TRANSPORT PHENOMENA [PDF]

Oct 31, 2008 - Transport Phenomena. □ Momentum Transport. □ Heat Transport. □ Mass Transport. □ Kinetic Energy.

12 downloads 5 Views 10MB Size

Recommend Stories


Transport Phenomena
Love only grows by sharing. You can only have more for yourself by giving it away to others. Brian

Read PDF Transport Phenomena in Biological Systems
The only limits you see are the ones you impose on yourself. Dr. Wayne Dyer

PDF Transport Phenomena in Biological Systems
Open your mouth only if what you are going to say is more beautiful than the silience. BUDDHA

[PDF] Transport Phenomena in Biological Systems
Sorrow prepares you for joy. It violently sweeps everything out of your house, so that new joy can find

[PDF] Transport Phenomena in Biological Systems
What you seek is seeking you. Rumi

Online PDF Transport Phenomena in Biological Systems
If your life's work can be accomplished in your lifetime, you're not thinking big enough. Wes Jacks

[PDF] Transport Phenomena in Biological Systems
In every community, there is work to be done. In every nation, there are wounds to heal. In every heart,

PdF Transport Phenomena in Biological Systems
If your life's work can be accomplished in your lifetime, you're not thinking big enough. Wes Jacks

[PDF] Transport Phenomena in Biological Systems (2nd Edition)
Don’t grieve. Anything you lose comes round in another form. Rumi

[PDF] Book Transport Phenomena in Biological Systems (2nd Edition)
Don't fear change. The surprise is the only way to new discoveries. Be playful! Gordana Biernat

Idea Transcript


Modern Methods in Heterogeneous Catalysis Research

TRANSPORT PHENOMENA 10/31/08

Giulio Lolli

Outline 2

 

Part I - Theory   Why

Transport?   Fundamental equations   Unified approach to transport phenomena   Boundary Layer approach   Dimensionless numbers  

Part II - Practice   Example:

Methanol Synthesis

Transport Phenomena

10/31/08

Further Reading 3

 

Part I   Bird,

Steward, Lightfoot

  Transport

Phenomena

  Asano

Welty

Mass Transport  

Fundamentals of M,H&M Transfer

Part II   Handout   Web:

  Perry’s

Document DB # 15375

Chemical Engineering Handbook Transport Phenomena

10/31/08

4

Part I Theory

Transport Phenomena

10/31/08

Why Transport? Catalytic Process 5

 

Thermodynamic   Reaction

Equilibrium   Phase equilibrium: adsorption/desorption  

Kinetic   Reaction

 

Kinetic

Transport   Reactants/Product

to/ from the active sites   Heat to/from the Transport Phenomena active site

10/31/08

Transport Phenomena 6

nx

)

Type of transport

What is transferred

Specific direction x  

Momentum Transport

!τxy

∂!uy = −µ ∂x

Heat Transport

 

Kinetic Energy

∂T ∂CA qx = −k jA,x =Law −DA   Newton’s ∂x ∂x

Thermal Energy 1 Law (Fluxes) ∂T ∂CA qx = −k jA,x = −DA   Fourier’s Law ∂x ∂x ! !Transport !   Chemical ! A   T! Mass = −µ∇! u !q = −k ∇T j!A =Energy −DA ∇C ∂CA jA,x = −DA   Fick’s Law ∂x  

st

 

! = −σ ∇ϕ ! A Φ ! ! A !q = −k ∇T j!A = −DA ∇C Transport Phenomena 2nd Law (variation in space-time)

10/31/08

!τxy = −µ

First Law of transport Specific direction x 7

Specific direction x ∂!uy !τxy = −µ ∂x ∂! uy !τxy = −µ ∂x 1st Law (Fluxes) st

1 Law (Fluxes) ! !u T! = −µ∇! ! !u T! = −µ∇! ! = −σ ∇ϕ ! A Φ

qx

∂x

st

1 q =Law ∂T (Fluxes) −k j = −D x

∂x ∂T qx = −k ∂x

A,x

∂CA A ∂xA ∂C

jA,x = −DA

!! !u T!q ==−k∇T −µ ∇! ! j!

