Transformations [PDF]

technique. Suppose Y is a continuous random variable with cumulative distribution function (cdf) ... distribution of the

4 downloads 15 Views 1MB Size

Recommend Stories


[PDF] Download Lightroom Transformations
When you talk, you are only repeating what you already know. But if you listen, you may learn something

hierarchical transformations
Learning never exhausts the mind. Leonardo da Vinci

Transformations gรฉomรฉtriques
Learning never exhausts the mind. Leonardo da Vinci

CGT520 Transformations
Suffering is a gift. In it is hidden mercy. Rumi

Bidirectional Transformations
Raise your words, not voice. It is rain that grows flowers, not thunder. Rumi

Energy Transformations
There are only two mistakes one can make along the road to truth; not going all the way, and not starting.

Linear Transformations
If you are irritated by every rub, how will your mirror be polished? Rumi

Transatlantic Transformations
If you want to become full, let yourself be empty. Lao Tzu

Fractal Transformations
The happiest people don't have the best of everything, they just make the best of everything. Anony

Global Transformations: Politics, Economics, and Culture [PDF]
Your big opportunity may be right where you are now. Napoleon Hill

Idea Transcript


Transformations Dear students, Since we have covered the mgf technique extensively already, here we only review the cdf and the pdf techniques, first for univariate (one-to-one and more-to-one) and then for bivariate (one-to-one and more-to-one) transformations.

1. The cumulative distribution function (cdf) technique Suppose Y is a continuous random variable with cumulative distribution function (cdf) ๐น๐‘Œ (๐‘ฆ) โ‰ก ๐‘ƒ(๐‘Œ โ‰ค ๐‘ฆ). Let ๐‘ˆ = ๐‘”(๐‘Œ) be a function of Y, and our goal is to find the distribution of U. The cdf technique is especially convenient when the cdf ๐น๐‘Œ (๐‘ฆ) has closed form analytical expression. This method can be used for both univariate and bivariate transformations.

Steps of the cdf technique: 1. Identify the domain of Y and U. 2. Write๐น๐‘ˆ (๐‘ข) = ๐‘ƒ(๐‘ˆ โ‰ค ๐‘ข), the cdf of U, in terms of ๐น๐‘Œ (๐‘ฆ), the cdf of Y . 3. Differentiate ๐น๐‘ˆ (๐‘ข) to obtain the pdf of U, ๐‘“๐‘ˆ (๐‘ข). Example 1. Suppose that ๐‘Œ ~ ๐‘ˆ(0,1). Find the distribution of ๐‘ˆ = ๐‘”(๐‘Œ) = โˆ’ ln ๐‘Œ. Solution. The cdf of ๐‘Œ ~ ๐‘ˆ(0,1) is given by 0, ๐‘ฆโ‰ค0 ๐น๐‘Œ (๐‘ฆ) = {๐‘ฆ, 0 < ๐‘ฆ โ‰ค 1 1, ๐‘ฆโ‰ฅ1 The domain (*domain is the region where the pdf is non-zero) for ๐‘Œ ~ ๐‘ˆ(0,1) is ๐‘…๐‘Œ = {๐‘ฆ: 0 < ๐‘ฆ < 1}; thus, because ๐‘ข = โˆ’ ln ๐‘ฆ > 0, it follows that the domain for U is ๐‘…๐‘ˆ = {๐‘ข: ๐‘ข > 0}. The cdf of U is: ๐น๐‘ˆ (๐‘ข) = ๐‘ƒ(๐‘ˆ โ‰ค ๐‘ข) = ๐‘ƒ(โˆ’ ln ๐‘Œ โ‰ค ๐‘ข) = ๐‘ƒ(ln ๐‘Œ > โˆ’๐‘ข) = ๐‘ƒ(๐‘Œ > ๐‘’ โˆ’๐‘ข ) = 1 โˆ’ ๐‘ƒ(๐‘Œ โ‰ค ๐‘’ โˆ’๐‘ข ) = 1 โˆ’ ๐น๐‘Œ (๐‘’ โˆ’๐‘ข )

