‐fold axis, parallel c One 3‐fold axis One 6‐fold axis Four 3‐folds along space diagonal

a, b, c, al, be, ga, a, b, c, 90, be, 90 a, b, c, 90, 90, 90 a, a, c, 90, 90, 90 a, a, c, 90, 90, 120 a, a, c, 90, 90, 120 a, a, ,a, 90, 90, 90

Anisotropy Factor Cubic Symmetry

For cubic crystals, there are four three‐fold symmetry  S11 = S 22 = S33 axes (along the  body diagonals) such that:  S12 = S 23 = S31 There is a reduction of the nine constants for  orthotropic symmetry to three. An anisotropic factor  A, can be defined for cubic crystals Using the direction cosines l, m, n for a particular  direction, one can determine the elastic properties  of a cubic single crystal  in a particular direction by  the relationship:

S 44 = S55 = S66

2( S11 − S12 ) A= S 44

1 1 ⎤2 2 ⎡ ' = S11 = S11 − 2 ⎢ S11 − S12 − S 44 ⎥l m + m 2 n 2 + l 2 n 2 Ehkl 2 ⎦ ⎣

Isotropy When the anisotropy factor is equal to one, there are just two  independent components, e.g. C11 and C12. In this instance, the  rigidity or shear modulus G is given by:  1 And λ is given by: 

1 G = C44 = (C11 − C12 ) = 2 S 44

λ = C12

These two constants are known as the Lame constants and are used to describe all the elastic constants of isotropic materials 1 Poisson’s ratio can de expressed in terms  υ = − S12 = − C12 = S11 C11 + C12 ⎛ G⎞ 2⎜1 + ⎟ of Lame constants: ⎝

The compressibility (β) or bulk modulus (K) relate hydrostatic or mean stress to volume  2G ⎞ ⎛ strain G⎜ 3 + ⎟ E=

λ ⎠ ⎝ ⎛ G⎞ ⎜1 + ⎟ λ⎠ ⎝

K=

1

β

=

σ mean Δ

λ⎠

2G =λ+ 3

Example An orthotropic material has the following properties Ex=7,500ksi, Ey= 2,500ksi, Gxy = 1,250ksi and νxy= 0.25. Determine the principal stresses and strains at a point on a free surface where the following strains were measured: εx=-400μ ; εy=600μ ; γxy=-500μ . Consider plane stress conditions Solution:

⎡ Ex ⎢1 ν ν − xy yx ⎧σ x ⎫ ⎢ ⎪ ⎪ ⎢ ν xy E y ⎨σ y ⎬ = ⎢ ⎪τ ⎪ ⎢1 −ν xyν yx ⎩ xy ⎭ ⎢ 0 ⎢ ⎣

S12 = −

ν yx E x 1 −ν xyν yx Ey 1 −ν xyν yx 0

ν yx Ey

=−

ν xy Ex

⎤ 0 ⎥ ⎥⎧ ε x ⎫ ⎥⎪ ⎪ 0 ⎥⎨ ε y ⎬ ⎥ ⎪γ xy ⎪ Gxy ⎥ ⎩ ⎭ ⎥ ⎦

ν yx Ey

=

ν xy Ex

ν yx

ν xy

0.25 × 2500 = Ey = = 0.083 Ex 7500

⎧σ x ⎫ ⎡ 7660 638.3 0 ⎤ ⎧− 400 x10 −6 ⎫ ⎪ ⎪ ⎪ ⎢ ⎥ −6 ⎪ 0 ⎥ ⎨ 600 x10 ⎬ ⎨σ y ⎬ = ⎢638.3 2553.2 ⎪− 500 x10 −6 ⎪ ⎪τ ⎪ ⎢ 0 ⎥ 0 1250 ⎦⎩ ⎩ xy ⎭ ⎣ ⎭

⎧σ x ⎫ ⎧− 2681 psi ⎫ ⎪ ⎪ ⎪ ⎪ ⎨σ y ⎬ = ⎨1276.6 psi ⎬ ⎪τ ⎪ ⎪ − 625 psi ⎪ ⎭ ⎩ xy ⎭ ⎩