∂x

! A = −DA ∇C ! A j!A = −DA ∇C

!q =

A

! !q = −k ∇T

! = −σ ∇ϕ ! A Φ

! = −σ ∇ϕ ! A Φ 2nd Law (variation in space-time)

2nd Law (variation in space-time) D!u ! ρ = µ∇2!u+ρ!g − ∇p nd Transport Phenomena Dt D! u 2 ! ρ = µ∇ !u+ρ!g − ∇p Dt

2

Law (variation in sp 10/31/08

Math 101- Gradient 8

Math 101 Nabla, Gradient     ∂  ∂x 

∂S  ∂x 

 ∂S  ∂! ! ∇ =  ∂y  ∇S =  ∂y      ∂ ∂z

∂S ∂z

Math 102 Divergence, Laplacian     ∂  ∂x 

∂S  ∂x 

∂Vx ∂Vy ∂Vz ∂!  ∂S  ! ! ! ∇ =  ∂y  ∇S =  ∂y ∇ · V = + + ∂x ∂y ∂z     ∂ ∂z

2

∂S ∂z 2

∂ S

2

Transport Phenomena

∂ S

2

∂ S

10/31/08

ρ

! = −σ ∇ϕ ! A Φ

Dt

= µ∇ !u+ρ!g − ∇p

Second Law of Transport 2 Law (variation in space-time) nd

9

DT 2 D!u Navier-Stokes = k∇ T +µφu ! p ρ = µ∇ !u+ρ!g − ρC ∇p Dt Dt DT 2 Fourier’s ρC = k∇ T +µφ − r∆H DCA Dt 2 = D ∇ C +ν r DC A A A = D ∇ C +ν r 2 Fick Dt Dt Dϕ = σ∇ ϕ Dϕ Dt 2 = σ∇ ϕ Fundamental equations of the system Dt  

2

2

p

A

A

2

u

A

A

rxn

  nd

  nd

2

D!u ! ρ = µ∇2!u+ρ!g − ∇p Dt

Fundamental equations Transport Phenomena

10/31/08

 ∂S  ∂! ! ∇ =  ∂y  ∇S =  ∂y     

Math 102 – Divergence & Laplace ∂ ∂z

10

∂S ∂z

Math 102 Divergence, Laplacian     ∂  ∂x 

∂S  ∂x 

∂Vx ∂Vy ∂Vz ∂!  ∂S  ! ! ! ∇ =  ∂y  ∇S =  ∂y ∇ · V = + + ∂x ∂y ∂z     ∂ ∂z

∂S ∂z

2 2 2 ∂ S ∂ S ∂ S 2 ! ! ∇ S = ∇ · ∇S = + 2 + 2 2 ∂x ∂y ∂z

Math 103 Substantial Derivative     ∂  ∂x 

∂S  ∂x 

∂Vx ∂Vy ∂Vz ∂!  ∂S  ! ! ! ∇ =  ∂y  ∇S =  ∂y  ∇ · V = + + ∂y 10/31/08 ∂z     Transport∂x Phenomena ∂

∂S

∂z

∂z

2 2 2 ∂ S ∂ S ∂ S 2 ! ! ∇ S = ∇ · ∇S = + 2 + 2 2 ∂x ∂y ∂z

Math 103 – Substantial Derivative

11

Math 103 Substantial Derivative     ∂  ∂x 

∂S  ∂x 

∂Vx ∂Vy ∂Vz ∂!  ∂S  ! ! ! ∇ =  ∂y  ∇S =  ∂y  ∇ · V = + + ∂x ∂y ∂z     ∂ ∂z

∂S ∂z

2 2 2 ∂ S ∂ S ∂ S 2 ! ! ∇ S = ∇ · ∇S = + 2 + 2 2 ∂x ∂y ∂z

DS ∂S ∂S ∂S ∂S ∂S ! = + !u · ∇S = + ux + uy + uz Dt ∂t ∂t ∂x ∂y ∂z Transport Phenomena

10/31/08

Dt

= σ∇2 ϕ

Equations of Motion 12

Fundamental equations of the system D!u 2 ! ρ = µ∇ !u+ρ!g − ∇p Dt DT 2 ρCp = k∇ T +µφu − r∆Hrxn Dt DCA 2 = DA ∇ CA +νA r Dt ! · (ρ!u) = 0 ∇ Transport Phenomena

10/31/08

Example 13

 

Start-up in circular tube   Cylindrical

coordinates   Only vz(r) ≠ 0

r

z

Example: startup in circular tube only uz (r) != 0 ! " ! ∂uz ∂u 1 ∂ ∂uz z ! ρ + uz! = ∆p + µ r ∂t r ∂r ∂r ! ∂z In S.S. conditions (∂/∂t = Transport 0) Phenomena

θ

10/31/08

Example Example: startup in circular tube only u (r) != 0 z

14

! ∂uz ∂u z ! ρ + uz! = ∂t ! ∂z

1 ∂ ∆p + µ r ∂r

!

∂uz r ∂r

"

r

z

In S.S. conditions (∂/∂t = 0) ! " ∂ ∂uz ∆p r =− r ∂r ∂r µ ∂uz ∆p r"2 A" r" =− + " ∂r µ 2 "r ∆p r2 uz = − +B µ 4 $ ∆p # 2 2 uz = R −r 4µ

B.C. B.C.

