Review for Final Exam [PDF]

Proteins: made up of amino acids (there are 20 different amino acids) .... Examples: Carrier mediated active transport,

0 downloads 7 Views 10MB Size

Recommend Stories


MAT1275 Final Exam Review
Happiness doesn't result from what we get, but from what we give. Ben Carson

Final Exam Review
The greatest of richness is the richness of the soul. Prophet Muhammad (Peace be upon him)

Final Exam Review 3
Make yourself a priority once in a while. It's not selfish. It's necessary. Anonymous

Final exam Review
You have survived, EVERY SINGLE bad day so far. Anonymous

Final exam review
Ego says, "Once everything falls into place, I'll feel peace." Spirit says "Find your peace, and then

Solutions to Review for Final Exam
Ask yourself: What are the biggest actions you can take now to create the biggest results in your life?

Math 120 Final Exam Review
Make yourself a priority once in a while. It's not selfish. It's necessary. Anonymous

PDF Exam Review for Milady Standard Esthetics
Don't count the days, make the days count. Muhammad Ali

173 PreCalculus Final Exam Review Spring 2014
We can't help everyone, but everyone can help someone. Ronald Reagan

Final Exam
Almost everything will work again if you unplug it for a few minutes, including you. Anne Lamott

Idea Transcript


Biology    

 

 

 

 

 

 

 

 

 

 

Mrs.Kieliszek  

Review  for  Final  Exam   General  Science  Skills:   Reading  a  metric  ruler  

  So  :  1  cm  =  10  mm  

 

37  mm  =    3.7cm  

 

 

4mm  =  0.4cm  

Reading  a  graduated  cyclinder  

  Volume  =  55  ml   The liquid surface is curved (U-shaped) rather than horizontal due to the relatively strong attractive force between water and glass. (The curved surface is called the meniscus.) As a general rule, the bottom of the meniscus is taken as the liquid level in the cylinder (and any other liquid volume measuring device). Reading off a graph

What grade did Frank get on the third test? First  find  test  number  3  on  the  horizontal  axis.     Then  move  up  until  you  hit  the  point.     You  see  that  Frank  got  a  100  on  the  third  test.    

The  Microscope   How  is  the  field  of  view  size  used  to  calculate  the  size  of  cells  viewed  through  a  microscope?   By  knowing  the  diameter  of  the  field  of  view,  and  having  an  estimate  of  the  number  of  cells  that  would  fit  across  the   diameter,  you  can  determine  the  size  of  a  cell  by  dividing  the  diameter  by  the  number  of  cells.     For  example:   The  diameter  of  the  field  of  view  under  100  x    total  magnification  is  about  1.5  mm.  If  there  are  10  cells  that  would  fit   across  the  diameter,  one  cell  would  be  0.15  mm.                          (1.5  mm/  10    =  0.15  mm)     The  diameter  of  the  field  of  view  under  400x    total  magnification  is  approximately  0.375  mm.   1  mm  =  1000  um  (micrometers)   0.5  mm  =  500  um  (micrometers)     When  iodine  is  added  to  cells,  what  part  of  the  cell  can  you  see  better?   The  nucleus  of  most  cells  is  usually  more  visible  after  stain.  In  plant  cells  chloroplasts  are  seen  far  better  as  well.   Staining  a  specimen  reveals  details  that  are  otherwise  not  easily  seen.   Putting  on  a  coverslip:      Coverslip  should  be  lowered  from  a  45  degree  angle  onto  the  slide  to  reduce  the  formation  of   air  bubbles.      

Scientific  Method:   What  is  the  Scientific  Method?     

It  is  the  steps  someone  takes  to  identify  a  question,  develop  a  hypothesis,  design  and  carry  out  steps  or   procedures  to  test  the  hypothesis,  and  document  observations  and  findings  to  share  with  someone  else.  

IdenQfy  a   problem  

     

Gather   InformaQon  

Formulate  a   hypothesis  

Design  and   Experiment  

Draw   Conclusions  

Analyze  Data  

Record  and   Organize  Data    

Steps  of  the  Scientific  Method   1.Problem/Question:    A  problem  or  question  that  can  be  solved  through  experimentation.   EX:  Does  soil  temperature  affect  plant  growth?   2.  Observation/Research:  Make  observations  and  research    your  topic  of  interest.     3.  Formulate  a  Hypothesis  (Educated  Guess):  Predict  a  possible  answer  to  the  problem  or  question.    Using  an  IF,  THEN   statement.   Example:  If  soil  temperatures  rise,  then  plant  growth  will  increase.     4.    Experiment:  Develop  and  follow  a  procedure.  Include  a  detailed  materials  list.  The  outcome  must  be  measurable   (quantifiable).     5.  Collect  and  Analyze  Results:  (DATA)  Make  Charts/Graphs  ,Compare    and  look  for  trends  &  patterns  using  graphs.     6.  Conclusion:  Include  a  statement  that  accepts  or  rejects  the  hypothesis  and  why.  Refer  to  your  data  in  your   explanation.    Make  recommendations  for  further  study  and  possible  improvements  to  the  procedure.   7.  Repeat  Experiment  :  You  must  repeat  the  experiment  to  make  it  valid.  Others  must  also  be  able  to  do  your   experiment  and  have  the  same  results.       Results  and  Data     ****  If  your  results  DO  NOT  fit  (support)  your  Hypothesis    do  not  change  your  data.  Change  the  hypothesis    and  retry   your  experiment.             Independent  Variable     

The  independent  variable  is  the  variable  that  the  scientist    change  or  manipulate.   The  independent,  or  manipulated  variable,  is  the  variable  that  can  be  controlled  by  the  experimenter.     It  usually  includes  time  (dates,  minutes,  hours),  depth  (feet,  meters),  temperature  (Celsius).  

  This  variable  is  ALWAYS  graphed  on  the  X  axis  (horizontal)        

Dependent  Variable        

The  dependent,  or  responding  variable,  is  the  variable  that  is  directly  affected  by  the  independent  variable.     It  is  the  result  of  what  happens  because  of  the  independent  variable.   Is  the  thing  being  tested  in  the  experiment   Changes  because  of  the  independent  variable   “  Depends  on  the  independent  variable   This  variable  is  ALWAYS  graphed  on  the  Y  axis  (vertical)   EX:  The  amount  the  plant  height  changes  with  different  soil  temperatures.  

  Remember!!!  Graphing   When  graphing  your  data  from  an  experiment  always  place  the  independent  variable  on  the  X  axis  (horizontal)  and  the   dependent  variable  on  the  Y  axis  (vertical).       Variables:  Constant     

All  the  factors  in  the  experiments  that  are  kept  the  same   Everything  except    the  independent  variable   Keeps  the  experiment  ‘fair’   Ex:  amount  of  sunlight  each  plant  gets,  amount  of  water,  type  of  soil,  type  of  plant,  plants  are  all  the  same  age  

  Control  Group   In  a  scientific  experiment,  the  control  is  the  group  that  serves  as  the  standard  of  comparison.   The  control  group  is  exposed  to  the  same  conditions  as  the  experimental  group,  except  for  the  variable  being   tested.   ***  All  experiments  must  have  a  control  group  in  order  to  be  valid.   • •

Valid  Experiment      

In  order  for  a  scientific  experiment  to  be  valid  it  can  only  have  one  variable.   This  variable  is  the  part  that  is  being  tested.     All  other  parts  of  the  experiment  must  remain  the  same  or  constant   Any  experiment  that  has    more  than  1  variable  cannot  prove  anything  and  therefore  is  invalid.  

  More  Valid/More  Accurate   

               

To  make  an  experiment  more  valid:    Increase  the  number  of  test  subjects(use  a  large  sample  size)    Repeat  the  experiment  and  get  the  same  results    You  must  always  use  a  control  group    Have  other  people  complete  your  experiment  and  get  the  same  results  (peer  review)  

Graphing   Rules for Graphing All lines must be equal distance apart. All units equal. When numbering and labeling, you must use the same movement between each line (for example: 2, 4, 6, 8) Always label the line on the y (vertical) axis. The y axis is reserved for the responding or dependent variable. The x axis or horizontal axis can be labeled between the lines. The x axis is reserved for the manipulated or independent variable. Your graph must have a title. The graph title gives an overview of the information being presented in the graph. The title is given at the top of the graph.    

  The  speed  of  the  car  determines  the  cost  of  the  speeding  ticket,  so  the  cost  depends  on  the  speed.     Cost  is  the  dependent  variable  and  goes  on  the  Y  axis  (vertical  axis).     Speed  is  the  independent  variable  and  goes  on  the  X  axis  (horizontal  axis).       ****  Graphs  are  used  to  observe  general  trends  in  data        

         

Biochemistry:    

  Organic  Molecules:    Contain  both  Carbon  and  Hydrogen  bonded  together  and  is  associated  with  living  things.  

  Examples:   Carbohydrates:      starches  (large  molecule)  made  up  of  sugars  (small  molecule)       All  sugars  end  in  “ose”     All  carbohydrates  contain  carbon,  hydrogen  &  oxygen     Proteins:  made  up  of  amino  acids  (there  are  20  different  amino  acids)   Function:  growth  &  repair,  energy,  buffer  (helps  keep  body  pH  constant)    Components  of  cell  structures  &  organelles.     Examples:  insulin,  hemoglobin,  enzymes(speed  up  chemical  chemical  reactions)     All  proteins  have  an  amine  group(NH2),  carboxyl  group(COOH),  and  an  R  group       Lipids(fats,  oils,  waxes):  made  up  of  fatty  acids  and  glycerol     Function:  energy  storage,  protection  &  insulation   Key  component  in  cell  membrane             Inorganic  Molecules:  Don’t  contain  both  carbon  &  hydrogen     Examples:  Carbon  Dioxide  (CO2),  Hydrogen  peroxide  (H2O2),  Salt  (NaCl),  water  (  H2O)             Major  Types  of  Reactions  in  Living  Things   •

1.  Dehydration  Synthesis:   Chemical  combination  of  two  small  molecules  to  make  one  larger  molecule  caused  by  the  removal  of  water.       Dehydration  –  removing  water  +  Synthesis  –  combining  of  two  smaller  things  to  make  1  larger  thing    

  •

2.  Hydrolysis:  (digestion)  –     Addition  of  water  to  a  larger  molecule  to  form  2  or  more  smaller  molecules   Opposite  of  dehydration  synthesis   –

hydro(water)  +  lysis  (break  apart)  =  break  apart  with  water  

  Enzymes:   The controller of all CHEMICAL reactions in your body

Chemical Control (Enzymes) -at all times there are billions of chemical reactions taking place in any organism -all organisms therefore need to control these chemical reactions that make up metabolism. -enzymes are the principal regulators of most chemical activity in living systems - Enzymes control chemical reactions and therefore control Metabolism **** There are over 2000 known enzymes, each of which is involved with one specific chemical reaction Enzymes - enzymes are proteins - enzymes are referred to as organic catalysts catalysts - inorganic or organic substance which speeds up the rate of a chemical reaction. – Chemical reactions like Dehydration Synthesis and Hydrolysis • activation energy - the energy that must be overcome in order for a chemical reaction to occur. – Activation energy may otherwise be denoted as the minimum energy necessary for a specific chemical reaction to occur. • - enzymes lower the energy needed to start a chemical reaction (lower activation energy) Structure • Structures of Enzymes - enzymes are large, complex proteins Protein - all enzymes are either all protein or are protein with non-protein parts called coenzymes - coenzymes are often vitamins ASE • Enzymes are named according to the substrate they are specific to - substrates are the chemicals that each enzyme acts upon Examples of Naming: • The enzyme maltase (enzyme) breaks down (acts upon) the dissaccharide maltose (substrate) into 2 monosacchardies • The enzyme peptidase breaks the peptide bonds in proteins • - Usually enzymes end in – ase • •

Lock and Key Theory” • "Lock and Key Theory" -- each enzyme is specific for one and only one substrate(one lock - one key) • It is thought that, in order for an enzyme to affect the rate of a reaction, the following events must take place. • Enzyme Substrate Complex 1. Enzyme forms a temporary association with the substrate or substrates 2. The Enzyme and Substrate form a close physical association between the molecules called an enzyme substrate complex. 3. While the enzyme substrate complex is formed, the enzyme action takes place and the substrate is broken down into its smaller, simpler parts (Example: a disaccharide becomes 2 monosaccharide or 2 monosacchardies become a disaccharide) • 4. After completion, the enzyme and the products separate. The enzyme is then ready to react with another substrate.

Note: Enzymes do eventually wear out, so they have to be synthesized by the cells and replaced. **** - Enzymes are not changed during reactions and therefore can be reused Factors that influence Enzyme activity: The function of specific enzymes is most directly influenced by its shape. Increased temperature and pH can alter (change) the specific shape of an enzyme. As temperature increases above the optimum temperature (Temp. at which enzyme functions most efficiently), rate of enzyme action begins to decrease. Each enzyme has a particular pH at which it functions more efficiently. Enzymes, antibodies and hormones are similar because their chemical structure is critical to their ability to function. Active Site or Binding Site -enzymes are usually much bigger than their substrates -the protein chains fold to make a three dimensional shape that has a specific pocket or site where the substrate can fit and interact. -the specificity of the enzyme is dependent upon its active site Many biological catalysts (enzymes), hormones and receptor molecules are similar in that in order to function properly, they must contain amino acid chains that fold into a specific shape.

Cells: contain a variety of small structures called organelles which perform special functions Organelles cells tissues organs organ systems organism Unicellular organisms (single cell) carries out life functions without using organ systems. Organelles carry out life processes similar to the organs and tissues in multicellular organisms. Life on Earth began as single celled organisms. The cell membrane acts like kidneys and lungs absorbing oxygen & water and getting rid of wastes (CO2, salts, nitrogenous wastes). It also absorbs nutrients. Multicellular organisms has organ systems that interact to carry out life functions. Homeostasis : maintenance of internal stability. To maintain homeostasis, cells must respond & adapt to both their internal & external environment. Homeostasis is maintained by the interaction of organelles. If homeostasis fails: disease/get sick because body can’t carry out life processes (respiration, digestion, excretion…) Example of homeostasis: after breakdown of glucose to release energy, the removal of waste products must occur. Cell  organelles  

Nucleus: contains chromosomes (DNA), directions for protein synthesis ( in ribosomes) comes from here. Coordinates all processes that takes place in the cell Mitochondria: cellular respiration ( energy-ATP made) occurs here, “powerhouse of cell”-Energy Cell membrane(plasma membrane): carries out function similar to human excretory system, only allows certain things to pass through it (selectively permeable). It is made up of a double lipid layer in which protein molecules float.

Cytoplasm: carries out function similar to circulatory system Ribosomes: Due to interaction of digestive and circulatory systems proteins digested amino acids  circulatory systemdiffuse across cell membrane ribosomes protein synthesis Chloroplasts: found only in plant cell, photosynthesis occurs here, contains chlorophyll (green pigment) which traps sunlight for photosynthesis.

                                                                                 

Transport: Diffusion, Osmosis and Concentration Gradient  Diffusion – the movement of a substance from a high concentration to a low concentration.  Osmosis – the movement of water from a high concentration to a low concentration.  Concentration Gradient – the difference in concentration between a region of high concentration and a region of low concentration. Passive & Active Transport:  Passive Transport – does not require cell energy.  Examples: Diffusion, Facilitated diffusion and Osmosis  Active Transport – requires cell energy (ATP).  Examples: Carrier mediated active transport, Endocytosis and Exocytosis Methods of Transport:  1. Diffusion: the random movement of particles of a solute from an area of high concentration to an area of low concentration. Certain things are allowed to pass, based on size.  Particles always move with (down) a concentration gradient (the difference in concentrations across a membrane)  EX: Passive transport Equilibrium  Diffusion stops at equilibrium (when the concentrations across a membrane are equal).  The movement of molecules continues at equilibrium but the # of molecules moving across the membrane remains the same.  The rate of transport is dependent on:  1) if the material is solid, liquid or gas.  2) the size of the molecules.  3) temperature  Examples of molecules that can diffuse through the bilayer: carbon dioxide, oxygen, water but very, very slowly. Diffusion through a Plasma Membrane

Osmosis  Osmosis: the diffusion of water through a selectively permeable membrane.  Passive transport  Water molecules move from a higher concentration of water to a lower concentration of water.  Water will move to where there is a greater amount of solute because there is less water there Isotonic Solution  Isotonic solutions: the concentration of solute inside and outside the cell is the same.   Isotonic:  Water in = Water out  No net movement of water.  Molecules in equilibrium.  Normal state for animal cells.    Cell in homeostasis. 



   

             

  Hypotonic Solution Hypotonic solutions: the concentration of solute is lower outside the cell than inside the cell.  Have more water outside the cell so water moves into the cell.  Causes an increase in pressure inside the cell: called turgor pressure (plants) or osmotic pressure (animals).  Increase in pressure in animal cells causes them to swell or even burst; gives plant cells shape and support. Hypotonic: Water enters cell. Cell swells and bursts (cytolysis). Give plant cells shape and support.

                                                     

Hypertonic Solution  Hypertonic solutions: the concentration of solute is higher outside the cell than inside the cell.  Have more water inside the cell so water moves out of cell.  Causes a drop in turgor or osmotic pressure: called plasmolysis.  Plasmolysis causes animal cells shrivel up and plant cells to wilt.  Hypertonic:  Water exits cell.  Cell shrinks (plasmolysis) due to water loss.

 

Facilitated Diffusion  Particles always move with (down) a concentration gradient.  Uses transport/channel proteins.  Passive transport.  Usually for specific molecules such as glucose.  Facilitated diffusion stops at equilibrium Active transport  Active Transport: requires energy in the form of ATP.  Capable of moving solute particles against the concentration gradient (from low concentration to high concentration)  Uses transport/carrier proteins ( protein pumps) embedded in the plasma membrane .  Carrier proteins are specific for the molecules that they allow through. The carrier protein changes shape which requires energy (ATP).

  Cellular  Respiration     Cellular  respiration  :  is  the  process  by  which  organisms  can  get  energy(ATP)from  their  food  (glucose)   Cellular  respiration  is  critical  for  life.   It  occurs  in  both  plants  and  animals.         Main  Types  of  Cellular  Respiration  Pathways   Anaerobic  Respiration  Evolved  first  Don’t  require  oxygen  Start  with  glycolysis  in  cytoplasm  Completed  in  cytoplasm Aerobic  Respiration  Evolved  later  Require  oxygen  Start  with  glycolysis  in  cytoplasm  Completed  in  mitochondria Aerobic  Respiration    

C H 0    +        6O   6 12 6

         

   

 

                   

2

             glucose                        oxygen              

2

2

                                     carbon                water          energy

                                         dioxide  

 *** This equation is the reverse of photosynthesis***

 

6CO  +  6H 0  +  ATP

Cellular  Respiration  compared  to  Photosynthesis            Cellular  Respirtation                          Photosynthesis   Function       Energy  release       Energy  capture   Location       Mitochondria       Chloroplast   Reactants       C6  H12  O6  &  O2     CO2  &  H2O       Products       CO2  &  H2O       C6  H12    O6  &  O2             6O2  +  C6  H12  O6                            6CO2  +  6H2O     Formula       6CO2  +  6H2O       C6  H12  O6  +  6O2       Anaerobic  Fermentation   Fermentation   Sometimes  a  cell  can‘t  get  the  oxygen  it  needs  to  carry  out  cellular  respiration.   It  carries  out  fermentation  instead  to  get  the  energy  (ATP)  that  it  needs.   It  is  less  effective,  and  doesn’t  make  as  much  ATP.   Location:  Cytoplasm   Isn’t  a  “clean  burn”,  so  nasty  or  intoxicating,  waste  products  are  left  behind.     There  are  2  types:   Alcoholic  Fermentation   Produces  ethanol  (alcohol)  as  a  waste  product.   Used  for  producing  beer,  wine  and  rising  bread.     Lactic  Acid  Fermentation   Produces  lactic  acid  as  a  waste  product.   Is  part  of  the  burn  you  feel  when  you  exercise.Muscle  fatigue  occurs  when  lactic  acid  builds  up  in  muscle  cells.  To  end   muscle  fatigue,  muscles  need  to  get  oxygen.       Photosynthesis: is  the  process  in  which  the  sun’s  energy  is  captured  to  make  sugars  that  store  chemical  energy.  Sugar  is   a  carbohydrate  molecule.  It  is  a  link  between  abiotic  factors  (sunlight,  H2O,  CO2)  &  energy  needs(glucose  for  respiration)   of  an  entire  ecosystem.  Energy  from  the  sun  is  converted  into  chemical  energy  in  the  bonds  of  an  organic  molecules.  