σ 1 = 1372.9 psi σ 2 = −2777.4 psi τ Max = 2075.1 psi

⎡ 1 ⎢ E ⎧ε x ⎫ ⎢ x ⎪ ⎪ ⎢ ν xy ⎨ ε y ⎬ = ⎢− ⎪γ ⎪ ⎢ E x ⎩ xy ⎭ ⎢ ⎢ 0 ⎣



ν yx

Ey 1 Ey 0

⎤ 0 ⎥ ⎥ ⎧σ x ⎫ ⎥⎪ ⎪ 0 ⎥ ⎨σ y ⎬ ⎥ ⎪τ xy ⎪ 1 ⎥⎩ ⎭ Gxy ⎥⎦

ε 1 = 659μ ε 2 = −459 μ γ Max = 1118μ

γ XY − 500 = tan 2θ ε = = 0 .5 ε X − ε Y − 400 − 600 2τ xy 2 ⋅ ( −625 ) tan 2θσ = = = 0.316 (σ x − σ y ) − 2681 − 1276 .6 Different angles to obtain the principal stresses and the principal strains.

Example Suppose we start with a state of strain (in μ strain)

Consider an orthotropic material where :

⎡300 50 20 ⎤ ⎢ 50 200 30 ⎥ μ − strain ⎥ ⎢ ⎢⎣ 20 30 100⎥⎦

0 ⎤ ⎡103 55 25 0 0 ⎥ ⎢ 55 50 40 0 0 0 ⎥ ⎢ ⎢ 25 40 75 0 0 0 ⎥ ⎥GPa ⎢ 0 0 45 0 0 ⎥ ⎢ 0 ⎢ 0 0 0 0 10 0 ⎥ ⎥ ⎢ 0 0 0 0 27.6⎥⎦ ⎢⎣ 0

We need to change the strain tensor for a strain vector

⎡300 ⎤ ⎢200⎥ ⎢ ⎥ ⎡300 50 20 ⎤ ⎢ 50 200 30 ⎥ μ − strain = ⎢100 ⎥ × 10− 6 ⎢ ⎥ ⎢ ⎥ 60 ⎢ ⎥ ⎢⎣ 20 30 100⎥⎦ ⎢ 40 ⎥ ⎢ ⎥ ⎣⎢100 ⎦⎥

0 ⎤ ⎡300 ⎤ ⎡103 55 25 0 0 ⎢200⎥ ⎥ ⎢ 55 50 40 0 0 0 ⎢ ⎥ ⎥ ⎢ ⎢100 ⎥ ⎢ 25 40 75 0 0 0 ⎥ −6 × × 10 [σ ] = ⎢ GPa ⎢ ⎥ ⎥ 0 0 45 0 0 ⎥ ⎢ 60 ⎥ ⎢ 0 ⎢ 40 ⎥ ⎢ 0 0 0 0 10 0 ⎥ ⎢ ⎥ ⎥ ⎢ 0 0 0 0 27.6⎥⎦ ⎢⎣100 ⎥⎦ ⎢⎣ 0

⎡44.400⎤ ⎢30.500 ⎥ ⎢ ⎥ ⎡44.4 2.76 0.4 ⎤ ⎢23.000⎥ ⎢2.76 30.5 2.70⎥ MPa [σ ] = ⎢ = MPa ⎥ ⎢ ⎥ 2 . 700 ⎢ ⎥ ⎢⎣ 0.4 2.70 23.0⎥⎦ ⎢ 0.400 ⎥ ⎢ ⎥ ⎢⎣ 2.760 ⎥⎦ Eigen‐values

0 0 ⎤ ⎡22.119 ⎢ 0 ⎥ MPa 30 . 8154 0 ⎢ ⎥ ⎢⎣ 0 0 44.9656⎥⎦

Eigen‐vector (cosines from x‐y‐z angles to the  principal axes)