1

Because ๐น๐‘Œ (๐‘ฆ) = ๐‘ฆ for 0 < y < 1; i.e., for u > 0, we have ๐น๐‘ˆ (๐‘ข) = 1 โˆ’ ๐น๐‘Œ (๐‘’ โˆ’๐‘ข ) = 1 โˆ’ ๐‘’ โˆ’๐‘ข Taking derivatives, we get, for u > 0, ๐‘“๐‘ˆ (๐‘ข) =

๐‘‘ ๐‘‘ (1 โˆ’ ๐‘’ โˆ’๐‘ข ) = ๐‘’ โˆ’๐‘ข ๐น๐‘ˆ (๐‘ข) = ๐‘‘๐‘ข ๐‘‘๐‘ข

Summarizing, ๐‘“๐‘ˆ (๐‘ข) = {

๐‘’ โˆ’๐‘ข , 0,

๐‘ข>0 otherwise 1

This is an exponential pdf with mean ฮป = 1; that is, U ~ exponential(ฮป = 1). โ–ก Example 2. Suppose that ๐‘Œ ~ ๐‘ˆ (โˆ’ ๐œ‹โ„2 , ๐œ‹โ„2) . Find the distribution of the random variable defined by U = g(Y ) = tan(Y ). Solution. The cdf of ๐‘Œ ~ ๐‘ˆ (โˆ’ ๐œ‹โ„2 , ๐œ‹โ„2) is given by 0, ๐‘ฆ + ๐œ‹โ„2 ๐น๐‘Œ (๐‘ฆ) = , ๐œ‹ { 1,

๐‘ฆ โ‰ค โˆ’ ๐œ‹โ„2 โˆ’ ๐œ‹โ„2 < ๐‘ฆ โ‰ค ๐œ‹โ„2 ๐‘ฆ โ‰ฅ ๐œ‹โ„2

The domain for Y is ๐‘…๐‘Œ = {๐‘ฆ: โˆ’ ๐œ‹โ„2 < ๐‘ฆ < ๐œ‹โ„2}. Sketching a graph of the tangent function from โˆ’ ๐œ‹โ„2 to ๐œ‹โ„2, we see that โˆ’โˆž < ๐‘ข < โˆž . Thus, ๐‘…๐‘ˆ = { ๐‘ข: โˆ’ โˆž < ๐‘ข < โˆž} โ‰ก ๐‘…, the set of all reals. The cdf of U is: ๐น๐‘ˆ (๐‘ข) = ๐‘ƒ(๐‘ˆ โ‰ค ๐‘ข) = ๐‘ƒ[tan(๐‘Œ) โ‰ค ๐‘ข] = ๐‘ƒ[๐‘Œ โ‰ค tanโˆ’1(๐‘ข)] = ๐น๐‘Œ [tanโˆ’1(๐‘ข)] Because ๐น๐‘Œ (๐‘ฆ) = we have

๐‘ฆ+๐œ‹โ„2 ๐œ‹

for โˆ’ ๐œ‹โ„2 < ๐‘ฆ < ๐œ‹โ„2 ; i. e. , for ๐‘ข โˆˆ โ„› ,

๐น๐‘ˆ (๐‘ข) = ๐น๐‘Œ [tanโˆ’1 (๐‘ข)] =

tanโˆ’1(๐‘ข) + ๐œ‹โ„2 ๐œ‹

The pdf of U, for ๐‘ข โˆˆ โ„›, is given by ๐‘‘ ๐‘‘ tanโˆ’1 (๐‘ข) + ๐œ‹โ„2 1 ๐‘“๐‘ˆ (๐‘ข) = ๐น๐‘ˆ (๐‘ข) = [ ]= . ๐‘‘๐‘ข ๐‘‘๐‘ข ๐œ‹ ๐œ‹(1 + ๐‘ข2 ) Summarizing,