 

Chlorophyll  is  a  green  pigment  in  chloroplasts  that  absorbs  light  energy  to  start  photosynthesis.   • •

Plants  only  use  water  (H O)  and  carbon  dioxide  (CO )  and  light  energy  to  create  sugars  (C H O )  =   2

2

6 12

6

chemical  energy.  (Autotroph) Heterotrophs  then  consume  this  sugar  and  break  it  apart  to  get  the  chemical  energy  (ATP  from   mitochondria)    to  carry  out  their  life  processes   •   • Photosynthesis  Equation   • • • • • •

enzymes 6CO + 12 H O + hv  C H O +6O +6H O 2

2

Carbon Water Dioxide

6

sunlight

12

6

2

2

Glucose Oxygen Water (sugar)

hv = sunlight ** You should memorize this equation! You will see it again!

• • • • • • •

Function  of  photosynthesis:   Produces  food  for  all  organisms   Provides  material  for  plant  growth  /development   Sugars  used  for  energy  by  the  mitochondria   Simple  sugars  become  starch  &  cellulose  (in  cell  walls)  “carbohydrates”   Helps  regulates  Earth’s  environment   Removes  CO2  from  atmosphere  and  adds  O2    

  Factors  that  affect  photosynthesis  “Biological  Process”   Light  intensity-­‐  As  intensity  increases,  photosynthesis  increases  until  all  pigments  are  being  used,  then  photosynthesis   levels  off.   CO2  concentration-­‐  As  the  concentration  increases,  photosynthesis  increases  to  a  point   Temperature-­‐  As  temp.  increases,  photosynthesis  increases  to  a  point,  then  a  decrease  will  occur  if  temp.  continues  to   increase     2  stages  of  photosynthesis:  

             

                 

Genetics   Intro  DNA   The  Cell   •

Smallest  unit  of  life  



 Compose  all  living  things  



 The  “nucleus”  –  (one  of  the  many  organelles),  contains  genetic  information  that  the  cell  needs  to  exist  and   reproduce.  Contains  the  code  for  production  of  proteins(enzymes,  hormones)    

 

-­‐  Chromosomes:  most  cells  organize  genetic  information  into  Chromosomes   our  body’s  way  of  organizing  all  the  information  that  our    genetic  material  contains.   •

 23  pairs  of  chromosomes  in  humans   -­‐  each  pair  contains  one  from  mother  and  one  from  father  

 

 

Genes   •

Each  chromosome  contains  100s  to  1000s  of  information  blocks  called  genes  



 Each  gene  is  the  blueprint  for  a  specific  protein  in  the  body  

-­‐    

may  tell  our  body  what  color  our  eyes  are  supposed  to  be,  dozens  of  proteins  are  responsible  for  synthesis  of   ATP  ,  digesting  food,  etc,  etc  etc  

 

Genes  are  inherited,  but  their  expression  can  be  modified  by  their  environment.      

 

Example:  Some  animals  have  dark  fur  only  when  the  temperature  is  in  a  certain  range  (temp.  can  affect  the   expression  of  some  genes)  

  •

Each  chromosome  and  every  gene  is  made  of  deoxyribonucleic  acid  (DNA)  



 DNA  is  a  polymer  of  repeating  units  called  nucleotides  



 Each  nucleotide  contains  three  parts

 

-­‐  Phosphate  

 

-­‐  Nitrogenous  base  

 

deoxyribose  (sugar)  

  The  DNA  Double  Helix   •

DNA  is  normally  double  stranded  



 The  two  nucleotide  chains  are  held  together  by  hydrogen  bonds  



A  always  pairs  with  T  on  the  other  strand;  C  always  pairs  with  G      

  Functions  of  DNA   •  

Two  primary  functions   -­‐  transmit  information  from  one  generation  to  the  next   -­‐  provide  blueprint  for  making  proteins  the  same  way  every  time      

DNA  Replication   •

DNA  is  unwound.  



 An  enzyme  called  DNA  Polymerase  adds  complementary  bases  to  “single  stranded”  

 

 

-­‐  A  with  T  

 

 

-­‐  C  with  G  

    Changing  one  base  in  a  gene  could  have  a  direct  effect  on  the  sequence  of  building  blocks  of  a  protein  found  in  a  cell.   Restriction  Enzymes   Enzymes  or  biological  catalysts  cuts  DNA  at  specific  sequences    Recognize  and  binds  to  6-­‐8  nucleotide  stretch           Gel  Electrophoresis:  separates  (arranges)  DNA  in  the  lab.     This  method  helps  to  determine:     If  2  organisms  are  closely  related,  Help  identify  criminals  at  crime  scenes,  Help  to  identify  victim  of  crime,  for  paternity   cases  (  I.d.  the  father  of  a  child)  

       

 With  Gel  Electrophersis,  2  organisms  are  related  if:   Base  sequences  of  DNA  are  the  same  (same  DNA)   The  #  of  bands  would  be  the  same   The  bands  would  be  at  the  same  position  (same  banding  pattern)     Chromatography  of  pigment  extracts  can  be  used  for  plants  to  see  if  plants  are  genetically  related.       Every  cell  in  a  human  body  has  the  same  DNA  and  yet  cells  perform  different  functions  (jobs).  Examples:  nerve  cells,  &   muscle  cells     This  occurs  because  different  parts  of  genetic  instructions  are  used  in  each  type  of  cell.           Mendelian  Genetics    Genetics  is  the  scientific  study  of  heredity.    Heredity  is  what  makes  each  species  unique.       Gregor  Mendel    Known  as  the  “Father  of  Genetics”:  His  experiments  with  pea  plants  from  1856-­‐1863  began  our  understanding   of  how  traits,  things  like  hair  or  eye  color,  height,  weight,  ect…….,  were  passed  down  from  generation  to   generation.      He  came  up  with  the  principles  of  heredity  that  still  hold  true  today       His  work  started  and  formed  the  base  of  all  genetics  ,  a  field  we  learn  more  about  every  day.   The  Principle  of  Dominance     The  principle  of  dominance  states  that  some  alleles  are  dominant  and  some  are  recessive.    Dominant  alleles  are  always  expressed.    Represent  by  a  capital  letter(B  –  Dominant  for  Brown  eyes)      Recessive  alleles  are  only  expressed  if  both  alleles  are  recessive.  Got  a  recessive  gene  from  both  mom  &  dad.    Represented  by    a  lower  case  letter  (b  –  recessive  for  blue  eyes)        

Genetics  vocabulary:   organism  with  2  identical  alleles  for  a  trait  are    homozygous.  (  TT  or  tt)  Big  letters=  Dominant  small  or  lower  case  =   recessive.      Organisms  with    2  different  alleles  for  a  character  are  heterozygous  (  Tt  or  Pp)     The  physical  expression  of  genes  is  known  as  phenotype  Ex)  What  it  looks  like,  tall,  short,  white,  black  ect….       The  actual  genetic  makeup  is  known  as  the  genotype.  Ex)  Homo.  D  or  R,  Hetero.  D  or  R.  

  Intermediate  Inheritance    some  alleles  show    intermediate  inheritance    where  heterozygotes  show  a  distinct  intermediate  phenotype,  not   seen  in  homozygotes.       When  2  dominant  genes  come  together  and  neither  is  fully  expressed.    This  results  in  a  new  mixed  phenotype.    Snapdragons  come  in  Homozygous  Dominant  Red  and  Homozygous  dominant  white.      When  these  two  plants  are  crossed  the  flowers  are  heterozygous  pink.  A  mix  between  red  and  white    This  is  also  called  incomplete  dominance.    

   

Codominant    codominance  2  alleles  affect  the  phenotype  in  separate,  distinguishable  ways    2  dominant  alleles  expressed  at  the  same  time.    When  both  alleles  are  dominant  for  a  different  trait  and  both  are  expressed  separately.  (NOT  MIXED)    Flowers  can  often  be  co-­‐dominant.  When  you  see  a  flower  with  2  different  color  petals  it  is  an  example  of  co-­‐ dominance.  Both  colors  are  expressed  and  not  mixed.    Other  examples  include  snakes  and  chickens    Ex.  Is  blood  type.  This  is  also  a  multiple  allele  gene  have  3  alleles  present  (A,B,  O  )    A  &  B  alleles  are  codominant      O  alleles  are  recessive.    Fact:  Just  because  an  allele  is  dominant  does  not  make  it  more  prevalent  in  a  population.      Ex.  Polydactyl  is  dominant  to  having  the  normal  5  fingers  and  toes  but  399  out  of  400  have  the  recessive   what  we  call  normal  5  and  5  

  Blood  type  A  and  Blood  type  B  are  Co-­‐dominant,  so  you  get  type  AB  blood  

  Co-­‐dominant  chicken  feather  color      

Linked  Genes       The  tendency  of  some  genes  to  be  inherited  together  is  known  as  linked  genes.    Ex  –  red  hair  and  freckles    Ex  –  Red  hair  and  fair  skin     Sex  Linked  Genes      If  a  gene  is  found  only  on  the  X  chromosome  and  not  the  Y  chromosome,  it  is  said  to  be  a  sex-­‐linked  trait      Baldness  is  a  recessive  sex  linked  trait.  Found  on  the  X  chromosome.      Females  usually  don’t  go  bald  because  they  have  two  copies  of  the  gene  and  usually  1  works  properly.  XX      But  males  only  have  one  X  chromosome.  (XY)  There  is  no  matching  gene  on  the  y  chromosome  .So  if  mom  gives   the  X  chromosome  with  the  recessive  allele  then  her  son  will  go  bald.  

  Sex  Linked  Disorders     Muscular Dystrophy  Monogenetic, sex linked recessive  Muscular dystrophy is a disease in which the muscles of the body get weaker and weaker and slowly stop working because of a lack of a certain protein.  Most types of MD are multi-system disorders with manifestations in body systems including the heart, gastrointestinal and nervous systems, endocrine glands, skin, eyes and other organs Hemophilia  Hemophilia is the oldest known hereditary bleeding disorder.  Monogenetic, sex linked recessive  There are about 20,000 hemophilia patients in the United States.  The severity of hemophilia is related to the amount of the clotting factor in the blood. About 70% of hemophilia patients have less than one percent of the normal amount and, thus, have severe hemophilia. Color  Blindness   Monogentic, Sex-linked recessive   1/10 males have, 1/100 females have. Unable  to  distinguish  shades  of  red  &  green,  sex-­‐linked  recessive  

Mutations   Mutation –is a change in the sequence of bases in DNA. If a gene that encodes for a specific protein is mutated, it may result in a change in the sequence of amino acids comprising the protein. The activity of the protein may be altered. - A change from one hereditary state to another - Due to an alteration in the DNA of an organism.

How Do Mutations Occur? As UV radiation increases, mutations will increase • Everyone acquires some changes to their DNA during the course of their lives. • These changes occur in a number of ways. – Sometimes there are simple copying errors that are introduced when DNA replicates itself. – Other changes are introduced as a result of DNA damage through environmental agents. • Our cells have built in mechanisms that catch and repair most of the changes that occur during DNA replication or from environmental damage. Errors can occur in the DNA of cells that produce the eggs and sperm. These mutations and can be passed (inherited) from parent to child. If a child inherits this mutation from their parents, every cell in their body will have this error in their DNA.



Mutations that occur in body cells (not gametes-sperm & egg), will be only passed on to other body cells that form from mitosis of the mutated cell. These are not passed onto offspring because the mutation is not in the sperm or egg (gametes) Example: mutation in skin cell, the altered genes will be passed on to every cell that develops from that skin cell. Classes of Mutations • Mutations result from two underlying causes • 1. substitutions –One base in the DNA is substituted for another base. Incorrect base pairing results from the change of a single nucleotide base. • 2. insertions or deletions of one or more bases- may result in the addition or deletion of one or more amino acids to the growing protein.     Genetic Disorders          

Genetic disorders are medical conditions caused by mutations in a gene or set of genes Other disorders are caused by changes in the overall structure or number of chromosomes Monogenetic Disorder – Disorder controlled by one gene Chromosomal Disorder – Extra or missing chromosome

Chromosome Disorder Down’s Syndrome  Caused by nondisjunction of the 21 st chromosome.  This means that the individual has a trisomy (3 – 2lst chromosomes).  1 in 800 babies born with D. syndrome  Causes various physical & mental disabilities.

Karotype of Down’s syndrome Chromosomes are arranged to show homologous pairs. A person with Down’s syndrome has an extra # 21 chromosome ( 3-trisomy of #21 instead of 2), due to nondisjunction(failure of homologous chromosomes to separate during meiosis). This karyptype is a female because there are 2 X (XX) chromosomes. A male would have XY chromosomes. Chromosomes # 1-22 are autosomes and chromosomes # 23 are the sex chromosomes (XX or XY) People have changes in speech patterns and mental retardation. Down’s syndrome can be identified before a child is even born, by doing a Karyotype on the amniotic fluid surrounding the fetus. This is called amniocentesis, and is used to detect many genetic disorders.

Monogenetic Disorders Sickle Cell Anemia People receive a code for the production of abnormal hemoglobin (found in red blood cells).  Sickle cell disease is most commonly found in African American populations.  The clumps of sickle cells block blood flow in the blood vessels that lead to the limbs and organs. Blocked blood vessels can cause pain, serious infections, and organ damage.  1 in 12 African Americans have sickle cell trait.

  An inherited, chronic disease in which the red blood cells, normally disc -shaped become crescent shaped.

Phenylketonuria or PKU - - People with PKU cannot consume any product that contains aspartame. - Characterized by a deficiency in the enzyme phenylalanine hydroxylase (PAH). - This enzyme is necessary to metabolize the amino acid phenylalanine to the amino acid tyrosine PKU  Phenylalanine is an essential amino acid and is found in nearly all foods which contain protein, dairy products, nuts, beans, tofu… etc.  A low protein diet must be followed to control the disorder.  Brain damage can result if the diet is not followed causing mental retardation…and mousy body odor (phenylacetic acid is in sweat).  All new born babies have a PKU blood test to determine if they have PKU. The disorder must be identified shorty after birth so the baby can be put on the correct diet to prevent brain damage.

Tay-Sachs Disease Characterized by a buildup of fatty tissue in the nervous system  Monogenic, autosomal recessive  Central nervous system degrades, ultimately causing death.  Most common among people of Jewish, eastern Europe descent.     Cloning Cloning- the process of making an identical organism through non sexual means (asexual reproduction). An exact copy of the original organism will be produced. Human cloning experiments has not occurred because many people think this is unethical. Are there different types of cloning? The following three types of cloning technologies will be discussed: (1) recombinant DNA technology or DNA cloning (2) reproductive cloning (3) therapeutic cloning Recombinant DNA Technology or DNA Cloning The DNA of interest can then be propagated in a foreign host cell. This technology has been around since the 1970s, and it has become a common practice in molecular biology labs today. Recombinant DNA used in biotechnology industry to synthesize (make) insulin, interferon & human growth hormone(HGH) “Genetic Engineering”

Reproductive Cloning Reproductive cloning is a technology used to generate an animal that has the same nuclear DNA as another currently or previously existing animal. Scientists transfer genetic material from the nucleus of the donor adult cell to an egg whose nucleus , and thus its genetic material , has been removed.

The reconstructed egg containing the DNA from a donor cell must be treated with chemicals or electric current in order to stimulate cell division. Once the cloned embryo reaches a suitable stage, it is transferred to the uterus of a female host where it continues to develop until birth.

   

Thousands of people die every year waiting for a transplant Cloning technology could someday be used to produce whole organs. Embryonic stem cells also have the potential for use in the production of tissues. They can also be used to grow neurons to cure those who suffer from Alzheimer's, Parkinson's.

What are the risks of cloning?  In addition to low success rates, cloned animals tend to have more compromised immune function and higher rates of infection, tumor growth and other disorders.  Many cloned animals have not lived long enough to generate good data about how clones age.  Clones have been known to die mysteriously. For example, Australia's first cloned sheep”Dolly” appeared healthy and energetic on the day she died, and the results from her autopsy failed to determine a cause of death. Selective Breeding  Selective Breeding (artificial selection): common practice among breeders to maintain a desired trait. Parents are chosen who have desirable traits .Hopefully the off spring will have these traits.  This is used to produce new varieties of domestic animals.  Disadvantages of selective breeding:  Some undersirable traits of parents may be expressed (show up) in offspring  Unexpected combination of genes  Unpredictable results  Decreased variation in organisms Genetic Engineering: removal of DNA from one organism & insert it into another organism to produce a new substance. Products must be tested to make sure they are safe. Examples: Insulin production Human growth hormone Insert a gene into a plant species to increase fruit production. Insert human gene for anti- blood clotting factor into egg cells of goats. Goats born from fertilized eggs produce the anti- clotting factor in their milk.

Gene manipulation : Example: inserting a section of DNA into a poisonous plant to make it non-poisonous Each organ uses different genes to make different enzymes. Some bacteria may have a natural resistance to a drug or chemical ( antibiotics) due to a mutation. If used too many times some antibiotics become less effective against certain bacteria (pathogens). The bacteria will survive, & reproduce causing the person to remain sick. This causes doctors and scientists to find new antibiotics to kill the bacteria. Variation in offspring is the direct result of sorting and recombination of genes (sexual reproduction). Coded instructions passed from one generation to the next can be most directly changed by the processes of recombination, mutation & genetic engineering. Genetically altered viruses can be used to treat diseases, cure diseases & control diseases. Cancer: mutation of cells, they reproduce (mitosis) uncontrollably (mutates) & forms a tumor.

radiation Normal cell   or other mutation causing agent

mutation

 risk of cancer increases

Asexual  Reproduction  produces  offspring  identical  to  parent    

Example:  Vegetative  propagation-­‐  roots  develop  from  stem  cutting  

  Budding-­‐  small  bud  (daughter  cell)  forms  off  of  parent  

    Sexual  Reproduction  produces  offspring  not  identical  to  the  parents.  There  is  a  genetic  variation  since  the  parents  genes   are  mixing.   Each  parent  has  2  genes  for  each  trait  (  one  from  their  mom  &  one  from  their  dad).     During  Meiosis    gametes(sperm  &  eggs)  form,  each  gamete  receives  half  the  total  number  of  chromosomes  .   Human:  Has  46  chromosomes  in  each  body  cell.  There  are  22  pairs  of  autosomal  chromosomes  and  one  pair  of  sex   chromosomes    Each  sperm  and  egg  have  23  chromosomes.  There  are  22  autosomal  chromosomes  and  one  sex  chromosome.     Sperm  (22  auto,  1  sex  chrom.)          +      egg  (22  auto  &  1  sex  chrom)  =  fertilized  egg  (zygote)  with  46  chromosomes   XX  is  a  girl   XY  is  a  boy  

   

Egg  

Sperm    

 

 

 

 

    Zygote  (fertilized  egg)  

 

 

 

 

Pedigree  chart  

  Males  only  have  one  X  chromosome  (XY),  so  if  the  only  X  they  have  (from  mom)  has  the  gene  for  color  blindness,   they  will  be  color  blind.   Females  need  both  X’s  to  have  the  gene  for  color  blindness  to  be  color  blind.  If  females  have  one  X  with  the  gene   for  color  blindness  (heterozygous)  they  have  normal  color  vision,  but  could  pass  the  gene  on  to  their  children  .   If  mom  is  color  blind(Xc  Xc)and  dad  has  normal  color  vision  (XC  Y),  all  sons  will  be  color  blind  (XcY)  and  daughters   will  be  carriers(  XC  Xc)     Environment  can  affect  genes:  Identical  twins  separated  at  birth  can  have  different  height,  weight  &  IQ  because   home  life  affected  these  characteristics.    

Evolution   Evolution:  change  over  time   Gradualism  slow  and  continuous  rate  of  evolution   Modern  Theory:  “Natural  Selection”  organisms  best  adapt  to  a  changing  environment  are  more  likely  to  survive,   reproduce,  &  pass  their  genes  on  to  offspring.  “Survival  of  the  fittest”.     Variations  that  influence  the  evolution  of  sexually  reproducing  species  are  due  to  the  process  of  mutation  &  genetic   recombination.  Organisms  with  a  wide  variety  of  traits  will  have  a  greater  chance  of  survival  if  the  environment   changes  suddenly.   Changes  that  occur  in  the  sex  cells  (sperm  &  egg)  can  be  the  basis  for  evolutionary  change.   As  the  environment  or  food  source  changes,  there  will  be  a  completion  for  survival  among  species.   Extinction:  if  organisms  don’t  have  the  traits  to  survive,  they  will  die  out   Adaptations  help  organisms  to  survive.       Evidence  of  evolution:    Support  the  concept  of  organic  evolution  (  similarities  in  these  indicate  a  common  ancestor)  

Comparative  biochemistry:  organisms  have  similar  DNA  (base  sequences),  protein,  hormones,  insulin.  Then  they   share  a  common  ancestor.   Comparative  embryology:  If  embryos  (unborn)  look  similar  in  the  early  stages  of  development,  then  they  share  a   common  ancestor.   Comparative  anatomy:  study  of  bones  &  organs  “structural”,  if  similar  between  organisms  they  share  a  common   ancestor.   Comparative  cytology:  study  of  organisms  cells  looking  for  similarities  to  determine  common  ancestry     Fossils:  Evidence  of  how  certain  organisms  have  changed  (evolved  )  through  time  (  they  look  similar  to  each  other)  .   Oldest  least  complex  (simple)  fossils  are  on  the  bottom  and  youngest  and  most  complex  is  on  the  top.  