θ

∂uz = f inite ∂r uz = 0

Transport Phenomena

r=0 r=R

10/31/08

θ

r

z

vz/vmax(r=0)

1.0

0.5

0.0 -1.0

0 0.0001 0.001 0.01 0.05 0.1 0.2 0.5 infinite

-0.8

-0.6

-0.4

-0.2

0.0

r/R

15

Transport Phenomena

10/31/08

0.2

0.4

0.6

0.8

1.0

Numerical Solution 16

Finite elements approach   Software packages  

  Fluent   CFD   Physics

Set up the correct problem and boundary conditions   Many times is not necessary to know the exact T,C,v of every single point in your system  

Transport Phenomena

10/31/08

Boundary Layer 17

δ

 

All the phenomena happen in the boundary layer   Everything

outside the boundary layer is in equilibrium and constant

 

The boundary layer is very “thin”   The

size of the boundary layer (δ) is smaller than the characteristic size of the system   Order of magnitude approach   Taylor

series Transport Phenomena

10/31/08

Reynold’s Number 18

Boundary layer approach Reinolds Number δ

D"u ρ = µ∇2"u Dt ρu

! ∆u !

≈µ

! ∆u !

x δ2 ! "2 δ µ ≈ = 1/Re x ρux Prandtl Number

ρux Re = µ ρux Re =

Transport Phenomena

10/31/08

µ

δ x

µ ≈ = 1/Re ρux

Prandtl’s Number

ρux Re = µ

Prandtl Number 19

uT = uδT /δ

DT ρCp = k∇2 T Dt 1/2 ! ! ∆T ∆T ! ! ρCp uT ≈k 2 x δT δT k ρCp u ≈ 2 δx δT ! "3 δT k ≈ δ Cp µ δT ≈ P r−1/3 δ

δ δT

Cp µ Pr = k Cp µ Pr = Transport Phenomena 10/31/08 k

Dt ! ! ∆T ∆T ! ! ρCp uT ≈k 2 x δT

Schmidt’s Number…

20

Cp µ Pr = k

δT k ρCp u ≈ 2 x δT ! "3 δT k ≈ Re−1/2 δ Cp µ δT ≈ P r−1/3 δ

δ

… As usual everything is the same

Schmidt Number δC ≈ Sc−1/3 δ

Cp µ Pr = k

δC

ρDA Sc = ρD Sc = µ µ A

Transport Phenomena

10/31/08

Nusselt’s Number 21

Considering the the fluxes: fluxes: Considering

δ δT

∂T ∂T = −k −k = h∆T h∆T qq = = ∂x ∂x ! ! ∆T ! ∆T ! ≈ k! ! ∆T ! hh! ∆T ≈k δ δTT hx x δδ hx x Nuu = = ≈ N ≈ δ δδTT kk δ !"#$ !"#$ !"#$ !"#$ 1/2 1/3 Re1/2 Prr1/3 Re P

In general general In

KA x x δ Sh = ≈ DA δ δC !"#$ !"#$ Re1/2 Sc1/3

Transport Phenomena

10/31/08

Sherwood’s Number 22

Considering the the fluxes: fluxes: Considering

δ δC

∂T ∂T = −k −k = h∆T h∆T qq = = ∂x ∂x ! ! ∆T ! ∆T ! ≈ k! ! ∆T ! hh! ∆T ≈k δ δTT hx x δδ hx x Nuu = = ≈ N ≈ δ δδTT kk δ !"#$ !"#$ !"#$ !"#$ 1/2 1/3 Re1/2 Prr1/3 Re P

In general general In

KA x x δ Sh = ≈ DA δ δC !"#$ !"#$ Re1/2 Sc1/3

Transport Phenomena

10/31/08

hx x δ Nu = ≈ k δ δT !"#$ !"#$

In General… Re1/2 P r1/3

23

In general

hx KA x 1/3 Nu = = f (Re) P r Sh = = f (Re) Sc1/3 k DA   1/2  Re Plate in laminar flow       2 + Re1/2 Sphere in laminar flow f (Re) =  0.8   0.005Re Packed bed in turbulent flow      · · · · · · · · · · · · Extension to macroscopic balances ) Transport Phenomena 10/31/08 * * Q˙ = q dA = A U ∆T 1/U = 1/h + s /k

Extension to Macroscopic Balances 24

Transport Phenomena

10/31/08

hx KA x 1/3 Nu = = f (Re) P r Sh = = f (Re) Sc1/3 k DA  25  1/2  Re Plate in laminar flow       2 + Re1/2 Sphere in laminar flow f (Re) =  0.8   0.005Re Packed bed in turbulent flow      · · · · · · · · · · · ·