2

1 , โˆ’โˆž0 ๐‘“๐‘Œ (๐‘ฆ) = { ๐›ฝ 0, otherwise. Let ๐‘ˆ = ๐‘”(๐‘Œ) = โˆš๐‘Œ, . Use the method of transformations to find the pdf of U. Solution. First, we note that the transformation ๐‘”(๐‘Œ) = โˆš๐‘Œ is a continuous strictly increasing function of y over ๐‘…๐‘Œ = {๐‘ฆ: ๐‘ฆ > 0}, and, thus, ๐‘”(๐‘Œ) is one-to-one. Next, we need to find the domain of U. This is easy since y > 0 implies ๐‘ข = โˆš๐‘ฆ > 0 as well. Thus, ๐‘…๐‘ˆ = {๐‘ข: ๐‘ข > 0}. Now, we find the inverse transformation: ๐‘”(๐‘ฆ) = ๐‘ข = โˆš๐‘ฆ โ‡” ๐‘ฆ = ๐‘”โˆ’1 (๐‘ข) = ๐‘ข2 (by inverse transformation) and its derivative:

4

๐‘‘ โˆ’1 ๐‘‘ (๐‘ข2 ) = 2๐‘ข. ๐‘” (๐‘ข) = ๐‘‘๐‘ข ๐‘‘๐‘ข Thus, for u > 0, ๐‘“๐‘ˆ (๐‘ข) = ๐‘“๐‘Œ [๐‘”โˆ’1 (๐‘ข)] |

๐‘‘ โˆ’1 ๐‘” (๐‘ข) | ๐‘‘๐‘ข 2

2

1 โˆ’๐‘ข 2๐‘ข โˆ’๐‘ข๐›ฝ = ๐‘’ ๐›ฝ ร— |2๐‘ข| = ๐‘’ . ๐›ฝ ๐›ฝ Summarizing, 2

2๐‘ข โˆ’๐‘ข๐›ฝ ๐‘ข>0 ๐‘“๐‘ˆ (๐‘ข) = { ๐›ฝ ๐‘’ , 0, otherwise. This is a Weibull distribution. The Weibull family of distributions is common in life science (survival analysis), engineering and actuarial science applications. โ–ก Example 4. Suppose that Y ~ beta(ฮฑ = 6; ฮฒ = 2); i.e., the pdf of Y is given by 42๐‘ฆ 5 (1 โˆ’ ๐‘ฆ), ๐‘“๐‘Œ (๐‘ฆ) = { 0,

0 0 for all i โ‰  0, and ๐‘“๐‘Œ1 ,๐‘Œ2 (๐‘ฆ1 , ๐‘ฆ2 ) is continuous on each Ai , i โ‰  0. Furthermore, suppose that the transformation is 1-to-1 from Ai (i = 1, 2, โ€ฆ, k,) to B, where B is the domain of ๐‘ผ = (๐‘ˆ1 = โˆ’1 โˆ’1 (โˆ™), ๐‘”2๐‘– (โˆ™)) is a 1-to-1 ๐‘”1 (๐‘Œ1 , ๐‘Œ2 ), ๐‘ˆ2 = ๐‘”1 (๐‘Œ1 , ๐‘Œ2 )) such that (๐‘”1๐‘– inverse mapping of Y to U from B to Ai. Let Ji denotes the Jacobina computed from the ith inverse, i = 1, 2, โ€ฆ, k. Then, the pdf of U is given by ๐‘“๐‘ˆ1 ,๐‘ˆ2 (๐‘ข1 , ๐‘ข2 ) ๐‘˜

={

โˆ‘ ๐‘“๐‘Œ1 ,๐‘Œ2 [๐‘”1๐‘– โˆ’1 (๐‘ข, ๐‘ฃ), ๐‘”2๐‘– โˆ’1 (๐‘ข, ๐‘ฃ)]|๐ฝ๐‘– | ,

๐‘ข โˆˆ ๐ต = ๐‘…๐‘ˆ

๐‘–=1

0,

otherwise.

Example 7. Suppose that ๐‘Œ1 ~ N(0, 1), ๐‘Œ2 ~ N(0, 1), and that ๐‘Œ1 and ๐‘Œ2 are independent. Define the transformation ๐‘Œ1 ๐‘ˆ1 = ๐‘”1 (๐‘Œ1 , ๐‘Œ2 ) = ๐‘Œ2 ๐‘ˆ2 = ๐‘”2 (๐‘Œ1 , ๐‘Œ2 ) = |๐‘Œ2 |. Find each of the following distributions: 12