  Fossils  are  found  in  layers  of  sedimentary  rocks.  The  oldest  fossil    is  on  bottom,  youngest  on  top.   Fossil  E  is  the  oldest  &  fossil  A  is  the  youngest

  Most  of    the  species  that  lived  on  Earth,  no  longer  exist  (extinct).  Fossil  record  of  ancient  life  forms  provide  evidence  of   evolutionary  changes.          

Theories  of  Evolution   Jean  Baptiste  Lamarck:  Use  &  Disuse  Theory    

New  organs  arise  due  to  an  organisms  need  for  the  organ.   Example:  Short  neck  giraffes  stretched  their  necks  reaching  for  food,  necks  became  longer  &  long  neck                                                     trait  was  passed  on  to  their  offspring.     Charles  Darwin:  Natural  Selection  Theory   Organisms  best  adapted  (favorable  variations)  to  the  changing  environment  will  survive  and  reproduce.  These   favorable  traits  will  be  passed  onto  their  offspring.    Genetic  variations  are  differences  produced  by  sexual  reproduction  or  mutations.     “Survival  of  the  fittest”   If  the  climate/environment  changes,  organisms  who  can’t  adapt  to  the  new  environment  will  die.   **  One  problem  with  Darwin’s  theory  of  evolution  was  he  couldn’t  explain  how  genetic  variations  occurred.****     What  made  Darwin  come  up  with  his  theory  of  evolution?   Darwin  studied  the  finches  in  the  Galapagos    Islands  and  saw  different  adaptations  to  their  beaks  depending  on   what  they  ate  (environment).  

    If  the  finches’  food  source  was  no  longer  available,  they  could  die  because  their  beaks  are  not  the  right  shape  for   a  new  food  source.  Some  with  different  shaped  beaks  survived  by  eating  the  new  food  source  and  reproduced   passing  on  the  gene  for  the  beak  shape  to  their  offspring.  They  all  have  the  same  common  ancestor.      

Branching  Tree  “polygenetic  tree”  

    All  have  a  common  ancestor  (  grandparent).  You  &  sibling  are  more  closely  related  to  each  other  because  they  are  2   twigs  off  the  same  branch  (closer  to  each  other  on  tree)  and  have  a  specific  common  ancestor  (parent).   Geographic  Isolation:  animals  from  the  same  species  cannot  mate  (reproduce)  because  they  are  physically  separated  by   mountains,  rivers  &  large  bodies  of  water.     Mutation  occurring  today    Some  bacteria  have  a  mutation  that  makes  them  resistant  to  antibiotics.  This  means  that  these  drugs  can’t  kill  the   bacteria.  These  bacteria  will  survive  and  reproduce  passing  the  resistance  to  antibiotics  on  to  their  offspring.  Before  you   know  it  the  number  of  bacteria  resistant  to  antibiotics  will  increase  causing  people  to  become  very  sick  and  some  may   die.     Solution:  Scientists  need  to  develop  new  antibiotics  to  kill  the  resistant  bacteria  

 

 

 

The  body  systems   Digestive  system:   3  Stages  of  Digestion   1. Digestion  -­‐  breakdown  of  food  into  particles/molecules  small  enough  to  pass  into  the  blood  stream.     2  types  of  digestion    mechanical  (Mastication):  chewing  food  into  smaller  pieces    chemical  (Enzymes),  starch  digestion  begins  here   2. Absorption  of  nutrients  into  the  blood  stream   3. Elimination  of  indigestible  nutrients  

The  Mouth  

 

 Mechanical  breakdown  of  nutrients  begins  in  the  mouth  by  chewing  (Mastication).      The  purpose  of  chewing  is  to  increase  the  surface  area  of  food.    Chemical  breakdown  of  starch  also  begins  in  mouth.  Starch  is  converted  into  glucose  by  salivary  amylase   (secreted  by  the  salivary  glands).Starch  cannot  enter  into  a  cell  because  it  is  too  large,  it  must  be  broken  down   into  sugar.     Epiglottisprevents  you  from  choking  by  closing  and  not  allowing  food  to  go  into  the  trachea.      The esophagus is a muscular tube whose muscular contractions (peristalsis) propel food to the stomach. Peristalsis also occurs in stomach, small & large intestine.    Peristalsis – the wave action of muscle that moves food through the digestive system.  

   

 

The  stomach     Gastric  juice  contains  hydrochloric  acid(HCl),  pepsinogen,  and  mucus   Stomach  HCl:  activates  pepsinogen  (to  pepsin)    Pepsin  is  an  enzyme  that  starts  protein  digestion.    

 

 Epithelial  cells  secrete  mucus  that  forms  a  protective  barrier  between  the  cells  lining  the  inside  of  the  stomach   and  the  stomach  acids.          The  stomach  also  mechanically  churns  the  food.  Chyme,  (liquefied  food)    the  mix  of  acid  and  food  in  the   stomach,  leaves  the  stomach  and  enters  the  small  intestine.  

The  Small  Intestine    The  small  intestine  is  the  major  site  for  digestion  and  absorption  of  nutrients.    98%  of  digestion  and  100%  of  absorption  of  nutrients  occurs  in  the  small  intestines.      Small  intestine  is  made  up  of  3  parts:  Duodenum,  Jejunum,  Ileum         Chyme  (liquefied  food)  is  pushed  out  of  the  stomach  into  the  small  intestines.  The  acid  chyme  stimulates  the  Liver   and  the  Pancreas.      The  pancreas  secretes  digestive  enzymes  and  stomach  acid-­‐neutralizing  sodium  bicarbonate.(2  pH    8  pH)   into  the  small  intestine.    Enzymes  -­‐  Lipase,  Amylase,  protease      The  liver  produces  bile,  which  is  stored  in  the  gall  bladder  before  entering  the  bile  duct  into  the  small  intestine      Bile  emulsifies  fats  (breaks  fats  into  little  pieces)  

 

 The  small  intestine  is  lined  with  villi  and  microvilli  The  purpose  of  villi  and  microvilli  are  to  increase  surface  area  in  the  small  intestines.  Increase  the  speed  at   which  nutrients  are  absorbed

   

  A:  Esophagus   B:  Stomach  

C:  Pancreas  

D:  Small  intestine  

E:  Gallbladder   F:Liver  

The  Liver  and  Gall  Bladder    The  Liver  makes  Bile  and  stores  it  in  the  gall  bladder.  The  Gall  bladder  sends  bile  to  the  small  intestine  when  the  acidic  chyme  from  the  stomach.  Bile  contains   bile  salts,  which  emulsify  fats,  making  them  susceptible  to  enzymatic  breakdown.   The  liver  also  stores  excess  glucose  in  the  form  of  glycogen.      

Carbohydrate  Digestion  step  by  step    

Carbohydrate  digestion  begins  in  the  mouth    The  chime(liquefied  food)  is  pushed  into  your  small  intestines  (duodenum)  which  triggers  the  release  of   Pancreatic  juice  from  the  pancreas    The  enzymes  break  down  large  carbohydrates  into  smaller  molecules    Finally  the  intestinal  glands  release  intestinal  juice  which  includes  the  enzymes      The  smaller  carbohydrate  is  broken  down  into  even  smaller  molecules(glucose)  which  are  absorbed  by   the  blood  stream.  Glucose  can  diffuse  into  the  blood  without  first  being  digested.  

 

  Protein  Digestion  Step  by  Step  

 Proteins  begin  to  be  digested  in  the  stomach  .    The  chyme  is  pushed  into  your  small  intestines  (duodenum)  which  triggers  the  release  of  Pancreatic  juice  from   the  pancreas    One  of  the  enzymes(protease)  in  pancreatic  juice  continues  the  breakdown  of  proteins  into  Peptide  bonds    Finally  the  intestinal  glands  release  intestinal  juice  which  breaks  peptide  bonds  into  amino  acids.  Those  amino   acids  are  absorbed  into  the  blood  steam  and  carried  to  the  cells  .    Amino  acids  are  broken  down  in  the  liver  to  produce  wastes  that  contain  nitrogen.  

    Digestion  of  Lipids  

 The  chime  (liquefied  food)  is  pushed  into  your  small  intestines  (duodenum)  which  triggers  the  release  of   Pancreatic  juice  from  the  pancreas  and  bile  from  your  gall  bladder.    Bile  emulsifies  (chews)  the  lipids  to  increase  surface  area    Pancreatic  juice  hydrolyses  lipids  into  a  glycerol  and  3  fatty  acids     The  products  are  absorbed  by  the  small  intestines  and  carried  to  the  cells  for  use.       The  Large  Intestine       

 

Digested  food  is  pushed  from  the  small  intestines  into  the  large  intestine.     No  digestion  takes  place  in  the  large  intestines   Material  in  the  large  intestine  is  mostly  indigestible  residue  and  liquid.     Water,  and  salts  are  absorbed,  the  remaining  contents  form  feces  (mostly  cellulose,  bacteria,  bilirubin).     Bacteria  in  the  large  intestine,  such  as  E.  coli,  produce  vitamins  (including  vitamin  K)  that  are  absorbed.  

                                     

 

Ulcers          

Peptic  ulcers  result  when  the  protective  mucus    fails  and  the  HCl  eats  away  at  the  lining  of  the  stomach.     Bleeding  ulcers  result  when  tissue  damage  is  so  severe  that  bleeding  occurs  into  the  stomach.   Perforated  ulcers  are  life-­‐threatening  situations  where  a  hole  has  formed  in  the  stomach  wall.     At  least  90%  of  all  peptic  ulcers  are  caused  by  Helicobacter  pylori  (bacteria).  Other  factors,  including  stress  and   ibuprofen,  can  also  produce  ulcers.    

Digestion  of  a  Sandwich:   sandwich  mouth                mechanical        &                            chemical  digestion    starch                                  glucose   (Bread)                                          chewing:smaller  pieces              enzyme:amylase                                                    simple  sugar:small  molecule     Starch  is  a  large  molecule,  it  must  be  broken  down  (digested)  into  a  sugar(small  molecule),  so  it  can  cross  the  cell   membrane  of  cellsmitochondriacellular  respirationATP  formed(provides  energy  to  cells)     Large  molecule    

  digestion                              Smaller  molecule  

Proteins  

 

 

 

 

amino  acids  

Starch    

 

 

 

 

sugar  (glucose)  

Fats    

 

 

 

 

fatty  acids  &  glycerol  

 

 

 

Excretory  System:  removes  toxic  wastes,  dissolved  molecules,  &  gaseous  waste,  maintaining  dynamic  equilibrium   in  the  body   Organs  of  Excretory  System       Lungs  –  CO2  and  water   Skin  –  Sweat  (temperature  regulation)   Kidneys  –  Urine     Liver  –  detoxification  of  blood:  breaks  down  red  blood  cells  and  synthesize  urea(  breakdown  of  amino  acids)     These  organs  work  with  other  body  systems  to  keep  the  body  in  homeostasis.   Excretion  –  is  the  process  by  which  waste  and  excess  substances  are  removed  from  the  body.   If  wastes  from  metabolism  (metabolic  wastes)  are  not  removed  from  the  body,  the  body  will  die.     Metabolic  wastes  come  from  chemical  reactions  in  the  cells  of  the  human  body     The  Skin  

     The  skin  performs  a  number  of  different  functions  one  of  them  is  excretion  of  wastes  and  removal  of  excess   heat.    In  sweat  there  is  a  small  amount  of  urea  and  salts.      Sweat  99%  water  1%  Urea  and  Salts(  sweating  helps  regulate  body  temperature)     Lungs    Excrete  CO2  and  Water     The  end  products  of  cellular  respiration     Urinary  System    

   

Waste  is  filtered  from  the  blood  and  collected  as  urine  in  each  kidney  (  main  organ  of  excretion).   Urine  leaves  the  kidneys  by  ureters,  and  collects  in  the  bladder.     The  bladder  can  distend  to  store  urine  that  eventually  leaves  through  the  urethra     The  urinary  system:   Kidneys  :  filters  blood  &  produces  urine   Ureters:  transports  urine  to  bladder   Bladder:  stores  urine   urethra:  pathway  for  urine  to  exit  the  body    

  Sequence  of  correct  path  to  remove  urine  from  the  body:    Kidney  ureterurinary  bladder  urethra       Kidneys  (nephron:  structural  unit):  regulates  chemical  composition  of  the  blood   The  Nephron:  A  is  the  glomerulus  &  B  is  the  bowman’s  capsule  

  There  is  a  large  number  of  mitochondria  in  the  nephrons  indicating  that  the  transport  of  materials    into  and  out  of  the   nephron  requires  a  lot  of  energy  (active  transport)    Bean  shaped  organs  that  are  about  10cm  long    Main  Functions:   Remove  wastes  of  cellular  metabolism  (metabolic  waste)   Regulate  the  concentrations  of  the  substances  in  the  blood     On  a  hot  day  ,  if  someone  is  sweating  too  much  the  kidneys  will  decrease  urine  production  allowing  the  body  to   conserve  water.     Urine:    water  +  urea  =  salts     Disruption  of  Kidney  Function    Infection,  environmental  toxins  such  as  mercury,  and  genetic  disease  can  have  devastating  results  by  causing   disruption  of  kidney  function.  Many  kidney  problems  can  be  treated  by  dialysis,  where  a  machine  acts  as  a   kidney.  Kidney  transplants  are  an  alternative  to  dialysis.     Gout  is  a  condition  in  which  excess  production  and  deposition  of  uric  acid  occurs  

  The  Respiratory  System:  Conducting  passageways  carrying  air  to  and  from  the  alveoli   Respiratory  passageways  permit  exchange  between  the  external  atmosphere  &  circulatory  system.    Upper  respiratory  passages  filter  and  humidify  incoming  air  (cilia  &  mucous  membranes)   Lower  passageways  include  delicate  conduction  passages  and  alveolar  exchange  surfaces    

  Respiratory  Mucosa   • •  

This  mucus  protects  delicate  lower  respiratory  track  by  filtering  out  dust,  dirt,  and  pathogens    This  mucus  is  then  removed  from  the  body  or  sent  to  the  stomach  for  the  stomach  acid  to  destroy  pathogens  

The  Respiratory  System  has  two  Major  Responsibilities   • • • •

Supply  the  blood  (and  ultimately  the  tissues)  with  O2.   Remove  CO2   Simply  stated:  Respiration  involving  breathing  O2  in  and  expelling  CO2.   However,  it’s  more  complicated  than  that.  

  The  Two  types  of  respiration   • •

Internal  Respiration:    within  the  cells,  cellular  respiration     External  Respiration:    involves  movement  of  air  and  gasses  

  Internal  Respiration   Internal  respiration  refers  to  the  metabolic  processes  occurring  using  sugar  and  oxygen  making  energy  in  the   mitochondria.   • Molecular  oxygen  is  used  by  tissue  cells.       • Carbon  dioxide  is  produced     2  Types  of  Internal  Respiration   •

 “cellular  respiration”  uses  oxygen  &  sugar  to  produce  energy   •

Aerobic  respiration  –  With  Oxygen   C6H12O6  +  6O2    6CO2  +  6  H2O  +  36  or  38  ATP    

  •

Anaerobic  respiration  –  Without  Oxygen   C6H12O6    2CO2  +  2C2H5OH  +  2  ATP   External  Respiration     • •

The  sequence  of  events  involved  in  the  exchange  of  O2  and  CO2  between  the  external  environment  and  body’s   cells.   It  includes:       Breathing:  air  moved  between  the  atmosphere  and  Lungs  (alveoli).       Gasses  exchanged  between  the  lungs  and  the  blood.     Movement  of  gasses  between  the  lungs  and  the  tissues.  

    Airways  conduct  air  between  the  atmosphere  and  alveoli   •

Inhaled  air  passes  through  the  following  series  of  continuous  airways  in  this  sequence:     Nasal  passages:  lined  with  mucus  membranes  that  filter,  moisten  &  warm  air   Pharynx   Larynx   Trachea:  lined  with  ciliated  mucus  membrane  (filter  &  moisten  air),  supported  by  cartilaginous                 rings  (causes  trachea  to  remain  open)   Bronchi  (left  and  right)   Bronchioles  :small  branching    tubes,  lack  cartilage  rings   Alveoli  :  gas  exchange  occurs  here  (CO2  leaves  blood  goes  into  lungs  and  is  exhaled  &  O2  enters       blood).  Surrounded  by  capillaries.     Air  pathway:  nasal  passagepharynxlarynxtracheabronchibronchiolesalveoli  

Epiglottis  prevents  food  from  entering  trachea  

 

Alveoli  

  • • •

The  Alveoli  are  the  actual  exchange  sites  of  the  gases.   Up  to  this  point,  the  air  passages  simply  provide  a  method  to  get  air  (O2  &  CO2)  into  and  out  of  the  lungs.   No  exchange  of  gasses  has  occurred.    

  Breathing  (Ventilation)  includes  two  processes:   • •   •

Movement  of  air  (gases)  into  and  out  of  the  lungs.   Exchange  of  gases  between  the  lungs  (alveoli)  and  the  blood  (pulmonary  capillaries).  

Diaphragm  contracts  causing  pressure    change  in  the  chest  cavity  during  breathing     • An  increase  in  breathing  rate  can  be  caused  by  an  increase  of  carbon  dioxide  in  the  blood   Emphysema:  is  a  disease  associated  with  smoking  which  results  in  a  reduction  in  the  number  &  elasticity  of  alveoli,   enlargement  and  degeneration  of  alveoli  resulting  in  decreased  lung  capacity  .  Patients  will  be  put    on  oxygen.   Smoking  can  interfere  with  ciliary  action  in  the  trachea.  It  can  also  lead  to  lung  cancer.   Healthy  and  Tarred  Lung  

   

The  Circulatory  System   The  Circulatory  System  is  responsible  for  transporting  materials  throughout  the  entire  body.  

 

  Vocabulary   • • • • • • •

Arteries  are  tubes  that  carry  blood  away  from  the  heart     Veins  are  tubes  that  return  blood  to  the  heart     Capillaries  connect  arteries  and  veins.  They  are  tiny  tubes  that  exchange  food,  oxygen  and  wastes  between   blood  and  body  cells.     Pulmonary  circulation  is  the  movement  of  blood  between  the  heart  and  lungs     Coronary  circulation  is  the  movement  of  blood  from  within  the  heart  chambers  to  the  heart  tissues   themselves     Systemic  circulation  is  the  movement  of  blood  between  the  heart  and  the  rest  of  the  body     Interstitial  fluid  -­‐  is  an  isotonic  solution  which  bathes  and  surrounds  the  cells  of  multicellular  animals.  

  Functions  of  the  Circulatory  System   •



 

The  circulatory  system  functions  in  the     delivery  of  oxygen,   Delivery  of  nutrient  molecules     Delivery  of  hormones     removal  of  carbon  dioxide,  ammonia  and  other  metabolic  wastes     3  parts  of  the  Circulatory  system    pulmonary  circulation  -­‐  the  lungs  (pulmonary),      coronary  circulation  -­‐  the  heart  (coronary),    systemic  circulation  -­‐  the  rest  of  the  body  (systemic)    

Parts  of  the  Circulatory  System   The  circulatory  System  is  divided  into  three  major  parts: • The  Heart     • The  Blood     • The  Blood  Vessels       The  Heart   •

The  Heart  is  an  amazing  organ.    It's  job  is  to  pump  your  blood  and  keep  the  blood  moving  throughout  your   body.  

  Make  up  of  the  Heart   •

• • • •

Heart  is  made  up  of  4  chambers:  the  separation  of  the  right  and  left  side  of  the  heart(  by  the  septum)   provides  the    separation  of  oxygenated  blood  from  deoxygenated  blood.   Right  and  Left  Atrium   Right  and  Left  Ventricle   Ventricles  are  larger  than  the  atria   Between  the  atrium  and  ventricles  there  are  valves.  The  valves  only  open  in  one  direction  and  prevent   backflow  of  blood  into  the  atrium.   Blood  is  brought  back  to  the  heart  by  veins  and  carried  away  from  the  heart  by  Arteries   The  heart  is  made  up  of  special  muscle  cells  that  can  carry  an  electrical  impulse  called  cardiac  muscle  

    Cardiac  Cycle   The  cardiac  cycle  consists  of  two  parts:  systole  -­‐  contraction  of  the  heart  muscle  (ventricles)  diastole  -­‐  relaxation  of  the  heart  muscle • Atriums  contract  while  ventricles  relax.   • Ventricles  contract  while  Atriums  relax   • Heart  valves  limit  flow  to  a  single  direction. One  heartbeat,  or  cardiac  cycle,  includes  atrial  contraction  and  relaxation,  ventricular  contraction  and  relaxation,  and  a   short  pause   •

Flow  of  Blood  though  the  Heart   • • • • • • • •

Right  Atrium  –  deoxygenated  blood   Right  Ventricle  –  deoxygenated  blood   Pulmonary  artery  –  deoxygenated  blood(blood  goes  to  the  lungs)   LUNGS  –  Deoxygenated    Oxygenated   Pulmonary  vein  –  oxygenated  blood   Left  Atrium  –  oxygenated  blood     Left  Ventricle  –  oxygenated  blood   Aorta  –  oxygenated  blood  to  body    

  The  flow  of  blood  to  and  from  the  lungs  in  called  pulmonary  circulation.  