Overall Transfer Coefficient

Extension to macroscopic balances ) * * Q˙ = q dA = A U ∆T 1/U = 1/hi + si /ki A

1/U = 1/hint + s/kmetal + 1/hext Transport Phenomena

10/31/08

Nu =

hx Nu = = f (Re) P r1/3 k  26  1/2  Re       2 + Re1/2 f (Re) =  0.8   0.005Re      · · · · · · · · · · · ·

= f (Re) P r k KA x Sh =  = f (Re) Sc1/3 D A 1/2  Re Plate       2 + Re1/2 Plate in laminar flow Sphere f (Re) =  0.8   Sphere in laminar flow 0.005Re Packed      · · · ·flow Packed bed in turbulent ········

Log-Mean Temperature Difference

Extension to macroscopic balanc ) Extension to macroscopic balances ˙ Q= q dA = A U ∆T ) A * * Q˙ = q dA = A U ∆T 1/U = 1/hi + si /ki 1/U = 1/hint + s/kmetal + 1/hext A

1/U = 1/hint + s/kmetal + 1/hext

∆T1 − ∆T2 ∆Tln = ln (∆T1 /∆T2 )

Transport Phenomena

10/31/08

Conclusions 27

 

Momentum, Heat and Mass Transfer   Highly

inter-correlated

  Similar

physical principles   Similar driving force   Similar mathematical formulas   2nd

order PDE – numerical solutions   Highly dependent from fluid-dynamic properties   Simplifications   Boundary

layer   Dimensionless numbers Transport Phenomena

10/31/08

28

PART II Methanol Synthesis

Transport Phenomena

10/31/08

Methanol Production 29

 

Produced from SynGas   Catalyst

Cu/ZnO-Al2O3   Equilibrium limited   P

= 50 – 100 bar   T = 200 – 300 ˚C  

Main Commodity   20

 

Million ton/year

Typical plant size is 1 Million ton/year   12

m3/s Transport Phenomena

10/31/08

Catalyst specs 30

KATALCO 51-8 Methanol Synthesis Catalyst Long life as a result of the optimized formulation incorporating a patented use of a fourth component MgO

Product Benefits • •

Low operating temperatures minimize the catalyst sintering rate



High catalyst selectivity gives very low impurities in the crude product



Close approach to equilibrium is achieved and maintained



Easy to reduce and start-up

Product Uses



Synthesis of methanol from H2, CO and CO2 mixtures arising from steam reforming of hydrocarbons, coal gasification or POx

General Description



KATALCO 51-8 is a copper catalyst on a ZnO-Al2O3 support with a MgO promoter Physical Properties (Typical) KATALCO 51-8 Cylindrical pellet 5.4 mm 5.2 mm 1250 kg/m 3 80 kgf

Form Diameter Length Bulk Density Crush Strength (axial)

Shipping & Handling

Chemical Composition (Typical) CuO: Al2 O3 : ZnO: MgO:

64 wt% 10 wt% 24 wt% 2 wt%



Avoid contact with skin and clothing. Avoid breathing dust. Do not take internally. Please refer to the relevant Material Safety Data Sheet for further information.



KATALCO 51-8 catalyst is available in non-returnable polythene lined mild steel drums or bulk bags for easy loading.

Transport Phenomena

10/31/08

Reactor types 31

Transport Phenomena

10/31/08

Multi-Bed Reactor 32

6:96

)";=?@==BC )DEBFGHBG)@HGC)IAE>JKLDHGFM

6:27 6:25 6:24

N!C'$

6:29 6:26 6:67 6:65 6:64 6:69 6:66 456

476

866

896

846

#OPQ

856

Transport Phenomena

876

566

596

10/31/08

!

Reactor dimensioning 33

!"#$%&'()*+',"-#) 1 m/s ! wanted gas velocity

)

m2 section – approx 4 m diameter #JKG=BCB)5>=>D)A;=@5?=>DQH) )

Internal Mass Transfer Limitation

35

+ &'! % $+,( !"#$%&'()*+',"-# ) ) 0# ) ! $ 4 !"#$%&'()*+',"-#) ,!.! % % % $((# 0.1 # 0 =>:)! ?;:77E;:) 9;5?) DA;577 5 ?:@@:=) +6 A56B5;CD=856) -56789:;8687) H" E786:)B5@@5G86

Smile Life

When life gives you a hundred reasons to cry, show life that you have a thousand reasons to smile

Get in touch

© Copyright 2015 - 2024 PDFFOX.COM - All rights reserved.