(a) ๐‘“๐‘ˆ1 ,๐‘ˆ2 (๐‘ข1 , ๐‘ข2 ), the joint distribution of ๐‘ˆ1 and ๐‘ˆ2 , (b) ๐‘“๐‘ˆ1 (๐‘ข1 ), the marginal distribution of ๐‘ˆ1 . Solutions. (a) Since ๐‘Œ1 and ๐‘Œ2 are independent, the joint distribution of ๐‘Œ1 and ๐‘Œ2 is ๐‘“๐‘Œ1 ,๐‘Œ2 (๐‘ฆ1 , ๐‘ฆ2 ) = ๐‘“๐‘Œ1 (๐‘ฆ1 )๐‘“๐‘Œ2 (๐‘ฆ2 ) 1 โˆ’๐‘ฆ 2/2 โˆ’๐‘ฆ2 /2 = ๐‘’ 1 ๐‘’ 2 2ฯ€ Here, ๐‘…๐‘Œ1 ,๐‘Œ2 = {(๐‘ฆ1 , ๐‘ฆ2 ): โˆ’โˆž < ๐‘ฆ1 < โˆž, โˆ’โˆž < ๐‘ฆ2 < โˆž}. The transformation of Y to U is not one-to-one because the points (๐‘ฆ1 , ๐‘ฆ2 ) and (โˆ’๐‘ฆ1 , โˆ’๐‘ฆ2 ) are both mapped to the same (๐‘ข1 , ๐‘ข2 ) point. But if we restrict considerations to either positive or negative values of ๐‘ฆ2 , then the transformation is one-to-one. We note that the three sets below form a partition of ๐ด = ๐‘…๐‘Œ1 ,๐‘Œ2 as defined above with ๐ด1 = {(๐‘ฆ1 , ๐‘ฆ2 ): ๐‘ฆ2 > 0}, ๐ด2 = {(๐‘ฆ1 , ๐‘ฆ2 ): ๐‘ฆ2 < 0} , and ๐ด0 = {(๐‘ฆ1 , ๐‘ฆ2 ): ๐‘ฆ2 = 0}. The domain of U, ๐ต = {(๐‘ข1 , ๐‘ข2 ): โˆ’โˆž < ๐‘ข1 < โˆž, ๐‘ข2 > 0} is the image of both ๐ด1 and ๐ด2 under the transformation. The inverse transformation from ๐ต ๐‘ก๐‘œ ๐ด1 and ๐ต ๐‘ก๐‘œ ๐ด2 are given by: ๐‘ฆ1 = ๐‘”11 โˆ’1 (๐‘ข1 , ๐‘ข2 ) = ๐‘ข1 ๐‘ข2 ๐‘ฆ2 = ๐‘”21 โˆ’1 (๐‘ข1 , ๐‘ข2 ) = ๐‘ข2 and ๐‘ฆ1 = ๐‘”12 โˆ’1 (๐‘ข1 , ๐‘ข2 ) = โˆ’๐‘ข1 ๐‘ข2 ๐‘ฆ2 = ๐‘”22 โˆ’1 (๐‘ข1 , ๐‘ข2 ) = โˆ’๐‘ข2 The Jacobians from the two inverses are ๐ฝ1 = ๐ฝ1 = ๐‘ข2 The pdf of U on its domain B is thus: 2

๐‘“๐‘ˆ1 ,๐‘ˆ2 (๐‘ข1 , ๐‘ข2 ) = โˆ‘ ๐‘“๐‘Œ1 ,๐‘Œ2 [๐‘”1๐‘– โˆ’1 (๐‘ข, ๐‘ฃ), ๐‘”2๐‘– โˆ’1 (๐‘ข, ๐‘ฃ)]|๐ฝ๐‘– | Plugging in, we have:

๐‘–=1

1 โˆ’(๐‘ข ๐‘ข )2 /2 โˆ’๐‘ข2 /2 ๐‘’ 1 2 ๐‘’ 2 |๐‘ข2 | 2ฯ€ 1 โˆ’(โˆ’๐‘ข ๐‘ข )2 /2 โˆ’(โˆ’๐‘ข )2 /2 1 2 2 |๐‘ข2 | + ๐‘’ ๐‘’ 2ฯ€