  •  

lub-­‐DUB,  lub-­‐DUB,  lub-­‐DUB.  Sound  familiar?  If  you  listen  to  your  heart  beat,  you'll  hear  two  sounds.  These   "lub"  and  "DUB"  sounds  are  made  by  the  heart  valves  as  they  open  and  close.  

      The  Blood   The  blood  is  an  amazing  substance  that  is  constantly  flowing  through  our  bodies.   Your  blood  is  pumped  by  your  heart.     Your  blood  carries  nutrients,  water,  oxygen  and  waste  products  to  and  from  your  body  cells.     Your  body  has  about  5.6  liters  (6  quarts)  of  blood.  This  5.6  liters  of  blood  circulates  through  the  body  three   times  every  minute.     Make  up  of  Blood   • • • •

 

  Plasma   • •

Plasma  is  90%  water  and  10%  dissolved  materials     including  proteins,  glucose,  ions,  hormones,  and  gases.     It  acts  as  a  buffer,  maintaining  pH  near  7.4.  Plasma  contains  nutrients,  wastes,  salts,  proteins,  etc.    

Red  Blood  Cells  

  • • • • •

Red  Blood  Cells  are  responsible  for  carrying  oxygen  and  carbon  dioxide.     Red  Blood  Cells  pick  up  oxygen  in  the  lungs  and  transport  it  to  all  the  body  cells.    After  delivering  the  oxygen  to  the  cells  it  gathers  up  the  carbon  dioxide  and  transports  carbon  dioxide  back   to  the  lungs  where  it  is  removed  from  the  body  when  we  exhale.     There  are  about  5,000,000  Red  Blood  Cells  in  ONE  drop  of  blood.     Life-­‐span  of  an  erythrocyte  is  only  120  days,  after  which  they  are  destroyed  in  liver  and  spleen.    

  White  Blood  Cells  (leukocytes  )  

  • • • •

are  larger  than  erythrocytes,  (red  blood  cells)   have  a  nucleus,  and  lack  hemoglobin.     They  function  in  the  cellular  immune  response.(  fight  off  bacterial  &  viral    infections)     White  blood  cells  (leukocytes)  are  less  than  1%  of  the  blood's  volume.      

Type  of  WBCs   •

There  are  five  types  of  leukocytes:    Neutrophils  enter  the  tissue  fluid  by  squeezing  through  capillary  walls  and   phagocytozing  foreign  substances. Macrophages  release  white  blood  cell  growth  factors,  causing  a  population  increase  for   white  blood  cells. Lymphocytes  fight  infection. T-­‐cells  attack  cells  containing  viruses.   B-­‐cells  produce  antibodies.  Antigen-­‐antibody  complexes  are  phagocytized  by  a   macrophage.  White  blood  cells  can  squeeze  through  pores  in  the  capillaries  and  fight   infectious  diseases  in  interstitial  areas

Platelets  

  Platelets  are  much  smaller  than  the  red  blood     •

 

Platelets  are  blood  cells  that  help  stop  bleeding.    When  we  cut  ourselves  we  have  broken  a  blood  vessel  and  the  blood  leaks  out.     1. In  order  to  plug  up  the  holes  where  the  blood  is  leaking  from  the  platelets  start  to  stick  to   the  opening  of  the  damaged  blood  vessels.     2. As  the  platelets  stick  to  the  opening  of  the  damaged  vessel  they  attract  more  platelets,  fibers   and  other  blood  cells  to  help  form  a  plug  to  seal  the  broken  blood  vessel.     When  the  platelet  plug  is  completely  formed  the  wound  stops  bleeding.     Platelets  survive  for  10  days  before  being  removed  by  the  liver  and  spleen.     Hemophilia  –  inability  to  clot  –  bleeders  disease    

Where  are  the  blood  cells  made?   • •

In  your  bone  marrow.   The  Red  Blood  Cells  are  made  in  the  red  marrow  and  White  Blood  Cells  and  Platelets  are  made  in  the   yellow  marrow.   Bone  marrow  is  a  soft  tissue  inside  of  our  bones  that  produces  blood  cells.  

•   The  Blood  Vessels   • • •  

Arteries  –  carry  blood  AWAY  from  heart,  thick  walls,  has  the  highest  systolic  &  diastolic  blood  pressure   Capillaries  –  Place  were  gas  exchange  (and  materials)  takes  place  between  the  blood  and  body  tissues   Veins  –  Carry  blood  BACK  to  the  heart,  has  valves  to  counteract  gravity  and  allow  blood  flow  from  legs  to   heart  

     

 

  Arteries:  to  determine  heart  rate,  count  the  number  of  pulsations  per  minute  in  an  artery   • • • • • • • •

Arteries  are  blood  vessels  that  carry  oxygen  rich  blood  AWAY  from  the  heart.  Remember,  Arteries  Away,     The  aorta,  the  largest  artery  in  the  body,  is  almost  the  diameter  of  a  garden  hose..   Arterial  walls  are  able  to  expand  and  contract  with  the  heart  as  it  pushes  blood  through  the  body     The  aorta  is  the  main  artery  leaving  the  heart.   The  pulmonary  artery  is  the  only  artery  that  carries  oxygen-­‐poor  blood.  The  pulmonary  artery  carries   deoxygenated  blood  to  the  lungs.     Arterioles  are  small  arteries  that  connect  larger  arteries  with  capillaries.     Small  arterioles  branch  into  collections  of  capillaries  known  as  capillary  beds.      

  Capillaries   • • • •

Capillaries  are  tiny  blood  vessels.  Only  1  RBC  fits  though  at  a  time     Capillaries  are  only  1  cell  thick   Capillaries  connect  arteries  to  veins.     Food  substances  (nutrients),  oxygen  and  wastes  pass  in  and  out  of  your  blood  through  the  capillary  walls.    



Capillaries,  on  the  other  hand,  are  so  small  that  it  takes  ten  of  them  to  equal  the  thickness  of  a  human  hair  



Capillaries  are  thin-­‐walled  blood  vessels  in  which  gas  exchange  occurs.  In  the  capillary,  the  wall  is  only  one  cell   layer  thick.  Capillaries  are  concentrated  into  capillary  beds.    

Nutrients,  wastes,  and  hormones  are  exchanged  across  the  thin  walls  of  capillaries    

 

Veins   • • • •

Veins  carry  blood  back  toward  your  heart.   Veins  carry  blood  from  capillaries  to  the  heart.  With  the  exception  of  the  pulmonary  veins,  blood  in  veins   is  oxygen-­‐poor.  The  pulmonary  veins  carry  oxygenated  blood  from  lungs  back  to  the  heart.   Venules  are  smaller  veins  that  gather  blood  from  capillary  beds  into  veins.   The  veins  have  valves  that  prevent  back-­‐flow  of  blood.  

  The  actions  of  muscles  to  propel  blood  through  the  veins  

 

             

 

The  Lymphatic  System:  maintenance  of  proper  levels  of  intercellular  fluid  

  Different  names  for  the  SAME  FLUID***    Blood  plasma  is  the  watery  part  of  human  blood.    Interstitial  fluid  (intercellular  fluid)  is  the  fluid  found  surrounding  all  the  cells  of  the  body    Lymph  fluid  is  found  in  lymph  vessels   ****  These  3  different  fluids  are  the  same  fluid  just  with  different  names  depending  on  where  the  fluid  is  located.   (blood  plasma  =  Lymph  =  Interstitial  fluid)     The  lymphatic  system  It  transports  a  watery  clear  fluid  called  lymph  =  interstitial  fluid  .    This  fluid  distributes  immune  cells  and  other  factors  throughout  the  body.  It  also  interacts  with  the  blood   circulatory  system  to  drain  fluid  from  cells  and  tissues.   The  lymphatic  system  contains  immune  cells  called  lymphocytes,  which  protect  the  body  against  antigens  (viruses,   bacteria,  etc.)  that  invade  the  body.  

Main  functions******    The  lymphatic  system  is  composed:    lymph  vessels    lymph  nodes    organs    The  functions:      to  collect  and  return  interstitial  fluid,  including  plasma  protein  to  the  blood, and  thus  help  maintain   fluid  balance    to  defend  the  body  against  disease  by  producing  lymphocytes  (B-­‐cells,  and  T-­‐cells)   Lymph  organs    Lymph  organs  include  the  bone  marrow,  lymph  nodes,  spleen,  and  thymus.      Precursor  cells  in  the  bone  marrow  produce  lymphocytes  (white  blood  cells).       Lymph  Nodes    Their  two  basic  functions  are:    Filtration  –  macrophages  destroy  microorganisms  and  debris,  bacteria  and  dead  cells  are  removed   from  circulatory  fluid    Immune  system  activation  –  monitor  for  antigens  and  mount  an  attack  against  them  

   

 “X”  are  lymph  nodes  throughout  the  body  

Spleen    Largest  lymphoid  organ,  located  on  the  left  side  of  the  abdominal  cavity  beneath  the  diaphragm      Functions    stores  disease-­‐fighting  components  of  the  immune  system  (lymphocytes)    Immune  surveillance  and  response    Cleanses  the  blood  –  takes  out  old  and  defective  red  blood  cells       Filtering    Lymph  nodes  are  filters  of  the  lymph    The  spleen  is  a  filter  for  old  red  blood  cells     Disorder  of  the  Lymphatic  System    Lymphoma  is  a  group  of  cancers  that  affect  the  cells  that  play  a  role  in  the  immune  system,  and   primarily  represents  cells  involved  in  the  lymphatic  system  of  the  body.    They  often  originate  in  lymph  nodes,  presenting  as  an  enlargement  of  the  node  (a  tumor).    

   

                                                                                                                                                                                                                             

 

Immune  System   3  Lines  of  Defense   First  line  –   •  Skin   The  skin  cannot  be  penetrated  by  most  organisms  unless  it  already  has  an  opening,  such  as  a  nick,  scratch,   or  cut.     • Mechanically     Pathogens  are  expelled  from  the  lungs  by  ciliary  action  as  the  tiny  hairs  move  in  an  upward  motion;   coughing  and  sneezing  abruptly  eject  both  living  and  nonliving  things  from  the  respiratory  system       The  flushing  action  of  tears,  saliva,  and  urine  also  force  out  pathogens,  as  does  the  sloughing  off  of  skin.     •   • Sticky  mucus  in  respiratory  and  gastrointestinal  tracts  traps  many  microorganisms.              

Second  Line     • Inflammation  is  characterized  by  redness  and  swelling   • Inflammation  is  stimulated  by  chemical  factors  released  from  damaged  cells.   The  increased  blood  flow  causes  puffiness,  warmth,  and  attracts  phagocytes  (Neutrophils/Macrophages)     • Macrophages  are  giant  white  blood  cells  that  ingest  large  numbers  of  bacteria.  –  Developed  from   monocytes     As  the  inflammation  response  proceeds,  the  phagocytes  ingest  the  pathogens  and  any  damaged  tissue     •   • Pus  –  a  mixture  of  dead  WBCs  (phagocytes),  dead  cells,  bacteria  and  body  fluid.                              Pus  is  either  brained  or  absorbed  by  the  body   Third  Line     • When  the  first  two  systems  fail  to  stop  the  pathogen  the  immune  system  is  the  last  line  of  defense.   • The  immune  system     Recognizes  the  pathogen  (virus,  bacteria)   Attacks   Destroys   Remembers   • This  is  done  by  creating  antibodies  and  specialized  cells  that  destroy  pathogens   • Unlike  the  first  two  lines  of  defense  the  immune  system  is  specific  for  each  pathogen     • Immunity  –  the  ability  to  fight  infection  through  the  production  of  antibodies  or  cells  that  inactivate   pathogens    

Antigens   • •

Antigen  –  ANY  substance  that  causes  an  immune  response.   Viruses  and  microorganisms  have  substances  on  their  outer  surfaces  that  are  antigens.  Most  antigens  are   proteins.   Humans  have  a  unique  combination  of  proteins  that  no  other  human  has.  As  a  result  transplanted  tissue   will  act  as  an  antigen.       Reaction  to  transplanted  organs:   The  transplanted  organ  has  foreign  antigens  (proteins  from  another  person).     This  causes  the  patient’s  body  to  produce  antibodies  against  the  transplanted  tissue/organ.   The  antibodies  will  destroy  the  new  organ,  this  is  called  rejection  of  the  organ.     To  increase  chances  for  a  successful  organ  transplant,  the  person  receiving  the  organ  should  be  put  on   medications  to  reduce  their  immune  response  to  the  new  organ.     These  drugs  will  reduce  the  risk  of  rejection  of  the  donated  organ  by  the  organ  transplant  patient.  Rejection   occurs  when  a  person  produces  antibodies  against  the  foreign  antigens.  

  •

The  job  of  the  immune  system  is  to  attack  and  destroy  any  antigens.     If  an  organ  or  tissue  produced  by  the  patient’s  stem  cells  was  used  for  transplant,  it  would  not  be  rejected.       Since  the  organ  was  produced  from  the  patient’s  own  stem  cells,  the  proteins  in  the  tissue  wouldn’t  be  foreign  to  the   body,  so  the  immune  system  would  not  attack  it.    

Lymphocytes  

Lymphocytes  are  WBCs    that  recognize  specific  antigens  and  either  produce  antibodies  or  kill  foreign  cells  directly    

 

Primary  Immune  Response   •

 

When  an  antigen  enters  your  body  for  the  first  time  your  immune  system  goes  through  the  primary   immune  response     The  first  5  days  following  exposure  to  the  antigen  there  is  no  measurable  amounts  of  antibodies  or   specialized  immune  cells.     Over  the  next  10-­‐15  days  there  is  a  gradual  rise  in  the  levels  of    these  products  

Secondary  Immune  Response   If  an  antigen  enters  the  body  for  second  time  the  response  is  much  more  rapid.     With  1  to  2  days  after  infection  of  antigen,  high  levels  of  antibodies  and  immune  cells  are  present  in  blood.           White  blood  cells  role:  Protects  the  body  against  pathogens(bacteria,  virus)   •

    Diagram  shows  a  WBC  engulfing/ingesting  a  bacterial  cell  

  Engulf  pathogens  (surround  &  ingest)    Produce  antibodies   Mark  invaders  for  destruction  by  producing  specialized  molecules  (phagocytes)   Remember  antigens  from  past  exposures  (which  speeds  up  antibody  production  with  a  second  exposure)    

 

       

 

Active  Immunity   • • •

  •

Active  immunity:  being  infected  by  a  live  antigen  (bacteria/virus)  causing  a  primary  immune   response.  (Memory  B  and  T  cells)       Active  immunity  is  also  developed  though  a  vaccination.   Vaccinations  consist  of  dead  or  weakened  bacteria  or  viruses  that  cause  an  immune  response  but  do  not   make  an  individual  sick.     Ex.  small  pox  ,  chicken  pox,  flu  vaccine   Vaccines  stimulate  antibody  production  to  help  prepare  the  body  to  fight  future  invasions  of  disease   causing  organisms.  If  the  organisms  enter  the  body,  the  antibodies  will  be  there  to  attack  and  kill  it.   Vaccines  prevent  people  from  getting  the  disease.  

 

Passive  Immunity   • •   •

Passive  (borrowed)  immunity  :  due  to  acquiring  preformed  antibodies  from  another  individual.     Example:  immunized  person  gets  tetanus  shot  after  stepping  on  rusty  nail.  Shot  consists  of  antibodies  to   the  tetanus  toxin  made  in  the  body  of  some  animal  (e.g.  horse).  Provides  immediate  protection,  but  will  not   last.  Passive  immunity  typically  lost  after  6  months.     Newborn  children  do  not  yet  have  active  immunity.  For  first  6  months,  don't  get  many  diseases,   protected  by  mother's  antibodies  passed  to  blood  system  of  newborn  before  birth.  After  6  months,   infant  must  rely  on  its  immune  system  to  "learn"  and  acquire  immunity  to  series  of  diseases.        

Why  doesn’t  a  person  get  sick  right  after  the  pathogen  (bacteria,  virus)  enters  the  body?   After  a  pathogen  (causes  disease  or  illness)  enters  the  body  the  person  may  not  have  symptoms  immediately.     It  takes  time  for  the  pathogen  to  reproduce  &  produce  enough  toxins  to  make  you  sick.    Pathogens  can  interfere  with   normal  life  functions.    

Antibodies  &  Antigens   • • •

Antigens  are  "foreign"  substances  that  induce  some  kind  of  immune  response.     Antibody  or  immunoglobulin  is  a  large  Y-­‐shaped  protein  used  by  the  immune  system  to  identify  and   neutralize  foreign  objects  like  bacteria  and  viruses.     Each  antibody  recognizes  a  specific  antigen  on  the  surface  of  the  bacteria  or  virus  

      Vaccinations  consist  of  dead  or  weakened  bacteria  or  viruses  that  cause  an  immune  response  but  do  not  make  an   individual  sick.        

Allergy:  Immune  system  produces  antibodies  /chemicals  against  a  usually  harmless  substance  (antigen)   • •

     

• • •

Allergy  is  a  rapid  overreaction  to  an  antigen  that  is  not  normally  harmful   Allergy  common  symptoms:   Runny  nose   Swollen,  ichy  eyes   Sneezing,  coughing   A  rash   These  symptoms  are  causes  by  the  release  of  histamine  which  causes  an  inflammatory  response   Antihistamines  are  used  to  counter  these  effects   Severe  allergic  reactions  can  lead  to  the  swelling  in  the  throat  which  will  block  the  airway.  

HIV  and  AIDS   HIV  =  Human  Immunodeficiency  virus   AIDS  =  Acquired  Immune  Deficiency  syndrome   When  HIV  enters  the  body  the  immune  system  recognizes  it  as  an  antigen  and  responds  but  the  body   defenses  are  unsuccessful.  The  immune  response  is  weakened  by  the  HIV  infection   • HIV  infects  Helper  T-­  cells     It  can  stay  there  for  months  or  years  without  producing  any  symptoms   • When  HIV  becomes  active  it  reproduces  and  destroys  the  helper  T-­  cells.  This  weakens  the  immune   system  and  the  body  cannot  fight  infections.  (HIV    AIDS)   • The  body  becomes  unable  to  defend  itself  against  pathogens  and  cancerous  cells  because  of  a  weakened   immune  system.   • HIV  can  also  attacks  the  nervous  system  and  can  cause  memory  loss,  partial  paralysis,  or  mental  disorder   How  is  HIV  Spread   • • •

HIV  is  primary  a  sexually  transmitted  disease   ANY  intimate  sexual  contact  that  involves  the  exchange  of  body  fluids.  (except  deep  kissing)   • Blood  to  blood  contact   • Sharing  dirty  needles   • HIV  can  be  transmitted  from  a  mother  to  an  unborn  baby   Prevention   •

 

• • • •

ABSTINENCE   Condoms  –  help  but  do  not  eliminate  the  chance  of  getting  HIV   Not  using  intravenous  drugs   Do  not  come  into  contact  with  someone's  blood  without  protective  gear.    

  Autoimmune  diseases   • •  

The  immune  system  fails  to  recognize  some  body  cells  as  self.  Makes  antibodies  against  self  cells  and  the   immune  system  attacks  self-­‐cells.     autoimmune  diseases:   juvenile  diabetes  –  immune  system  attacks  insulin  producing  cells   Multiple  sclerosis  –  immune  system  attacks  the  fatty  covering  of  the  nerve  cells    

   

       

Muscular  system  

  How  Muscles  and  Bones  Interact:  locomotion  (movement)  is  the  interaction  between  the  endoskeleton  &  muscles   1.  Skeleton  muscles  generate  force  and  produce  movement  only  by  contracting  or  pulling  on  body  parts.    

2.  Individual  muscles  can  only  pull;  they  cannot  push.  

 

3.  Skeleton  muscles  are  joined  to  bone  by  tough  connective  tissue  called  tendons.  

 

4.  Tendons  are  attached  in  such  a  way  that  they  pull  on  the  bones  and  make  them  work  like  levers.  The   movements  of  the  muscles  and  joints  enable  the  bones  to  act  as  levers.     5.  Most  skeletal  muscles  work  in  pairs.   6.  When  one  muscle  or  set  of  muscles  contracts,  the  other  relaxes.    

 

Involuntary  Muscles   • •

Involuntary  muscles  are  muscles  that  are  not  under  your  conscious  control     Involuntary  muscles  are  responsible  for  activities  such  as  breathing  and  digesting  food  

 

 

          Voluntary  Muscles  

Voluntary  muscles  are  under  your  control,  you  cause  your  body  to  move   •

Voluntary  muscles  are  used  when  you  smile,  turn  a  page  in  a  book,  get  out  of  your  chair  etc.  