⎡ 0.0217 − 0.1980 − 0.9800⎤ ⎢− 0.3130 0.9296 − 0.1948⎥ ⎥ ⎢ ⎢⎣ 0.9495 0.3110 − 0.0418⎥⎦

Example The orthotropic elastic constants for bovine (cow) femoral (leg) bone  has been reported from measurements using ultrasound. The values vary on the basis of the position around the bone and along its length.  The elastic constants can be determined using piezoelectric crystals to  propagate and measure the speed of sound in the material. Two types  of elastic constants can be determined. Propagation of dilatational  waves can be used to measure longitudinal stiffness (e.g. C11) and  propagation shear waves can be used to measure the shear moduli (e.g. C44) 

C11 = ρVdil2

2 C44 = ρVtrans

ρ = density Vdil = wave _ speed _ of _ dilatational _ waves Vtrans = wave _ speed _ of _ transverse _ waves

The approximately reported stiffness values are:  0⎤ ⎡ 14 6.3 4.8 0 0 Find the Young Modulus  ⎢6.3 18.4 7 0 0 ⎥ 0 ⎢ ⎥ along the bone length (z‐ ⎢4.8 7 25 0 0 0⎥ ⎢ ⎥ MPa direction)? And along the  0 0 7 0 0⎥ radial direction (x and y  ⎢0 ⎢0 directions). 0 0 0 6.3 0 ⎥ ⎢ ⎥ 0 0 0 0 5.3⎥⎦ ⎢⎣ 0 Find the Poisson’s ratios?  Convert the stiffness matrix into a compliance matrix. 0 0 0 ⎤ ⎡ 0.086 − 0.026 − 0.009 ⎥ ⎢− 0.026 0 . 07 0 . 014 0 0 0 − ⎥ ⎢ ⎢− 0.009 − 0.014 0.046 0 0 0 ⎥ −1 MPa ⎥ ⎢ 0 0 0 0 . 14 0 0 ⎥ ⎢ ⎢ 0 0 0 0 0.16 0 ⎥ ⎥ ⎢ 0 0 0 0 0.19⎥⎦ ⎢⎣ 0

υ21 = −0.026 ⇒ υ21 = 0.373 E2

E3 =

1 1 = = 21.7GPa S33 0.046

E1 =

1 1 = = 11.6GPa S11 0.086

-

υ12 = −0.026 ⇒ υ12 = 0.3016 E1

E2 =

1 1 = = 14.28GPa S 22 0.07

-

υ13 = −0.009 ⇒ υ13 = 0.1044 E1

-

(100)(uvw)

Cosα = =l Example 2 2 2 1 u +v +w Determine the modulus of elasticity for iron  (010)(uvw) β Cos = =m single crystals in the ,  and  2 2 2 1 u +v +w  directions.

10−3 GPa −1 S11 S12 S 44 Fe 8.0 − 2.8 8.60

Cosγ =

1 8.6 ⎞ ⎛ = 8.0 − 2⎜ 8.0 − (− 2.8) − ⎟(0) = 8.0 E100 2 ⎠ ⎝ E100 = 125GPa 1 8.6 ⎞ 1 ⎛ = 8.0 − 2⎜ 8.0 − (− 2.8) − ⎟( + 0 + 0) = 4.75 2 ⎠ 4 E110 ⎝

(001)(uvw)

1 u +v +w Directions l m 100 1 0 1 1 110 2 2 1 1 111 3 3 2

2

2

=n n 0 0 1 3

E110 = 210GPa 1 8.6 ⎞ 1 1 1 ⎛ = 8.0 − 2⎜ 8.0 − (− 2.8) − ⎟( + + ) = 3.7 E111 2 ⎠ 9 9 9 ⎝ E111 = 270GPa

Smile Life

When life gives you a hundred reasons to cry, show life that you have a thousand reasons to smile

Get in touch

© Copyright 2015 - 2024 PDFFOX.COM - All rights reserved.