๐‘“๐‘ˆ1 ,๐‘ˆ2 (๐‘ข1 , ๐‘ข2 ) =

Simplifying, we have: ๐‘ข2 2 2 ๐‘“๐‘ˆ1 ,๐‘ˆ2 (๐‘ข1 , ๐‘ข2 ) = ๐‘’ โˆ’(๐‘ข1 +1)๐‘ข2 /2 , โˆ’โˆž < ๐‘ข1 < โˆž, ๐‘ข2 > 0 ฯ€ (b) To obtain the marginal distribution of ๐‘ˆ1 , we integrate the joint pdf๐‘“๐‘ˆ1 ,๐‘ˆ2 (๐‘ข1 , ๐‘ข2 ) over ๐‘ข2 . That is, โˆž

๐‘“๐‘ˆ1 (๐‘ข1 ) = โˆซ ๐‘“๐‘ˆ1 ,๐‘ˆ2 (๐‘ข1 , ๐‘ข2 ) ๐‘‘๐‘ข2 0

13

1 , โˆ’โˆž < ๐‘ข1 < โˆž + 1) Thus, marginally, U1 follows the standard Cauchy distribution. โ–ก =

๐œ‹(๐‘ข12

REMARK: The transformation method can also be extended to handle n-variate transformations. Suppose that ๐‘Œ1 , ๐‘Œ2 , โ€ฆ , ๐‘Œ๐‘› are continuous random variables with joint pdf ๐‘“๐’€ (๐‘ฆ) and define ๐‘ˆ1 = ๐‘”1 (๐‘Œ1 , ๐‘Œ2 , โ€ฆ , ๐‘Œ๐‘› ) ๐‘ˆ2 = ๐‘”2 (๐‘Œ1 , ๐‘Œ2 , โ€ฆ , ๐‘Œ๐‘› ) โ‹ฎ (๐‘Œ ๐‘ˆ๐‘› = ๐‘”๐‘› 1 , ๐‘Œ2 , โ€ฆ , ๐‘Œ๐‘› ). Example 8. Given independent random variables ๐‘‹ and๐‘Œ, each with uniform distributions on (0, 1), find the joint pdf of U and V defined by U=X+Y, V=X-Y, and the marginal pdf of U. The joint pdf of ๐‘‹ and ๐‘Œ is๐‘“๐‘‹,๐‘Œ (๐‘ฅ, ๐‘ฆ) = 1, 0 โ‰ค ๐‘ฅ โ‰ค 1, 0 โ‰ค ๐‘ฆ โ‰ค 1. The inverse transformation, written in terms of observed values is ๐‘ข+๐‘ฃ ๐‘ขโˆ’๐‘ฃ ๐‘ฅ= , ๐‘Ž๐‘›๐‘‘ ๐‘ฆ = . 2 2 It is clearly one-to-one. The Jacobian is 1/2 1/2 ๐œ•(๐‘ฅ,๐‘ฆ) 1 1 ๐ฝ = ๐œ•(๐‘ข,๐‘ฃ) = | | = โˆ’ 2, so |๐ฝ| = 2. 1/2 โˆ’1/2 We will use ๐’œ to denote the range space of (๐‘‹, ๐‘Œ), and โ„ฌ to denote that of (๐‘ˆ, ๐‘‰), and these are shown in the diagrams below. Firstly, note that there are 4 inequalities specifying ranges of ๐‘ฅ and๐‘ฆ, and these give 4 inequalities concerning ๐‘ข and๐‘ฃ, from which โ„ฌcan be determined. That is, ๐‘ฅ โ‰ฅ 0 โ‡’ ๐‘ข + ๐‘ฃ โ‰ฅ 0, that is, ๐‘ฃ โ‰ฅ โˆ’๐‘ข ๐‘ฅ โ‰ค 1 โ‡’ ๐‘ข + ๐‘ฃ โ‰ค 2, that is ๐‘ฃ โ‰ค 2 โˆ’ ๐‘ข ๐‘ฆ โ‰ฅ 0 โ‡’ ๐‘ข โˆ’ ๐‘ฃ โ‰ฅ 0, that is ๐‘ฃ โ‰ค ๐‘ข ๐‘ฆ โ‰ค 1 โ‡’ ๐‘ข โˆ’ ๐‘ฃ โ‰ค 2, that is ๐‘ฃ โ‰ฅ ๐‘ข โˆ’ 2 Drawing the four lines ๐‘ฃ = โˆ’๐‘ข, ๐‘ฃ = 2 โˆ’ ๐‘ข, ๐‘ฃ = ๐‘ข, ๐‘ฃ = ๐‘ข โˆ’ 2 On the graph, enables us to see the region specified by the 4 inequalities.