 

Types  of  Muscles   • • •  

There  are  three  types  of  muscle  tissue  –  skeletal  muscle,  smooth  muscle,  and  cardiac  muscle     The  skeletal  muscles  are  voluntary  muscles     The  smooth  muscle  and  the  cardiac  muscle  are  involuntary    

3  types  of  muscle  under  microscope  

       

    Skeletal  Muscle   •

Skeletal  muscles  help  you  move  (locomotion),  they  are  attached  to  the  bones  of  your  skeleton    

• • •

At  the  end  of  the  skeletal  muscle  is  a  tendon,  which  is  a  strong  connective  tissue  that  connects  the  muscle  to   the  bone.     Skeletal  muscle  cells  appear  banded,  or  striated     One  characteristic  of  skeletal  muscles  is  that  they  react  very  quickly  

  Smooth  Muscle   • •

 

• •

Smooth  muscles  are  muscles  that  you  do  not  control.       Smooth  muscles  can  be  found  inside  of  many  internal  organs  of  the  body,  such  as  the  walls  of  the  stomach   and  blood  vessels     Unlike  skeletal  muscles,  smooth  muscles  are  not  striated.     smooth  muscles  react  more  slowly  and  tire  more  slowly  

  Cardiac  Muscle   • • • •

Cardiac  muscle  is  only  found  in  the  heart     Cardiac  muscle  is  involuntary     Cardiac  muscles  are  striated     Cardiac  muscles  do  not  get  tired  and  they  contract  repeatedly  

     

Skeletal  System   Bones  -­‐  the  organs  of  the  skeletal  system.   • The  human  skeleton(endoskeleton)  has  two  divisions     Axial  skeleton  –  Consist  of  the  skull,  vertebrate  column,  and  the  rib  cage   The  Appendicular  Skeleton  -­‐  Consist  the  bones  of  the  arms  and  legs,  shoulder,  and  the  pelvic   girdle  .   • The  Skeleton  of  Humans  is  composed  of  a  special  connective  tissue  called  BONE   • There  are  206  bones  in  the  human  body    

Functions  of  the  Skeletal  System   • •  

 

support  -­‐  it  forms  the  body's  framework  to  support  the  muscles  and  organs.     protection  -­‐  the  skeletal  systems  protects  by     1)  forming  the  bony  cavities  around  organs,  

 

– the  thoracic  cavity  protects  the  heart  and  lungs   – the  cranial  cavity  protects  the  brain.     2)  the  yellow  marrow  in  bones  produces  white  blood  cells  which  protect  against  invading   microorganisms.  The  red  marrow  in  bones  produces  red  blood  cells • movement  -­‐  bones  form  joints  which  provide  levers  for  movement  such  as  walking,  lifting,  etc.     • hematopoiesis  (blood  cell  production)  -­‐  the  red  marrow  produces  red  blood  cells.     • mineral  storage  and  homeostasis  -­‐  the  skeleton  forms  a  reservoir  of  minerals,  especially  calcium,  for   maintenance  of  homeostasis.     Cartilage:  cushions  joints  upon  impact,  provides  flexibility  of  structures,  &  makes  up  most  of  the   embryonic  skeleton  

Joints   • • • • • •

 

JOINTS    WHERE  TWO  BONES  MEET     Cartilage  is  responsible  for  keeping  bones  far  enough  apart  so  they  do  not  rub  against  each  other  as  they   move.  At  the  same  time,  joints  hold  the  bones  in  place.   Joints  work  by  attaching  muscles  which  work  in  in  pairs  -­‐  ANTOGONISTIC  MUSCLES  -­‐  flexors  &  extensors   Muscles  attach  to  bone  via  connective  tissue  called  TENDONS   Bones  attach  to  bones  via  connective  tissue  called  LIGAMENTS    

 

 

 

 

 

 

       

A:  tendon  

B:  muscle  

 

C:  ligament    

There  are  two  kinds  of  joints:   1.  IMMOVABLE  JOINT  

 THEY  ARE  OFTEN  CALLED  FIXED  JOINTS,  AND  ALLOW  NO  MOVEMENT  BETWEEN  BONES.   – – –

These  joints  are  interlocked  and  held  together  by  Connective  Tissue,  or  they  are  fused  together.     The  places  where  the  bones  of  the  SKULL  meet  (SUTURE)  meet  are  examples  of  immovable  joints.   Immovable  joints  are  located  in  bones  of  the  skulls  and  the  ribs  

2.  MOVABLE  JOINT   MOST  OF  THE  JOINTS  OF  THE  BODY  ARE  FREELY  MOVABLE  JOINTS.   –

–   Types  of  Joints  

In  Freely  Movable  Joints,  the  ends  of  the  bones  are  covered  with  a  layer  of  Cartilage  that  provides  a   smooth  surface  at  the  joint.  Joints  are  a  place  where  two  or  more  bones  come  together.     Examples  are  the  ball-­‐and-­‐socket,  pivot,  hinge,  and  gliding  

 

 

Moveable  Joints   Ball-­‐and-­‐socket  joint   –

Ball-­‐and-­‐socket  joints  allow  the  greatest  range  of  motion.    They  can  be  found  in  the  shoulder  where   the  top  of  the  arm  bone  fits  into  the  deep,  bowl-­‐like  socket  of  the  scapula  (shoulder  blade).    



This  joint  allows  you  to  swing  your  arm  freely  in  a  circle,  your  hips  also  have  ball-­‐and-­‐socket  joints  

   

 

  Moveable  Joints   Hinge  joint   •

Permits  a  back-­‐and-­‐forth  motion.     The  Knee  enables  your  leg  to  flex  and  extend.     The  Elbow,  which  allows  you  to  move  your  forearm  toward  and  away  from  your  body.  

 

   

Moveable  Joints   Pivot  Joint   – –

A  pivot  joint  allows  one  bone  to  rotate  around  another     A  pivot  joint  can  be  found  in  the  top  of  your  neck,  which  gives  you  limited  ability  to  turn  your  head   from  side  to  side  

 

 

Moveable  Joints   Gliding  Joint   •

A  gliding  joint  allows  one  bone  to  slide  over  another  bone     The  joint  located  in  your  wrist  is  an  example  of  a  gliding  joint    this  joint  enables  you  to  bend  and   flex  your  wrist,  as  well  as  make  limited  side-­‐to-­‐side  motions.    

 

 

 

 

Disorders of the musculoskeletal system   Arthritis   Arthritis affects the musculoskeletal system, specifically the joints. It is the main cause of disability among people over fifty-five years of age in industrialized countries.  

What causes arthritis? In order to better understand what is going on when a person suffers from some form of arthritis, let us look at how a joint works.

Basically, a joint is where one bone moves on another bone. Ligaments hold the two bones together. The ligaments are like elastic bands, while they keep the bones in place your muscles relax or contract to make the joint move. Cartilage covers the bone surface to stop the two bones from rubbing directly against each other. The covering of cartilage allows the joint to work smoothly and painlessly. A capsule surrounds the joint. The space within the joint - the joint cavity - has synovial fluid. Synovial fluid nourishes the joint and the cartilage. The synovial fluid is produced by the synovium (synovial membrane) which lines the joint cavity. If you have arthritis something goes wrong with the joint(s). What goes wrong depends on what type of arthritis you have. It could be that the cartilage is wearing away, a lack of fluid, autoimmunity (your body attacking itself), infection, or a combination of many factors.

Tendonitis Tendonitis is an overuse injury of the ropelike structure that connects our muscles to our bones. That's what a tendon is. It occurs most commonly in those muscles that cross two joints. The common examples being tennis elbow, in which the forearm muscle crosses both the elbow and the wrist, or a calf muscle, in which the muscle crosses both the knee and the ankle joint, resulting in Achilles tendonitis.

The best way to prevent tendonitis is to work on flexibility and strength of those involved muscles. Hence, when we talk about tendonitis, the factors that predispose that muscle to injury would be inflexibility or tight muscles as well as a poorly conditioned or weak muscle. When treating tendonitis, we start with the acronym RICE: rest, ice, compression -- a sleeve or a wrap -- and elevation of the injured tendon or joint. That's a good place to start. Once that inflammation -- the pain, the swelling -- has settled down, oftentimes in three or four days after the injury, then we can work on rehabilitating that muscle and that tendon, and we focus again on flexibility, stretching the muscle, as well as then strengthening and conditioning the muscle, oftentimes in hopes of preventing the tendonitis from recurring.

    Nervous  System   The  Nervous  System  has  TWO  Major  Divisions   • •

The  Central  Nervous  System     The  Peripheral  Nervous  System  

 

 

    The  Central  Nervous  System  (CNS)   • • • •

The  Central  Nervous  System  (CNS)  consist  of  the  Brain  and  the  Spinal  Cord.     The  spinal  cord  carries  messages  from  the  body  to  the  brain,  where  they  are  analyzed  and  interpreted.     Response  messages  are  then  passed  from  the  brain  through  the  spinal  cord  and  to  the  rest  of  the  body.     Both  the  brain  and  the  spinal  cord  are  encased  in  bone.  

  Brain   • •

Brain  and  spinal  cord  float  in  a  fluid  known  as  cerebrospinal  fluid.     This  fluid  cushions  against  shock.   Major  parts  of  the  Brain:     Cerebrum  (Cerebral  Cortex)   Cerebellum   Medulla  Oblongata  

    • •  

Thalamus  –  relay  center  between  Brain  and  spinal  cord   Hypothalamus  –  controls  body  temperature,  blood  pressure,  and  emotions  

Cerebral  cortex   •

3  major  Functions   Sensory  areas  that  receive  impulses  from  sense  receptors  (Eyes,  ears,  taste,  nose,  pain,   pressure,  heat/cold,  touch)   Motor  areas  that  start  impulses  that  are  responsible  for  all  voluntary  movement     Associative  areas  of  the  brain  are  responsible  for  memory,  learning  and  thought  

  A:  Cerebrum  –  reasoning,  thought  speech,  all  senses,  start  of  voluntary  movement  

B:  Spinal  cord-­‐  reflex  actions    

The  Cerebellum   • • • •

Controls  all  voluntary  movements  and  some  involuntary   The  cerebellum  helps  with  balance,  rate  of  muscle  contraction,  and  the  muscles  position  in  relation   to  gravity   Allows  for  smooth  orderly  movement   Also  plays  a  roll  in  sensory  perception  to  maintain  balance  (inner  ear)    

  X:  cerebellum,  coordination  &  balance,  smooth  orderly  movement  

 

Medulla  Oblongata   • •

Connect  the  spinal  cord  to  all  other  parts  of  the  brain   Control  involuntary  activities     Breathing   Heartbeat   Blood  flow  

coughing  

  An  increase  of  carbon  dioxide  in  the  blood  would  stimulate  the  respiratory  center  of  the  brain.  Impulses   would  be  sent  by  the  medulla  to  the  diaphragm  ,  increasing  the  rate  of  breathing.    

THE  SPINAL  CORD:    is  protected  by  the  vertebrae   • • •

2  Important  Functions   Connects  the  nerves  of  the  peripheral  nervous  system  with  the  brain   Controls  certain  reflexes  which  are  automatic  responses   The  spinal  cord  is  continuous  with  the  brain  and  emerges  from  an  opening  at  the  base  of  the  skull.   It  is  a  dorsal  nerve  cord  with  connecting  nerves    

 

 

Divisions  of  the  Peripheral  Nervous  System   •   •

Somatic  Nervous  System  –  This  system  is  responsible  for  body  movements  over  which  the  individual  has   some  conscious  awareness  or  voluntary  control.  Ex:  muscles  used  for  writing   Autonomic  Nervous  System  –  This  system  is  responsible  for  involuntary  activities.   2  divisions   Sympathetic     Parasympathetic  

  A:  Endocrine  system  

 

B:  Central  nervous  System  

C:  Autonomic    

  Sympathetic  “Fight  or  Flight”  Nervous  System   • •

The  sympathetic  nervous  system  prepares  the  body  for  sudden  stress   For  example  if  you  see  a  robbery  taking  place.   When  something  frightening  happens,  the  sympathetic  nervous  system  takes  over     makes  the  heart  beat  faster     diverts  blood  to  your  muscles  and  chest    

 



makes  the  pupils  dilate     causes  the  adrenal  glands  at  the  top  of  the  kidneys  to  release  adrenaline,  to  give  extra  power  to  the   muscles  for  a  quick  getaway.     This  process  is  known  as  the  body's  "fight  or  flight"  response.  

 

Parasympathetic  “Sit  and  Digest”  nervous  system   • • • •  

It  prepares  the  body  for  rest.   Slows  heart  rate   It  also  helps  the  digestive  tract  move  along  so  our  bodies  can  efficiently  take  in  nutrients  from  the  food  we   eat.   Opposite  of  the  sympathetic    

   

   

 

REFLEXES:      Interneuron  relays  impulses  directly  from  a  sensory  neuron  to  a  motor  neuron.   A  reflex  is  an  involuntary  response  to  a  STIMULUS.     Reflexes  are  very  fast,  and  Most  Reflexes  Never  Reach  the  Brain.     The  reflex  arc  is  an  automatic,  involuntary  reaction  to  a  stimulus.  When  the  doctor  taps  your  knee  with  the   rubber  hammer,  she/he  is  testing  your  reflex  (or  knee-­‐jerk).  If  a  motor  neuron  in  a  reflex  arc  is  damaged,   contraction  of  a  muscle  will  not  occur.   Route  of  impulse  in  a  reflex  arc:          Receptor-­‐>  sensory  neuron-­‐>  interneuron-­‐>  motor  neuron-­‐>  effector   •

 

                                                             

 

 

 

 

 

X:  an  interneuron,  transmits  impulses  from  a  sensory  neuron  to  a  motor  neuron    

How  do  signals  go  from  the  brain  to  the  other  body  parts?    

Nerve  impulses  

Nerve  Impulse   Nerves   •

The  Nervous  System  CONTROLS  and  COORDINATES  ALL  ESSENTIAL  FUNCTIONS  of  the  human  body.    

• •

The  Nervous  System  RECEIVES  and  RELAYS  information  about  activities  within  the  body  and  monitors   and  responds  to  INTERNAL  and  EXTERNAL  CHANGES.     The  functioning  Nervous  System  is  an  enormous  network  of  "one-­‐way  streets    

 

The  Nervous  System  has  FOUR  FUNCTIONS  that  enable  the  body  to  respond  quickly   1.  Gathers  information  both  from  the  outside  world  and  from  inside  the  body.  (sensory) 2.  Transmits  the  information  to  the  processing  area  of  the  brain  and  spinal  cord.   3.  Processes  the  information  to  determine  the  best  response.  (integrative)   4.  Sends  information  to  muscles,  glands,  and  organs  (effectors)  so  they  can  respond  correctly.  Muscular   contraction  or  glandular  secretions. (motor)  

Cell  A  causes  the  cells  at  B  to  contract,  causing  movement  of  an  arm  or  leg.  

Pathway  of  messages  being  sent  across  neurons(nerve  cells)  

  Enlarged  area  shows  a  receptor  molecule  at  the  end  of  a  neuron.  Receptor  molecules  play  an  important  role  in  communication   between  cells.   Neurons  transmit  electrochemical  messages  

  Nerve  cell  Y  contains  receptor  molecules  for  substance  A,  this  process  represents  cellular  communication.   The  space  between  the  nerve  cells  is  called  a  synapse.  

 

Acetylcholine  is  a  chemical  (neurotransmitter)  secreted  at  the  ends  of  nerve  cells.  This  chemical  helps  to  send  nerve  signals  across   the  synapse.  After  the  signal  passes  across  a  synapse,  an  enzyme  breaks  down  the  acetylcholine.     LSD  is  a  drug  that  blocks  the  action  of  this    enzyme  causing  nerve  signals  not  to  be  turned  off.             Path  of  a  nerve  inpulse:  ear  hear  phone  ring  message  goes  across  the  nerves  to  the  brain    brain  sends  message  to  hand  to   pick  up  phone  

      How  do  drugs  affect  cellular  communication  in  the  brain?   Opiate  drugs  such  as  heroin,  imitate  endorphins,  which  is  a  type  of  neurotransmitter  that  is  naturally  produced   in  the  brain.    Heroin  gives  the  brain  false  signals  because    the  neurons  respond  to  the  heroin  as  if  it  was  a   neurotransmitter.       HSD:  Acetylcholine  is  a  chemical  that  is  secreted  at  the  ends  of  nerve  cells  (neurotransmitters).  This  chemical   helps  to  send  nerve  signals  across  synapses  (spaces  between  nerve  cells).  After  the  message  is  passed  the   chemical  is  broken  down  by  an  enzyme.   LSD  blocks  the  action  of  an  enzyme  that  breaks  down  Acetylcholine.  This  will  cause  cell  communication  to  be   disrupted  and  nerve  signals  would  not  be  turned  off.        

Endocrine  System  

  Nervous  System  controls  the  Endocrine  System   • •

The  endocrine  system,  along  with  the  nervous  system,  functions  in  the  regulation  of  body  activities.   (Maintaining  Homeostasis)     The  nervous  system  acts  through  electrical  impulses  and  neurotransmitters  to  cause  muscle  contraction   and  glandular  secretion.    

Nervous  VS  Endocrine   • •    

The  nervous  system  coordinates  rapid  and  precise  responses  to  stimuli  using  action  potentials.     The  endocrine  system  maintains  long-­‐term  control  using  chemical  signals.     The  endocrine  system  works  in  parallel  with  the  nervous  system  to  control  growth  and  maturation   along  with  homeostasis    

Endocrine  system   • •

The  endocrine  system  acts  through  chemical  messengers  called  hormones  that  influence  growth,   development,  and  metabolic  activities.     The  action  of  the  endocrine  system  is  measured  in  minutes,  hours,  or  weeks  and  is  more  generalized  than   the  action  of  the  nervous  system.    

Endocrine  Glands  

• The  endocrine  glands  do  not  have  ducts  to  carry  their  product  to  a  surface.  (ductless  glands)   • Only  endocrine  glands  produce  Hormones       • The  secretory  products  of  endocrine  glands  (hormone)  are  secreted  directly  into  the  blood     The  Hormone  is  transported  throughout  the  body,  by  blood,  where  they  influence  only  those  cells  that  have   receptor  sites  for  that  hormone.  

Chemicals  =  hormones    

   

     

   

   

   

   

                                                                              A:  Pituitary     B:  Thyroid   E:  Pancreas   F:  Ovary  

   C:  Parathyroid    D:  Adrenal  gland     G:  Testes(Testical)  

Hormones   • • •

 

2  Types  of  hormones   Steroid  Hormones  –  are  lipid  like  carbon  rings   These  hormones  are  able  to  pass  though  the  cell  membrane.     This  type  of  hormones  is  produced  in  the  adrenal  glands  and  the  Gonads  (testis  and  ovaries)   Protein  hormones  –  made  up  of  amino  acids    

-­‐  These  hormones  cannot  pass  though  the  cell  membrane  because  they  cannot  dissolve  in  fats.    Ex.   Insulin  

 

Pituitary  Gland   • • • •

The  pituitary  gland  is  often  called  the  master  gland  because  hormones  released  from  the  pituitary  gland   control  other  endocrine  glands  in  the  body.     It  is  located  at  the  base  of  the  brain.     A  stalk  links  the  pituitary  to  the  hypothalamus,  which  controls  release  of  pituitary  hormones.     The  pituitary  gland  has  two  lobes:     the  anterior  lobe  (front)  

 

Major  Hormones  of  the  Anterior  Pituitary  



Thyroid  simulating  hormone:  (TSH)  stimulates  the  production  and  release  of  thyroxin  from  the  thyroid   gland   Adrenocorticotropic  Hormone:  (ACTH)  stimulates  the  production  and  release  of  hormones  of  the   adrenal  glands   Growth  Hormone:  (GH)  controls  the  release  of  GH  into  the  body,  which  causes  bones  to  grow  longer   Follicle  Simulating  Hormone:  (FSH)  stimulates  the  development  of  egg  cell  in  females  and  controls  sperm   production  in  males   Luteinizing  Hormone:  (LH)  Causes  the  release  of  an  egg  in  the  female  and  controls  the  production  of  sex  hormones   in  both  males  and  females   Prolactin:  Stimulates  the  secretion  of  milk  after  birth  only  found  in  females  



Major  Hormones  of  the  Posterior    Pituitary  

• • • • •

• •  

The  posterior  pituitary  stores  and  releases  hormones  into  the  blood.     2  Major  Hormones:       Vasopressin  (Antidiuretic  Hormone  -­‐    ADH)  controls  water  balance  in  the  body  and  blood  pressure.     Oxytocin  is  a  small  peptide  hormone  that  stimulates  uterine  contractions  during  childbirth.    

Job  of  the  Hypothalamus  :  produce  hormones  that  affect  the  functioning  of  the  pituitary  gland   • • • •  

The  Hypothalamus  contains  neurons  that  control  releases  from  the  anterior  pituitary.   The  Hypothalamus  is  the  major  link  between  the  nervous  system  and  the  endocrine  system   The  hypothalamus  regulates  homeostasis.   It  has  regulatory  areas  for  thirst,  hunger,  body  temperature,  water  balance,  and  blood  pressure,  and  links   the  nervous  system  to  the  endocrine  system      

   

The  Adrenal  Glands   • • •

 

The  nerves  of  the  sympathetic  nervous  system  regulate  the  release  of  adrenal  hormones   The  adrenal  glands  secrete  two  hormones:  epinephrine  (adrenalin  –  80%)  and  norepinephrine.   (noradrenalin  –  20%)   “Fight  or  Flight  hormones  ,(  in  times  of  emergency  secrete  hormones  which  increase  glucose  level  of   blood  and  speeds  up  actions  of  the  circulatory  &  respiratory  system)  

   

The  Thyroid  Gland:  requires  a  supply  of  iodine  to  synthesize  (make)  its  hormone  thyroxin   The  thyroid  gland  is  located  in  the  neck.                                                     Thyroid  stimulating  hormone  (TSH)  from  the  anterior  pituitary  causes  thyroid  hormones  to  be  released.   Almost  all  body  cells  are  targets  of  thyroid  hormones.     • Thyroid  hormone    increases  the  overall  metabolic  rate   regulates  growth  and  development  as  well  as  the  onset  of  sexual  maturity     Goiter:  enlargement  of  thyroid  due  to  a  diet  low  in  iodine   • •

 

 

Parathyroid  Gland:  secrete  hormones  that  influence  proper  development  of  bones  &  teeth  a  long  with  Thyroid   • •

These  are  tiny  oval  glands  imbedded  in  the  thyroid  gland   Secrete  parathyroid  hormone  called  parathormone    which  regulates  calcium  and  phosphate  levels  in  the  body.     Calcium  is  necessary  for  proper  growth  and  health  of  bones,  teeth,  blood  clotting,  and  muscle   contraction   Phosphate  is  found  in  bones,  and  many  compounds  including  DNA,  ATP,  and  RNA  

 

   

The  Pancreas:  cells  within  this  gland  secrete  hormones  that  maintain  normal  levels  of  simple  &  complex   carbohydrates   •

The  pancreas  is  made  up  of  exocrine  and  endocrine   Excocrine  glands  that  secrete  digestive  enzymes  into  the  small  intestine     Endocrine  glands  secrete  the  hormones  insulin  and  glucagon,  which  regulate  blood  glucose  levels.    An  increase  of  insulin  in  the  blood  will  cause  a  decrease  of  glucose  in  the  blood.     Glucagon  stimulates  the  release  of  sugar  from  the  liver  into  the  blood  when  blood  sugar  levels  are  low.  

•  

Digestion  prompts  the  release  of  insulin,  which  causes  cells  to  take  up  glucose,  and  liver  and  skeletal   muscle  cells  to  form  the  carbohydrate  glycogen.    

   

Thymus  Gland  

   

• • • •

The  Thymus  is  an  endocrine  gland  and  is  located  in  the  upper  chest  near  the  heart   As  a  young  child  the  thymus  helps  in  the  processing  of  lymphocytes   The  thymus  secretes  thymosin  throughout  childhood     The  thymus  appears  to  have  little  or  no  function  in  adults    

 

The  Pineal  Gland   • •

The  pineal  gland  is  a  pea  shaped  endocrine  gland  that  is  attached  to  the  base  of  the  brain   It  secretes  melatonin  which  is  thought  to  help  control  the  human  sleep  cycles.     Low  levels  of  melatonin  during  the  day  and  higher  levels  at  night  

 

   

Gonads   •

Sex  glands     Ovaries  in  female  –  produce  eggs  and  female  sex  hormones  estrogen  and  progesterone  

  A:  ovary,  produces  the  hormones  estrogen  &  progesterone     Testes  in  male  –  produce  sperm  and  male  sex  hormone  testosterone  

 

  A:  testicle,  produces  the  hormone  testosterone     •   • Both  of  these  glands  stimulate  the  development  secondary  sex  characteristics  when  they  are   stimulated  (puberty)     In  females  this  causes  the  broadening  of  the  hips  and  development  of  breasts     In  males  this  cause  the  deepening  of  the  voice,  facial  hair,  body  hair,  and  broader  shoulders  

 

Improper  Functioning  of  Glands   • •

Hypersecretion  –  When  a  gland  secretes  more  hormone  then  normal   Hyposecretion  –  When  a  gland  secretes  less  hormone  then  normal      

 

      Negative  feedback  Loop  

  A  high  level  of  hormone  3  in  the  blood  inhibits  the  production  of  hormone  2     • • • • • • • •

     

• •

Hypothalamus  receptors  monitor  blood  levels  of  thyroid  hormones.     Low  levels  of  thyroxin  cause  the  Hypothalamus  to  stimulate  the  anterior  pituitary       Hypothalamus  stimulates  the  release  of  TSH-­‐releasing  hormone  from  the  anterior  pituitary.       TSH  travels  to  the  thyroid  where  it  promotes  production  of  thyroid  hormones,  which  in  turn  regulate   metabolic  rates  and  body  temperatures.     The  increased  levels  of  thyroid  hormone  in  the  blood  stops  the  release  of  TSH  from  the  hypothalamus  and   anterior  pituitary  gland  stopping  the  thyroid  from  releasing  too  much  thyroid  hormone.       This  type  of  interaction  between  2  hormones  helps  to  maintain  a  balanced  internal  environment.  

  Feedback  mechanism  that  helps  maintain  homeostasis  (balanced  internal  environment)    

       

        Reproductive  System   Sexual  Reproduction   • • • • •  



Sexual  reproduction:  A  form  of  reproduction  in  which  a  new  individual  is  produced  by  the  union  of  nuclei   of  two  specialized  sex  cells.     In  sexual  reproduction  new  individuals  are  produced  by  the  fusion  of  haploid  gametes  (  egg,  sperm)  to   form  a  diploid  zygote.     Egg  +  Sperm  =  zygote     Haploid  (23  chromosomes)+  Haploid  (23  chromosomes)  =  Diploid(46  chromosomes)   Haploid  cell  –½  the  normal  number  of  chromosomes  –  in  humans  each  egg  &  each  sperm  have  23   chromosomes   Diploid  cell  –  normal  number  of  chromosomes  (  in  humans  46  chromosomes)  

  Sperm  fertilizing  an  egg      

 

Human  Reproduction   • • • • •

 

Sexual  Reproduction  in  humans  is  the  combination  of  egg  and  sperm.   Sperm  are  male  gametes  (haploid),  formed  in  the  testes   ova  (ovum  singular  -­‐egg)  are  female  gametes.  (haploid),  formed  in  the  ovaries   You  get  1/2  your  chromosomes  from  Dad  and  the  other  1/2  from  mom.     Haploid  (1/2)  +  Haploid  (1/2)  =  Diploid  (1)  

Advantages  and  Disadvantages  of  sexual  reproduction   • •  

Advantage:     Sexual  reproduction  offers  the  benefit  of  generating  genetic  variation  among  offspring,  which   enhances  the  chances  of  the  population's  survival.     Disadvantage:   Costs  of  this  process  include  the  need  for  two  individuals  to  mate,  courtship  rituals,  as  well  as  a   number  of  basic  mechanisms  described  later.    

  Human  Reproduction  and  Development   •

Human  reproduction  employs  internal  fertilization  

•          

Gonads  are  sex  organs  that  produce  gametes.     Male  gonads  are  the  testes,  which  produce  sperm  and  male  sex  hormones.     Female  gonads  are  the  ovaries,  which  produce  eggs  (ova)  and  female  sex  hormones.    

The  Male  Reproductive  System   .  

 

 

 

 

 

 

 

 

                           

Path  of  sperm:  D  BC  

 

  A. Testicle:  produces  Sperm(transports  genetic  material),  produces  testosterone  (male  sex  hormone)          which   produces  male  characteristics  (  muscle  development,  deep  voice,  facial  hair…)  and  affects  sperm  production.   Meiosis  occurs  here  to  form  the  sperm.  Testicles  are  surrounded  by  the  scrotum.   The  testicles  are  considered  part  of  the  endocrine  system  because  it  produces  the  hormone  testosterone  and  part  of  the   reproductive  system  for  producing  sperm.  

Scrotum:  The scrotum is contained within the abdominal cavity in the embryonic stage. Shortly before birth, they come

down and remain outside throughout life. This is because the testes cannot produce sperms at the body temperature. A temperature 2-3 degrees lower is ideal for the production of sperms. The scrotal sacs hang loose when it is hot and when it is cold the skin of the scrotal sacs contracts and this keeps them in close contact with the body.  

 

B.  Seminal  Vesicle:  behind  the  bladder,  secretes  a  fluid  that  combines  with  sperm  to  produce  semen.   C.  Vas  deferens  :  a  duct  that  connects  the  testes  to  the  urethra.  Sperm  travel  through  this  to  exit  the  body.  If   there  is  a  blockage  here,  sperm  would  not  be  transported  to  the  urethra.   D.  Bladder:  stores  urine   E.    Prostate  Gland:  secretes  an  alkaline  fluid  into  urethra  which  mixes  with  the  semen..      F    Cowpers  glands:  secretes  a  lubricating  fluid into the urethra just before it enters the penis. The secretions of these glands make the sluggish sperms more active and help in the passage of sperms through the duct system and then in the ejaculation.  

G.  Urethra:  carries  urine  (excretory  system)  or  semen(reproductive  system)  outside  of  the  body   H.  Penis:  is a muscular organ containing erectile tissue. The tissue is richly supplied with blood vessels. On sexual stimulation the penis is gorged (supplied) excess with blood which causes it to become erect. During sexual intercourse, the penis is inserted into the vagina of the females before ejaculation. Ejaculation is the release of sperms by the penis to the outside.     Sperm:  male  sex  cell  (gamete),  produced  by  meiosis  in  testes,  contains  23  chromosomes   (haploid),transports  genetic  material(genes,  DNA)  

Path  of  sperm:   Testicles-­‐  Vas  deferens-­‐  urethra    

  The  Female  Reproductive  System   • The  female  gonads,  ovaries,  are  located  within  the  lower  abdominal  cavity. The  ovary  contains  many  follicles  composed  of  a  developing  egg  surrounded  by  an  outer  layer  of  follicle  cells.    

  Female  Sexual  Structures:  Reproductive  cycle  stops  as  women  age  due  to  decrease  of  sex  hormones   1.  Vagina  –  birth  canal  which  leads  to  the  outside  of  the  body.     2.  Cervix  –  Narrow  neck  of  the  uterus     3.  Ovaries  –  Each  month  an  egg(gametes)  develops,  matures  and  is  released.  Produces  the  sex  hormones     estrogen  &  progesterone  .  Considered  part  of  endocrine  system(  produces  Hormones)  &  reproductive   system.  Release  of  egg  is  called  ”  ovulation”.   •   • 4.  Fallopian  Tube  or  Oviduct  –  Carries  the  mature  egg  from  the  ovary  to  the  uterus  (most  fertile  time)     The  opening  of  the  oviduct  is  lined  with  cilia  that  draws  the  released  egg  into  the  tube.  Fertilization  occurs  here  .   • • • • •

   

 

 

 

                                                                                                                                                                                                                                            Fertilization  in  the  oviduct  (fallopian  tube)  

 

 

Mitosis  of  the  zygote  starts  in  the  oviduct  

 

  5.Uterus  –  thick  walled,  muscular,  pear  shaped  organ.  If  egg  is  fertilized,  embryo  is  implanted  here  &  develops       (support  of  fetus).  If  no  pregnancy  occurs,  uterine  lining  breaks  down  each  month  &  leaves  body  ”menstruation”                

 

Placenta   During  pregnancy,  the  placenta  will  form  in  the  uterus.  The  placenta  forms  from  fetal  tissue  &  uterine  tissue.   The  placenta  is  essential  to  the  embryo  for  the  processes  of  nutrition  ,  excretion  and  oxygen  transport  to  the   fetus.  Harmful  toxins  can  cross  the  placenta  by  diffusion.    

Ovarian  Cycles:  The  hormone  FSH  produced  by  the  pituitary  gland,  helps  the  development  of  the  ovarian   follicle.  



After  puberty  the  ovary  cycles  between  a  follicular  phase  (maturing  follicles)  and  a  luteal  phase   (presence  of  the  corpus  luteum).  

                                   Follicle  stage:  thickening  &  vascularization  of  uterine  lining     • Corpus  luteum:  ovarian  tissue  that  surrounds  each  egg,  it  is  called  the  ‘yellow  bodied  structure  that   secretes  the  hormone  progesterone      

• • •

 

These  cyclic  phases  are  interrupted  only  by  pregnancy  and  continue  until  menopause,  when   reproductive  capability  ends.  

 

The  ovarian  cycle  lasts  usually  28 days.

Oogenesis  (  formation  of  gameters-­‐eggs)   •

 Meiosis  occurs  in  ovary,  I  egg  &  3  polar  bodies  produced.

 

At  birth  each  female  carries  a  lifetime  supply  of  developing  oocytes  (eggs)   A  developing  egg  (secondary  oocyte)  is  released  each  month  from  puberty  until  menopause,  a   total  of  400-­‐500  eggs  

 

Menstrual  cycle  Part  1:  controlled  by  pituitary  gland  &  ovaries   • • • • •

Menstrual  cycles  vary  from  between  15  and  31  days.     The  first  day  of  the  cycle  is  the  first  day  of  blood  flow  (day  0)  known  as  menstruation.  (Menses)   During  menstruation  the  uterine  lining  is  broken  down  and  shed  as  menstrual  flow.     FSH  and  LH  are  secreted  on  day  0,  beginning  both  the  menstrual  cycle  and  the  ovarian  cycle.     Both  FSH  and  LH  stimulate  the  maturation  of  a  single  follicle  in  one  of  the  ovaries  and  the  secretion  of   estrogen.    (Follicular  phase)     Rising  levels  of  estrogen  in  the  blood  trigger  secretion  of  LH,  which  stimulates  follicle  maturation  and   ovulation  (  a  mature  egg  is  released  by  the  ovary  -­‐day  14,  or  midcycle).  

Menstrual  cycle  Part  2   LH  stimulates  the  remaining  follicle  cells  to  form  the  corpus  luteum,  which  produces  both  estrogen  and   progesterone.  (luteal  phase)   • Estrogen  and  progesterone  stimulate  the  development  of  the  endometrium  and  preparation  of  the   uterine  inner  lining  for  implantation  of  a  zygote.  (fertilized  egg)     • If  pregnancy  does  not  occur,  the  drop  in  FSH  and  LH  cause  the  corpus  luteum  to  disintegrate.     The  drop  in  hormones  also  causes  the  sloughing  off  of  the  inner  lining  of  the  uterus  by  a  series  of  muscle   contractions  of  the  uterus      Sequences  of  menstrual  cycle:   •

Follicle  stage  ovulation  corpus  luteum  menstruation      

         

Fertilization   • • •

During  intercourse  100s  of  millions  of  sperm  are  released  into  the  vagina.  This  is  to  ensure  that  some   sperm  will  survive  and  fertilize  the  egg   Sperm  swim  through  the  cervix,  up  through  the  uterus,  and  in  to  the  oviducts   If  there  is  an  egg  moving  down  the  oviduct  it  may  be  fertilized  by  the  sperm.     If  the  fertilized  egg  implants  in  the  wall  of  the  uterus  the  corpus  luetum  will  release  large  amounts  of   progesterone  

 

 

Fertilization  facts   • • • • •

Sperm  can  live  in  the  female  reproductive  system  for  72  hours.     Pregnancy  can  occur  during  menstruation.   Progesterone  is  known  as  the  pregnancy  hormone.     Only  1  sperm  can  fertilize  an  egg.   Humans  have  46  Chromosomes  –  23  egg  +  23  sperm  =  46  new  complete  set  

  Mitosis  (cell  division)  of  the  fertilized  egg  occurs  in  the  oviduct  (fallopian  tube)  

   Differentiation:  Embryonic  cells  will  use  different  portions  of  their  genetic  information  to  become  different  cells  of   the  body.  Example:  liver  cells,  heart  cells,  brain  cells  

Gender A baby's sex is determined at fertilization. A chromosome from the father's sperm determines whether the child is male or female. If an X chromosome is present the baby is a girl; if a Y chromosome is carried by the sperm instead, the baby is a boy. Twins

Occasionally two eggs are released by the ovary and fertilized by a different sperm. This results in fraternal twins who are different in appearance and may be of different sexes because their genes form from two eggs and two sperm cells. Rarely, one embryo splits into two and both cells develop separately, as identical twins, similar in appearance." They have the same genetic make-up and apparently the whole genetic message is the same in both of them. Nevertheless, they are obviously different human beings."2 Protection & Support During and after implantation the embryo develops a protective, fluid-filled capsule which surrounds and cushions the developing body to prevent injury. Embryo and fluid are enclosed in two membranes, an inner amnion and an outer chorion. The chorion is covered in rootlike tufts, some of which form the early placenta - an organ made by the baby and the mother which transfers nutrients from the mother's bloodstream and removes waste products from the child's, though mother's and baby's circulatory systems remain separate. The placenta also produces hormones to maintain the pregnancy. In the ninth month it will alter the mother's hormonal balance and triggers off the birth process - although we are still unsure what causes labor to begin. The baby is connected to the placenta by the umbilical cord, the lifeline channeling nourishment in and taking wastes out, which will be cut close to the baby's abdomen at birth and will leave the mark of the navel. During pregnancy the baby obtains oxygen from the mother's blood via cord and placenta, so does not drown in the surrounding fluid. Carbon dioxide (waste product from cellular respiration) passes through the placenta from the blood of the fetus to the blood of the mother. A pathogen passed from mother to fetus could cause an infection in the fetus The German measles is a virus which can cross the placenta from mother to fetus. Body development Exposure to toxins ( smoking ,pesticides, other chemicals) and alcohol during early stages of pregnancy can cause birth defects because essential organs form during early development. The endoskeleton of a human embryo is made up of mostly cartilage (connective tissue) Gestation: carrying of fetus in mother’s body. Time between fertilization & birth. Gestational period for humans is 9 months (38-40 weeks). Gestation ends with the birth.

Development of human: Fertilized egg tissues organs fetus

#1 Oviduct or Fallopian tube: fertilization occurs here #2 Uterine muscles: contracts and pushes baby out during labor. Estrogen will stimulate the production of extra blood vessels here #3 Uterus: Embryo develops into fetus, influenced by progesterone & estrogen during pregnancy. Uterine tissue combines with fetal tissue to form the placenta. #4 Vagina :

birth canal, fetus will leave the uterus and travel through the vagina during labor

#5 Umbilical cord:

connects baby to placenta

#6 Placenta : nutrient (nutrition) & Oxygen exchange from Mom to baby. Carbon dioxide & other waste products (excretion) exchange from baby to mom Blood systems of mom and baby are separate, but certain materials can pass from one another through the placenta by diffusion. #7 Amniotic fluid: protects & cushions the baby from shock

Fertilized egg- tissues- organs- fetus

Assisted  Reproduction  Technology   What  is  ART?   ► Group  of  high  tech  treatment  methods  to  improve  infertility.   ► Techniques  include    In  Vitro  Fertilization    Artificial  Insemination    Gamete  Intra-­‐Fallopian  Transfer    And  many  more  

What  is  Infertility?   ► Inability  to  conceive  a  baby  after  one  year  of  unprotected  intercourse. ► Affects  the  reproductive  organs  of  both  men  and  women. Infertility  affects  about  15%  of  couples  in  the  United  States  

  Factors  Affecting  Conception   ► ► ► ► ►

Production  of  healthy  sperm     Healthy  eggs  by  the  woman   Unblocked  fallopian  tubes   The  ability  for  the  sperm  to  fertilize  the  egg   The  ability  for  the  embryo  to  implant  in  the  uterus  

 

Causes  of  Infertility  in  Women   The  older  a  woman  is  the  higher  her  chances  of  becoming  infertile.   Ovulation  disorder Blocked  fallopian  tubes  caused  by  a  pelvic  inflammatory  disease  or  endometriosis  (a  condition  that  causes   adhesions  and  cysts)     Adhesions  is  scar  tissue

Causes  of  Infertility  in  Men   ► Azoospermia-­‐lack  of  sperm  production   ► Inability  to  ejaculate  normally   ► Varicocele-­‐  veins  in  the  scrotum  are  enlarged  which  can  heat  the  inside  of  the  scrotum  and  can  affect  sperm   production.   ► Teratospermia-­‐  increased  percentage  of  abnormal  shaped  sperm  

  Most  Common  Choices  of  Treatment  

► ► ► ► ►

In  Vitro  Fertilization   Artificial  Insemination   Frozen  Embryos   Gamete  Intra  Fallopian  Transfer   Zygote  Intra  Fallopian  Transfer  

  Artificial  Insemination   ► Sperm  is  collected  and  placed  into  a  woman’s  vagina,  cervical  canal  or  in  the  uterus.   ► Sperm  can  come  from  your  partner  or  an  anonymous  donor.    