14

Now, we have 1 1 โˆ’๐‘ข โ‰ค ๐‘ฃ โ‰ค ๐‘ข, 0 โ‰ค ๐‘ข โ‰ค 1 = , { ๐‘ข โˆ’ 2 โ‰ค ๐‘ฃ โ‰ค 2 โˆ’ ๐‘ข, 1 โ‰ค ๐‘ข โ‰ค 2 2 2 The importance of having the range space correct is seen when we find marginal pdf of ๐‘ˆ. โˆž ๐‘“๐‘ˆ (๐‘ข) = โˆซโˆ’โˆž ๐‘“๐‘ˆ,๐‘‰ (๐‘ข, ๐‘ฃ)๐‘‘๐‘ฃ ๐‘“๐‘ˆ,๐‘‰ (๐‘ข, ๐‘ฃ) = 1 โˆ—

๐‘ข 1

โˆซโˆ’๐‘ข 2 ๐‘‘๐‘ฃ, = { โˆซ2โˆ’๐‘ข 1 ๐‘‘๐‘ฃ, ๐‘ขโˆ’2 2 0, ={

0โ‰ค๐‘ขโ‰ค1 1โ‰ค๐‘ขโ‰ค2 ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’

๐‘ข, 0โ‰ค๐‘ขโ‰ค1 2 โˆ’ ๐‘ข, 1 โ‰ค ๐‘ข โ‰ค 2

= ๐‘ข๐ผ[0,1] (๐‘ข) + (2 โˆ’ ๐‘ข)๐ผ(1,2] (๐‘ข), using indicator functions. Example 9. Given ๐‘‹and ๐‘Œ are independent random variables 1

๐‘ฅ

each with pdf๐‘“๐‘‹ (๐‘ฅ) = 2 ๐‘’ โˆ’2 , ๐‘ฅ โˆˆ [0, โˆž), find the distribution of(๐‘‹ โˆ’ ๐‘Œ)/2. We note that the joint pdf of ๐‘‹ and ๐‘Œ is 1 ๐‘ฅ+๐‘ฆ ๐‘“๐‘‹,๐‘Œ (๐‘ฅ, ๐‘ฆ) = ๐‘’ 2 , 0 โ‰ค ๐‘ฅ < โˆž, 0 โ‰ค ๐‘ฆ < โˆž. 4 15

Define๐‘ˆ = (๐‘‹ โˆ’ ๐‘Œ)/2. Now we need to introduce a second random variable ๐‘‰ which is a function of ๐‘‹ and๐‘Œ. We wish to do this in such a way that the resulting bivariate transformation is one-to-one and our actual task of finding the pdf of U is as easy as possible. Our choice for ๐‘‰ is of course, not unique. Let us define๐‘‰ = ๐‘Œ. Then the transformation is, (using๐‘ข, ๐‘ฃ, ๐‘ฅ, ๐‘ฆ, since we are really dealing with the range spaces here). ๐‘ฅ = 2๐‘ข + ๐‘ฃ ๐‘ฆ=๐‘ฃ From it, we find the Jacobian, 2 1 ๐ฝ=| |=2 0 1 To determineโ„ฌ, the range space of ๐‘ˆ and๐‘‰, we note that ๐‘ฅ โ‰ฅ 0 โ‡’ 2๐‘ข + ๐‘ฃ โ‰ฅ 0 , that is ๐‘ฃ โ‰ฅ โˆ’2๐‘ข ๐‘ฅ < โˆž โ‡’ 2๐‘ข + ๐‘ฃ < โˆž ๐‘ฆโ‰ฅ0 โ‡’ ๐‘ฃโ‰ฅ0 ๐‘ฆ

Smile Life

When life gives you a hundred reasons to cry, show life that you have a thousand reasons to smile

Get in touch

ยฉ Copyright 2015 - 2024 PDFFOX.COM - All rights reserved.