In-­‐Vitro  Fertilization:  USED  FOR  BLOCKED  FALLOPIAN  TUBE   ► Procedure  that  involves  retrieving  eggs  and  sperm  from  the  bodies  of  the  male  and  female  partners  and   placing  them  together  in  a  laboratory  dish  to  enhance  fertilization.  



Fertilized  eggs  are  then  transferred  (implanted)  several  days  later  into  the  female’s  uterus  where  

implantation  and  embryo  development  will  hopefully  occur  as  in  a  normal  pregnancy

 

  Gamete  Intra-­‐Fallopian  Transfer    (GIFT)  

.    



A mixture of a woman’s eggs and sperm are placed into the fallopian tube during a laparoscopy.



Once inserted, fertilization is allowed to occur.

  Frozen  Embryos   ► Embryos  may  be  taken  from  an  individual  and  stored  for  later  use. ► Once  ready  to  use,  they  can  be  thawed  and  then  placed  into  the  uterus. This  allows  a  higher  chance  of  pregnancy  

Left-­‐over  Embryos  

Typically,  during  fertility  treatments,  women  may  store  fertilized  eggs,  embryos,  as  part  of  their   treatment.       Kept  frozen  for  unanticipated  catastrophe     A  kind  of  immortality     Many  major  fertility  centers  have  thousands  of  these-­‐-­‐10,000  per  year  nationally     No  federal  agency  oversees  this     Sometimes  embryos  are  donated  to  infertile  couples,  but  legal  issues  about  parental  rights  persist.   

    

 

Surrogacy   Surrogacy  occurs  when  I  woman  agrees  to  carry  to  term  the  fetus  for  another  person.     That  fetus  may  be  from  the  egg  and  sperm  of  the  couple  who  want  to  raise  the  child  or  it  may  be   donor  eggs  or  donor  sperm.   What  are  the  rights  of  the  surrogate  mother?    Of  the  individuals  who  ask  her  to  be  a  surrogate?  

• • •  

  Sexually  Transmitted  Diseases   Sexually  transmitted  diseases  (STDs)  cause  over  $7  billion  to  be  expended  for  treatment.  STDs  can  affect  the   sex  partners,  fetus,  and  newborn  infants.  STDs  are  grouped  into  three  categories     Category  One   • •

 

STDs  that  produce  inflammation  of  the  urethra,  epididymis,  cervix,  or  oviducts.  Gonorrhea  and   chlamydia  are  the  most  common  STDs  in  this  category.   Both  diseases  can  be  treated  and  cured  with  antibiotics,  once  diagnosed.

Category  Two   • • •  

STDs  that  produce  sores  on  the  external  genitals.   Genital  herpes  is  the  most  common  disease  in  this  class,  affecting  more  than  25  million   individuals  in  the  US.  Symptoms  of  herpes  can  be  treated  by  antiviral  drugs,  but  the  infection   cannot  be  cured.   Syphilis  is  a  bacterially  caused  infection,  and  can,  if  left  untreated,  cause  serious  symptoms  and   death.  However,  the  disease  is  curable  with  antibiotics.

Category  Three   • This  class  of  STDs  includes  viral  diseases  that  affect  organ  systems  other  than  those  of  the   reproductive  system.   AIDS  and  hepatitis  B  are  in  this  category.  Both  can  be  spread  by  sexual  contact  or  blood.  Infectious   individuals  may  appear  symptom-­‐free  for  years  after  infection  

 

Ecology   •

Ecology  is  the  study  of  interactions  among  organisms  and  between  organisms  and  their  environment.  

Biosphere  contains  the  combined  portions  of  the  planet  in  which  life  exists,  including  land,  water,  and   air  or  atmosphere.   Biotic  –  All  living  things  that  effect  the  environments   Abiotic-­  the  nonliving  part  of  the  environment    Ex:  light,  temperature,  water,  gases,  soil,  minerals,  PH   •

 

• •

Levels  of  Organization   • • •

Species  is  a  group  of  organisms  so  similar  to  one  another  that  they  can  breed.     Population  are  groups  of  individuals  that  belong  to  the  same  species  and  live  in  the  same  area.     Ex:  All  the  goldfish  in  a  tank  or  all  the  deer  in  the  park  



Communities  are  assemblages  of  the  different  populations  that  live  together  in  a  defined  area.   EX;  all  the  insects,  birds,  mice,  snakes,  worms,  bacteria  &  plants  in  a  field  



Ecosystem  is  a  collection  of  all  the  organisms  that  live  together  in  a  particular  place  as  well  as  their   nonliving  or  physical  environment.  Ex:  all  the  biotic  and  abiotic  factors  interacting  in  an  area.          For  a  stable  ecosystem:  there  must  be  interrelationships  &  interdependencies  among  organisms     Organisms  within  an  ecosystem  depend  on  the  activities  of  biological  catalysts  



Biome  is  a  group  of  ecosystems  that  have  the  same  climate  and  similar  dominant  communities.    Levels  of  ecological  organization:  Populationcommunitiesecosystembiosphere  

 

    Population:  seagulls  

  Community:  all  the  plants  and  animals  

  Ecosystem:  All  the  plants,  animals,  PH,  temperature  and  soil  

    •

Nutritional  Relationships: Ecosystem  

 

The    transfer  of  nutrients  from  one  organism  to  another  within  an  

.     The  arrows  indicate  energy  being  transferred  from  one  organism  to  the  next  as  it  is  being  eaten.   The  grass  gets  eaten  by  the  mouse,  and  the  mouse  gets  eaten  by  the  snake  &  hawk    

  Energy  Flow     • • •

Sunlight  is  the  main  source  of  energy  for  life  on  Earth.   Some  types  of  organisms  rely  on  the  energy  stored  in  inorganic  chemical  compounds.   Autotrophs  (producers)  use  energy  from  the  sun  to  change  inorganic  compounds  into  complex   organic  molecules.    



Energy  Flow  :  Autotrophs-­‐Synthesize  their  own  food  from  inorganic  compounds  (carbon  dioxide  and  

 

water)  and  energy  from  the  sun  

The  best  known  autotrophs  (plants)  are  those  that  harness  the  power  of  the  sun  through  photosynthesis.     They  use  this  energy  to  convert  carbon  dioxide  and  water  into  oxygen  and  glucose. The  second  type  of  autotrophs  use  chemical  energy  to  make  carbohydrates.    This  is  performed  by  several   types  of  bacteria  

Producers = Autotrophs   •

Make their own food through photosynthesis.  

 



Light energy  photosynthesis chemical energy(sugar) respiration ATP (energy)

Energy  Flow:  Consumers   Heterotrophs  (consumers)  rely  on  other  organisms  for  their  energy  and  food.  (consume  other   organisms)  

   



They  are  classified  based  upon  what  they  eat  and  how  they  obtain  food  

Saprophytes:    Organisms  that  live  off  dead  organic  matter,  Examples:  fungi,  bacteria,  yeast  

 

     

 

 

Herbivores  obtain  energy  by  only  eating  plants.  Examples:  cows,  mice,  snails,  rabbits •

Also  known  as  “primary  consumers”   •  

    Carnivores  obtain  energy  by  eating  animals.   “  Secondary  Consumers”  



Predator:  animal  that  kills  other  animals                                                  .  



  Scavenger:  feeds  on  organisms  that  are  already  dead.  

• • •

  *Parasite:  feeds  off  of  living  animals.  

 

 

•   Omnivores  eat  both  plants  and  animals.    

    Detritivores  feed  on  the  remains  of  plants,  animals  and  other  dead  matter.   Decomposers  breaks  down  organic  matter  into  inorganic  matter.         •  

Symbiosis  :  A  relationship  in  which  2  organisms  live  together  in  close  association  

  •

1.  Commensalism:  One  organism  benefits  and  the  other  is  not  harmed   Barnacles  and  Whales  



Barnacles  need  a  place  to  anchor.  They  must  wait  for  food  to  come  their  way.  Some  barnacles  hitch  a  ride   on  unsuspecting  whales  who  deliver  them  to  a  food  source.  This  does  not  effect  the  whale  in  any  way.  

    Oak  Gall  Wasps  and  Oak  Trees:   • • • •

The  oak  gall  wasp  stings  the  oak  tree.   the  tree  then  grows  a  GALL  which  is  a  nest  for  the  wasp’s  babies.     When  the  larva  hatch,  they  eat  their  way  out  of  the  gall.     Does  not  help  or  hurt  the  oak  tree  

 

 

            2.  Mutualism:  both  organisms  benefit  

   

Nitrogen fixing bacteria live in nodules on the roots of legumes. Bacteria create ammonia from nitrogen in



air, which is used by the plant to create amino acids and nucleotides. The plant provides the bacteria with  

sugars.

E.  coli  living  in  human  intestine:  E.  coli  is  a  bacteria  that  helps  breakdown  sustances  that  our  body  can’t  do  on  it’s  own.     The  bacteria  synthesize(make)  vitamins  used  by  humans  a  nd  receive  nutrition    from  the  digested  food.Both  humans  and   the  bacteria  benefit.    Otters  &  Kelp:    the  otters  help  the  kelp  by  eating  the  sea  urchins  which  endanger  it.  The  kelp  provides  an  anchor  for  the   otters  while  they  sleep.     Lichens  is  really  2  organisms:  algae  &  fungus   •

The  fungus  needs  food  but  cannot  make  it.  The  algae  makes  food  but  needs  some  way  to  keep  moist.   The  fungus  forms  a  crust  around  the  algae  which  holds  in  moisture.  Both  organisms  benefit.  

  Cleaner  fish  &  Moray  Eel   •

The  cleaner  fish  eats  parasites  and  food  bits  out  of  the  inside  of  this  moray  eel.  It  gets  a  meal  and  is   protected  from  predators  by  the  fierce  eel.  

     

 

3.  Parasitism:  One  organism  benefits,  the  organism  is  harmed   Bedbugs:   •

Bedbugs  are  small,  nocturnal  parasites  that  come  out  of  hiding  at  night  to  feed  on  unsuspecting   humans.    They  feed  exclusively  on  blood!    Their  bites  often  result  in  an  allergic  reaction.    

 

 

Tapeworms:   •

 

The  definitive  host  of  the  cucumber  tapeworm  is  a  dog  or  a  cat  (occasionally  a  human).  Fleas  and  lice   are  the  intermediate  host.  the  dog  or  cat  becomes  contaminated    when  the  eggs  are  passed  in  the  feces,  and   the  flea  or  louse  ingests  the  eggs.    The  dog  or  cat  (or  human)  is  infected  when  they  ingest  a  flea  or   louse.    Hence  the  importance  of  controlling  fleas  on  your  pet!  Presence  of  parasites  in  an  animal  results  in   the  inability  of  the  host  to  maintain  homeostasis.    

   

 

 

  Athlete’s foot: The fungus that causes athlete's foot is calledTrichophyton, and is commonly found on floors and in clothing. Athlete's foot is a form of ringworm. Athlete's foot typically develops between our toes and occasionally on other parts of our feet. It usually causes burning, stinging and/or itching. It is the most common type of fungal infection. Although it is contagious, athlete's foot is usually easily treated with OTC (over-the-counter, no prescription required) medication.  

 

 

Habitat:    The  place  where  an  organism  lives

 

Examples: • •



A  fish  lives  in  a  pond,  Bacteria  that    live  in  the  human  digestive  tract,  An  earthworm  lives  in  the  soil   Niche-­‐  the  specific  role  played  by  an  organism  in  it’s  ecosystem.  If  2  organisms  occupy  the  same  niche   (environmental  requirements)  they  will  compete  against  each  other  for  food,  nesting  sites,  limited   resources….   Examples:   Consumer,  Producer  ,  Decomposer,  Predator  

  • • •

 

Only  one  species  at  a  time  can  occupy  a  particular  niche   If  there  is  more  that  one  species  there  will  be  competition   It  may  appear  that  more  than  one  species  occupies  a  niche   Ex-­‐  Darwin’s  Finches  –  but  some  may  eat  small    seeds  and  others  large  seeds  

 

   

The shelf fungus absorbs materials from the tree, while the slug eats algae growing on the outside of the trunk. They do not compete with each other for food because they occupy the same habitat but different niches.

The  shelf  fungus  absorbs  materials  from  the  tree,  while  the  slug  eats  algae  growing  on  the   outside  of  the  trunk  Feeding  Relationships      

• • • •  

Energy  flows  through  an  ecosystem  in  one  direction,  from  the  sun  or  inorganic  compounds  to  autotrophs   (producers)  and  then  to  various  heterotrophs  (consumers)  and  finally  to  decomposers   Food  Chains  are  a  series  of  steps  in  which  organisms  transfer  energy  by  eating  or  being  eaten.   Food  webs  show  the  complex  interactions  within  an  ecosystem.  (many  food  chains  linked  together)     Each  step  in  a  food  chain  or  web  is  called  a  trophic  level.    Producers  make  up  the  first  step,  consumers   make  up  the  higher  levels.  

Food  Chain   •  

A  food  chain  indicates  the  transfer  of  energy  from  producers  through  a  series  of  organisms  (consumers)   which  feed  upon  each  other.    

   

Aquatic  Food  Chain:  minerals  enter  the  water  from  the  surrounding  soil  by  diffusion.    

  Producer  –  all  autotrophs  in  a  community  



• •

Organisms  that  make  their  own  food  using  energy  from  the  sun  and  inorganic  raw  material     Primary  consumers:  organisms  that  eat  producers       Herbivores-­‐  organisms  that  eat  only  plants  or  plant  parts      Secondary  consumer-­‐  organism  that  eat  primary  consumers   Third  order  consumer  –  organisms  that  eat  secondary  consumers     Fourth  order  consumer  –  organisms  that  eat  third  order  consumers    

food  web  is  a  series  of  interrelated  food  chains  which  provides  a  more  accurate  picture  of  the  feeding   relationships  in  an  ecosystem,  as  more  than  one  thing  will  usually  eat  a  particular  species.   Includes  alternative  pathways  for  energy  flow  

 

 

There  are  usually  2  things  that  are  missing  from  food  web  diagrams  but  are  absolutely  necessary.   SUN:  source  of  energy Decomposers:  Convert  large  molecules  into  simpler  molecules  that  can  be  recycled Bacteria  or  fungi  that  feed  off  of  dead  matter  (consume)  &  organic  wastes  and  recycle  the  minerals  to  the  soil,  making   the  soil  rich.   • They  put  nutrients  back  into  the  soil  &  releases  Nitrogen  gas  when  tissues  od  dead  plants  &  animals   are  broken  down.    

An  ecosystem  can’t  sustain  itself  if  there  are  more  consumers  than  producers  (photosynthetic)  

A  Self-­‐Sustaining  Ecosystem  MUST  HAVE:   1. Materials  are  recycled.   2. A  constant  input  of  energy.    

     

Ecological  Pyramids

 

 



An  ecological  pyramid  is  a  diagram  that  shows  the  relationship  amounts  of  energy  or  matter  contained   within  each  trophic  level  in  a  food  web  or  food  chain.  It  shows  loss  of  energy  from  different  organisms  

•   • Energy  Pyramid  :  primary  source  of  energy  for  all  organisms  is  the  sun  

Only  10%  of  the  energy  available  within  one  trophic  level  is  transferred  to  organisms  at  the  next   trophic  level.

   

Most  energy  in  a  food  web  is  at  the  producer(autotroph)  level  and  decreases  at  each  feeding  level Each  level  becomes  smaller  because  the  organisms  use  energy  to  carry  out  life  functions  and  some  is   released  as  heat  



   

  ENERGY CAN NEVER BE RECYCLED!!

 Most  energy  is  in  the  bottom  layers  (autotrophs/producers),  least  energy    is  at  the  top  (heterotrophs/consumers).   Energy  is  lost  as  heat      

      Biomass  Pyramid    

• • •

Biomass  pyramids  show  the  total  amount  of  living  tissue  (mass)  available  at  each  trophic  level.    This  shows   the  amount  of  tissue  available  for  the  next  trophic  level.   The  producer  level  contains  the  largest  biomass  and  it  decreases  at  each  level  as  a  result  of  energy  being  lost   from  as  it  flows  from  producers  to  carnivores.    

      Cycles  of  matter(material)  :  Water,  Oxygen,  CO2  are  recycled  and  Energy  is  not  recycled.   • • • • •

 

In  a  self  sustaining  ecosystem  materials  must  be  recycled  between  organisms  and  the  abiotic  environment   Unlike  the  one-­‐way  flow  of  energy,  matter  is  recycled  within  and  between  ecosystems.   These  cycles  are  the  water  cycle,  Nutrient  Cycle,  Carbon  Cycle,  nitrogen  cycle  and  phosphorus  cycle.     Energy  is  not  recycled,  its  lost  as  heat  or  waste,  it  is  used  by  an  organism  to  survive,  it  is  obtained  through   consumption  of  food.  

Carbon-­‐  Oxygen  Cycle:    Cutting  down  the  rainforest  or  trees  causes  an  increase  in  CO2  &  and  a  

decrease  of  oxygen  (O2)  in  the  atmosphere   •

 

These  elements  are  recycled  by  the  processes  of:     Respiration  (uses  O2  and  produces  CO2)   Photosynthesis  (uses  CO2  and  produces  O2)   Both  processes  involve  O2,  CO2  &  H2O  

Water  Cycle   Water Cycle - The cycle starts when the sun's heat evaporates water from the oceans into the atmosphere to form clouds. When the conditions are just right, the clouds release water as rain or

snow. Most of the rain falls in the oceans, but the rest falls onto land. Rivers and streams collect water from the ground and return it to the ocean so the whole cycle can start all over again. The water cycle never ends because the salty ocean water constantly supplies fresh water to the continents.   Water  is  recycled  by  the  processes  of: • • • • • •

• • • • •

Photosynthesis   Respiration   Transpiration:  water(vapor)  loss  from  plants  &  trees  into  the  atmosphere   Evaporation:  liquid  water  (  oceans,  lakes,  puddles…)  turns  into  water    vapor  &  enters  atmosphere   Condensation:  formation  of  clouds Excretion:  Animals  &  humans  lose  water  

Nitrogen  Cycle  

Nitrates:  are  used  by  green  plants  to  synthesize  proteins   Decomposers:  convert  nitrogenous  wastes  to  ammonia   Nitrifying  bacteria:  convert  ammonia  to  nitrates   Denitrifying  bacteria:  break  down  nitrates  into  free  nitrogen  which  enters  the  atmosphere   Nitrogen  fixing  bacteria:  convert  free  nitrogen  into  nitrates  to  be  used  by  plants   Legumes  –  peas,  bans  and  clover  –  have  nodules  of  where  bacteria  live  (mutualism)  

Animals  obtain  nitrogen  by  eating  plants  or  eating  animals  that  ate  plants  

  Succession:  major  factor  determining  the  final  stage  in  succession  is  the  climate  of  the  area  

 

The  replacement  of  one  community  by  another  until  a  stable    or  climax  community  is  formed   Each  community  causes  changes  in  the  environment  that  allows  other  communities  to  replace  them   Changes  in  a  community  over  time.   All  ecosystems  go  through  succession       Two  types  of  Succession.   Primary  Succession     Secondary  Succession    

• • • • • • • •

Primary  Succession   • • • • •  

Bare  Rock  is  broken  down  by  lichens  and  mosses  to  make  soil   Weeds  and  grasses  begin  to  grown  in  the  small  amount  of  soil  .  .  .  They  add  to  the  organic  matter  as  they  die   and  are  broken  down  by  bacteria   Bushes  and  shrubs  begin  to  grow  as  the  soil  deepens     The  first  trees  are  Pines  and  Hickories   This  eventually  grows  into  a  mature  forest  or  climax  community     Flowing  lava  is  so  hot  it  destroys  everything  in  its  path,  but  when  it  cools  it  forms  new  land.    

Secondary  Succession   • • •

Occurs  after  a  community  has  been  cleared  because  of  a  disturbance.  (natural  or  artificial)     Examples  of  possible  disturbance  include:  fire,  deforestation  by  humans,  hurricanes,  and  earthquakes     Secondary  succession  is  usually  much  quicker  than  primary  succession  for  the  following  reasons:   – There  is  already  an  existing  seed  bank  of  suitable  plants  in  the  soil.     – Root  systems  undisturbed  in  the  soil,  stumps  and  other  plant  parts  from  previously  existing  plants   can  rapidly  regenerate.     – The  fertility  and  structure  of  the  soil  has  also  already  been  substantially  modified  by  previous   organisms  to  make  it  more  suitable  for  growth  and  colonization.  

Secondary  Succession  -­‐  occurs  after  human  intervention  or  a  natural  disaster    

Secondary Succession takes less time to reach a climax community since pioneer species are not involved Pioneer  Organisms   • The  first  plants  to  populate  an  area  

Examples:  Lichens  on  bare  rocks    

Pioneer  Organism:  First  organism.  

 

=Always  a  producer. • •

Usually  lichens,  moss,  algae  or  grass.   Lichens  turn  solid  rocks  into  soil.  

Then  come:    Small  plants,  Shrubs,  Pines  &  Other  trees   •

Flora  



Fauna  

plants   animals  

Succession  in  New  York   •

Grass-­‐  Shrubs-­‐  Conifer-­‐Deciduous  Woodlands  

  • •

Flora  succession  is  the  major  limiting  factor  for  fauna  succession   A  limiting  factor  is  any  factor  that  limits  the  size  of  a  population  

  Climax  Community   • • •

   

A  relatively  diverse  and  stable  ecosystem  that  is  the  end  result  of  succession   They  are  named  after  the  dominant  plant  species   They  will  persist  until  major  catastrophic  change  alters  or  destroys  the  community  

(fire,  volcanic  eruptions  etc)

If  disaster  strikes…   •

The SAME ecosystem will be reestablished after several years.  

 

Maintaining  a  Stable  Ecosystem:     sexual  reproductiongenetic  variationbiodiversityecosystem  stability   Ecosystems  tend  to  show  cyclic  changes  around  a  point  of  equilibrium  (  a  state  of  balance  between  opposites)        

Checks  and  balances  

• • •

As  a  population  increases  it  is  held  in  check  by  one  or  more  environmental  factors  or  by  another  species   (example  predator  –prey)   An  example  of  equilibrium  :  nutrients  from  decayed  organisms  being  recycled  in  a  forest  ecosystem.  

  Carrying  capacity  –  the  size  of  a  population  that  can  be  supported  by  an  environment.  Population  of  an  organism  will   remain  constant  when  it  reaches  the  carrying  capacity,  then  it  will  alternately  increase  &  decrease.   Carrying  capacity  has  been  met  

  • • • •

Population  –  a  group  of  individuals  of  a  single  species  that  occupies  the  same  general  area.   Exponential  growth  model  –  the  rate  of  expansion  of  a  population  under  ideal  conditions   Population-­‐limiting  factors  –  hunting,  amount  of  space  suitable  for  breeding,  restricted  population  growth,   food  availability   Logistic  growth  model  –  idealized  population  growth  slowed  by  limiting  factors  as  the  population  size   increases  

Limiting  Factors   • • •

Factors  in  the  environment  that  limits  the  size  of  the  population   Abiotic  factors  :  sunlight,  water,  oxygen,  nitrogen,  pH,  ,shelter,  disease,    temperature,  climate  change,   amount  of  nutrients  in  the  soil(fields  planted  with  same  crop  every  year)   Biotic  factors:      predators/prey,  food  

Competition   • •



Occurs  when  organisms  of  the  same  habitat  compete  for  limited  biotic  and  abiotic  resources   May  occur  between  organisms  of  the  same  species     May  occur  between  organisms  of  different  species      

***disruptions  in  the  number  and  type  of  species,  environmental  changes  and  man  made  changes   can  upset  the  balance  of  the  ecosystem     Predator-­‐Prey  relationships  

 

Competition

Wolf  

Hawk  

   

BIODIVERSITY   • The  variety  of  different  species  in  an  ecosystem  or  in  the  world  

  Rainforests:  Chemical  in  rare  plants  may  lead  to  life  saving  medicines   • • • •

More  than  50%  of  the  world's  plant  and  animal  species  inhabit  the  7%  of  the  world  that  is  covered  in   rainforest.     Two  to  three  football  fields  of  rainforest  are  cut  down(cleared)  every    day,  decreasing  biodiversity.   An  estimated  450  species  are  going  extinct  every  day.   Decreasing  biodiversity  could  cause  a  loss  of  future  foods  or  medications.  

  High  biodiversity  means  a  greater  variety  of  genetic  material.  

Evolutionary  changes  have  resulted  in  a  greater  diversity  of  organisms  and  their  roles  in  the  ecosystem.   •

Biodiversity  increases  the  stability  of  an  ecosystem  

 

 

 

Biodiversity = Stability • •

Biodiversity  provides  a  variety  of  genetic  material  that  may  lead  to  beneficial  agricultural  or  medical  uses     Biodiversity  increases  the  chances  that  some  species  will  survive  large  environmental  changes.  

Biomes Energy  Transfer   • • •

The  sun  heats  the  earth  unequally,  causing  differences  in  temperature.   Evaporation  and  precipitation  of  water  occurs  because  of  the  unequal  heating.   .  

 

Latitude   North  pole  90  N   Low  sunlight  

sunlight  

Arctic  Circle    66.5  N  

Tropic  of  Cancer    23.5    N   Equator  0  degrees  

Most  direct  sunlight  

Tropic  of  Capricorn  23.5  S   sunlight  

Antarctic  circle  66.5  S   Low  sunlight  

South  Pole  90  S  

 

The  amount  of  direct  light  can  affect  the  temperature.  

 

• •

Remember  that  the  equator  gets  the  most  sunlight,  and  polar  regions  gets  the  least.   An  increase  in  altitude  has  the  same  effect  on  the  habitat  of  an  organism  as  an  increase  in  latitude.  

Precipitation   • • • •

The  amount  of  water  falling  in  the  given  area  can  greatly  affect  the  type  of  climate   Remember  that  precipitation  falls  at  0°  and  60     Because  of  these  two  factors  combined,  we  get  specific  biomes  at  specific  areas.   Sunlight  and  precipitation  affect  the  climate  

• Climate  over  an  environment  produces  a  biome   • A  biome  has  organisms  suited  to  the  climate   • Biomes  generally  occur  on  the  same  latitudes   There  are  two  main  types  of  biomes   Land  &  Aquatic  (water)   Most  land  biomes  are  named  after  their  climax  community  (type  of  climax  vegetation).   From  arctic  circle(66.5  degrees  N)  to  the  equator  (0    degrees):  tundrataigatemperate  foresttropical  forest    

Some  of  the  land  biomes   – – – – – – –

Tundra   Taiga  (TIGH-­‐guh)   Temperate  deciduous  forest   Grassland   Tropical  rain  forest   Desert   Tropical  rain  forest  

    Biomes:  Characterized  by  their  climate.    Defined  by  the  plants  &  animals  that  live  there.     Rain  Forest-­‐>  heavy  rainfall,  broad-­‐leaved  plants,  hot  temperature,  near  equator,  ferns,  vines,  dwarf  palms,   sloths.  Monkeys,  tree  frogs     Deciduous  Forest  deciduous(leaves  change  color)  hardwood  trees,  moderate  precipitation.  Eastern  North   America  &  Europe,  deer,  bears  ,  rabbits,  blue-­‐jays,  cold  winters  &  warm  summers     Grassland-­‐>central  U.S.,  moderate  precipitation,  oats,  rye,  wheat,  bison,  prairie  dogs,  foxes,antelope     Taiga-­‐>  cold  winters,  coniferous  trees  (cone  bearing),  much  snow,  Canada  &  Northern  Europe.  Fir,  hemlock,   spruce  trees,  caribou,  lynx,  snowshoe  hare,  moose  ,  elk,  bears,  wolves     Desert-­‐>  hot  days,  cool  nights,  little  precipitation,  succulent  plants  (cactus),  Southwestern  U.S.,  Northern  Africa,   Mid  East.    tortoise,  snakes,  lizards     Tundra-­‐>  long,  cold  winters,  frozen  subsoil.  No  trees,  Northern  Canada  &  Asia,  cushion  plants,  grasses,  moss,  ,   snowy  owls,  caribou,  mice     Marine-­‐>  Oceans-­‐saltwater,  most  of  the  planet,  sharks,  whales,  coral,  kelp,  seaweed,  plankton     Freshwater-­‐>  Lakes,  ponds,  streams,  rivers,  algae,  cattails,  crayfish,  bass,  insect  larva                

Renewable  Resources   Renewable  energy  is  a  natural  choice.  Harnessing  the  earth's  own  inexhaustible  energy  -­‐  whether  from  the  sun,   wind,  fuel  cells,  or  other  renewable  sources  -­‐  can  reduce  dependence  on  fossil  fuels  and  provide  clean,   affordable  electricity  

WHY  WE  SHOULD  CARE  ABOUT  RENEWABLE  ENERGY?   •

 

Choosing  renewable  power  provides  many  benefits:       Making  use  of  secure,  indigenous,  and  sustainable  natural  resources.       Helping  to  keep  our  air  clean.       Potential  to  reduce  the  production  of  carbon  dioxide  -­‐-­‐  a  leading  contributor  to  global  climate  change.       Helping  to  create  jobs  for  American  workers.       Establishing  the  United  States  as  a  world  leader  and  exporter  of  renewable  power  technologies.       Nationwide,  reducing  dependence  on  imported  oil.       By  purchasing  electricity  generated  from  renewable  resources  or  installing  a  renewable  energy    system  on   your  home,  you  can  demonstrate  your  commitment  to  a  healthy  environment  and  a  healthy  economy.    

BIOMASS  ELECTRICITY   • • • • •  

Biomass  consists  of  organic  residues  from  plants  and  animals  that  are  obtained  primarily  from  harvesting   and  processing  of  agricultural  and  forestry  crops.     These  are  used  as  fuels  in  direct  combustion  power  plants.  The  biomass  is  burned,  producing  heat  that  is   used  to  create  steam  to  turn  turbines  to  produce  electricity.     The  steam  can  often  be  used  for  another  process  -­‐-­‐  such  as  drying  vegetables  or  using  in  a  factory.  This  is   called  cogeneration.     Examples:  forest  slash,  urban  wood  waste,  lumber  waste,  agricultural  wastes,  etc.     The  components  of  biomass  include  cellulose,  hemicelluloses,  lignin,  lipids,  proteins,  simple  sugars,   starches,  water,  hydrocarbons,  ash  and  other  compounds.    

FUEL  CELLS  FOR  ELECTRICITY   Unlike  conventional  technologies,  fuel  is  not  "burned"  but  is  combined  in  a  chemical  process.   A  fuel  cell  consists  of  two  electrodes  sandwiched  around  an  electrolyte.  Oxygen  passes  over  one   electrode  and  hydrogen  over  the  other,  generating  electricity,  water,  and  heat.   • Hydrogen  fuel  is  fed  into  the  "anode"  of  the  fuel  cell.  Oxygen  (or  air)  enters  the  fuel  cell  through   the  cathode.  Encouraged  by  a  catalyst,  the  hydrogen  atom  splits  into  a  proton  and  an  electron,   which  take  different  paths  to  the  cathode.  The  proton  passes  through  the  electrolyte.  The   electrons  create  a  separate  current  that  can  be  utilized  before  they  return  to  the  cathode,  to  be   reunited  with  the  hydrogen  and  oxygen  in  a  molecule  of  water.   • "fuel  reformer"  can  obtain  hydrogen  from  any  hydrocarbon  fuel  -­‐  from  natural  gas,  methanol,   and  even  gasoline.  Other  possible  fuels  include  propane,  hydrogen,  anaerobic  digester  gas  from   wastewater  treatment  facilities,  and  landfill  gas.   Fuel  cells  are  being  designed  for  use  in  stationary  electric  power  plants  to  provide  reliable,  clean,  high  quality   electricity  for  distributed  power  generation.  Eventually,  smaller  fuel  cells  will  be  sold  for  use  in  homes,  most  of   which  will  connect  to  natural  gas  supplies   • •

 

     

GEOTHERMAL  ENERGY   • •

 

Geothermal  energy  is  produced  by  the  heat  of  the  earth  and  is  often  associated  with  volcanic  and   seismically  active  regions.  California  has  25  known  geothermal  resource  areas,  14  of  which  have   underground  water  temperatures  of  300  degrees  Fahrenheit  (149  degrees  Celsius)  or  greater.     Hot  water  and,  in  some  instances,  steam  can  be  used  to  make  electricity  in  large  power  plants.  Hot  water   can  also  be  put  to  direct  use,  such  as  heating  greenhouses  or  other  buildings.  The  constant  temperature   below  ground  can  also  be  tapped  to  warm  and  cool  your  home  through  a  ground-­‐source  heat  pump.    

 

HYDROELECTRIC  POWER   •

Hydroelectric  power,  a  renewable  resource,  is  generated  when  hydraulic  turbines  are  turned  by  the  force   of  moving  water  as  it  flows  through  a  turbine.  The  water  typically  flows  from  a  higher  to  a  lower  elevation.   These  turbines  are  connected  to  electrical  generators,  which  produce  the  power.  The  efficiency  of  such   systems  can  be  close  to  90  percent.    

 

       

SOLAR  PV  SYSTEMS   • • •

We  call  modern-­‐day  devices  that  convert  sunlight  into  energy  photovoltaic  cells,  or  "PVs"  for  short.     More  commonly,  they're  known  as  solar  cells.     We  can  find  them  on  calculators,  hats,  sidewalk  lighting  systems,  and  alongside  freeways  to  power  phones   for  stranded  motorists.    

 

                                       

 

 

SOLAR  THERMAL  ELECTRICITY   • •

 

The  sun's  heat  can  be  used  in  two  ways  with  homes  and  businesses.  The  sun  is  used  to  heat  water  for   domestic  hot  water  systems,  or  the  sun's  light  can  be  concentrated  and  water  temperatures  increased  to   make  steam  and  electricity.     Solar  energy  can  also  generate  electricity.  Over  the  past  20  years,  solar  electricity  generation  technologies   have  grown  by  leaps  and  bounds,  registering  annual  growth  rates  between  25  and  41  percent.  Costs  have   also  fallen  by  80  percent.

   

WIND  POWER:  Renewable,  does  minimal  damage  to  atmosphere,  reduces  dependency  on  fossils  fuels   which  cause  air  pollution   • •

 



Wind  speeds  typically  must  be  sustained  and  at  least  10  miles  per  hour  to  turn  larger  turbines  fast  enough   to  generate  electricity.     The  turbines  usually  produce  about  50  to  300  kilowatts  of  electricity  each.  A  kilowatt  is  1,000  watts  (kilo   means  1,000).  You  can  light  ten  100  watt  light  bulbs  with  1,000  watts.  So,  a  300  kilowatt  (300,000     watts)  wind  turbine  could  light  up  3,000  light  bulbs  that  use  100  watts.    

 

 

Global  Environmental  Issues   The   environment   encompasses   the   whole   of   life   on   earth   and   the   complex   interactions   that   link   the   living   world  with  the  physical  world.  In  a  general  sense,  this  covers  everything  contained  within  the  air,  land   and   water.  Sudden   and   dramatic   natural   changes   to   the   environment   have   occurred,   and   continue   to   occur,   which   have   the   potential   to   upset   the   whole   balance   of   the   Earth's   ecosystem.   Significant   environmental  issues  cause  impacts  throughout  the  world.  

Environmental  Change     • • •

Sudden  and  dramatic  natural  changes  to  the  environment  have  occurred  in  the  distant  past,  but  only   relatively  recently  has  one  species  had  the  potential  to  upset  the  whole  balance  of  the  Earth's  ecosystem   The  global  population  has  risen  dramatically  during  the  last  century   The  rise  of  industry  and  its  rapid  expansion  has  been  a  major  source  of  pollution.  This  has     caused  changes  in  the  balanceof  our  environment  

 

Global  Warming:  Forests  being  cut  down  causes  a  negative  effect  on  global  warming(Increase  of  CO2)   Greenhouse  gases  (CO2,  methane,  water  vapor)  help  to  maintain  the  earth’s  temperature  at  a  level  suitable   to  support  life   • Human  activities  are  increasing  the  amount  of  greenhouse  gases  in  the  atmosphere,  which  cause  more  heat  to   be  trapped   Predicted  effects  of  global  warming  include:   •

• • • •

Higher  sea  levels  (  will  flood  coastal  areas)   Higher  temperatures   Variable  climatic  conditions     These  changes  are  expected  to  cause  a  significant  impact  on  agriculture  and  ecosystems  

 

 

Greenhouse  Gas  Pie  

   

Ozone  Layer  Depletion   • • •

The  ozone  layer  protects  the  earth  from  harmful  ultraviolet  (UV)  light   The  use  of  chlorofluorocarbons  (CFCs)  and  other  ozone  depleating  substances  as  refrigerants,  solvents  and   insulation  is  destroying  the  ozone  layer   A  ‘hole’  is  observed  over  Antarctica  every  autumn  Depleated  ozone  levels  cause  the  following  impacts:   – Increased  penetration  of  UV  light  to  earth   – Increased  risks  of  skin  cancer  and  eye  diseases   – Damage  to  agricultural  crops   – Disruption  to  marine  food  chains  

  Acid  Rain:  Due  to  air  pollution   •

• •

The  burning  of  fossil  fuels(  coal,  oil)  leads  to  atmospheric  emissions  of  NO  and  SO   x

2

These  gases  react  with  water  and  oxygen  to  make  sulfuric  and  nitric  acids.  Sunlight  increases  the  rate  of   these  reactions   Rain,  snow  and  fog  can  be  polluted  with  these  acidic  compounds,  which  is  then  deposited  at  the  earths   surface   The  deposition  of  acids  can:   – Damage  forests  and  soils   – Causes  acidification  of  lakes  and  other  water  bodies  (lowers  the  pH)  causing  fish  &  other  aquatic   life  to  decrease   – Disturb  wildlife     – Cause  the  decay  of  building  and  other  structures   – Impact  on  human  health  

 

   

Deforestation   • • • •

   

The  deforestation  of  tropical  rainforests  is  a  major  global  problem-­‐each  year  millions  of  hectares  are  lost   Deforestation  rates  in  some  countries  continue  to  increase  despite  worldwide  pressures   Rainforests  are  destroyed  for  wood  products,  and  to  make  way  for  agricultural  activities,  mining  and  dams   The  impacts  of  deforestation  include:   – Loss  of  livelihood  for  local  inhabitants   – Variable  environmental  conditions  (susceptability  to  flood,  aggravated  droughts,  soil  erosion  etc)   – Loss  of  biodiversity  and  disturbance  to  ecosystems  

Loss  of  Biodiversity   •

• • • •

Biodiversity  has  three  key  components:   – Genetic  diversity   – Species  diversity   – Ecological  diversity   Approximately  2.1  million  species  are  known  to  exist,  but  up  to  50  million  still  to  be  discovered   Biodiversity  is  important  for  food,  drugs,  maintaining  ecological  stability,  aesthetic  and  cultural  benefits   Natural  causes  and  human  activity  can  threaten  biodiversity   The  loss  of  biodiversity  means  ecosystems  are  destabilized,  vital  resources  are  lost  and  genetic  variation  is   reduced  

 

Water  Pollution   • •

A  change  in  water  quality  that  impacts  on  living  organisms   Types  and  effects  of  water  pollution  include:   – Infectious  agents,  such  as  typhoid,  cholera   – Nutrients  and  eutrophication   – Toxic  materials,  through  mining  &  factories  (PCB’s)  causing  fish  unfit  to  eat   – Organic  chemicals  such  as  fertilizers  for  the  lawn   – Sediments  can  disrupt  aquatic  ecosystems  

 

Air  Pollution:   Caused  by  factories(industry)  putting  chemicals  into  the  air,  &  cars  putting  chemicals  into  the  air(exhaust)   Quality  of  air  can  be  improved  if  we  buy  cars  that  get  more  miles  per  gallon  of  gasoline  (  non-­‐  renewable),  or   we  use  alternate  fuel    such  as  ethanol  (renewable)  instead  of  gasoline.  

Waste  Disposal   •





Waste  disposal  methods  include:   – Open  dumping  and  landfill   – Ocean  dumping   – Exporting  waste   – Waste  to  energy  plants   Minimizing  the  waste  stream:   – 3R’s:  reduce,  reuse,  recycle   – Composting   – Waste  to  energy   Hazardous  waste  disposal   – Needs  to  be  safely  handled  and  disposed  of  to  minimize  threats  to  the  environment  and  human   health  

 

Environmental  Management   • • • •

 

Environmental  pollution  is  a  serious  burden  on  our  ecosystems  and  finances  world-­‐wide   Administrations,  commercial  organizations  and  individuals  are  affected  by  environmental  change  and  its   associated  dangers,  long-­‐term  effects  and  liabilities   Both  legislative  obligations  and  voluntary  mechanisms  can  address  the  environment  and  to  integrate  it  into   the  mainstream  of  business  activity   Consequently,  environmental  management  is  a  crucial  part  of  all  organizations’  operations  

           

 

       

                 

 

 

     

     

 

 

 

           

 

         

 

     

     

 

 

 

             

               

   

           

 

     

 

     

   

   

           

         

 

         

 

       

   

                   

           

 

   

                                     

           

               

     

         

 

                                                             

             

 

                     

 

 

 

     

   

Smile Life

When life gives you a hundred reasons to cry, show life that you have a thousand reasons to smile

Get in touch

© Copyright 2015 - 2024 PDFFOX.COM - All rights reserved.