Using Quantum Coherence to Improve the Efficiency of Quantum Heat [PDF]

Quantum Heat Engine Power. Increased by Quantum Coherence. Marlan Scully with K. . Chapin,. Chapin, K. K. Dorfman, , B.

0 downloads 18 Views 4MB Size

Recommend Stories


Assisted Distillation of Quantum Coherence
Just as there is no loss of basic energy in the universe, so no thought or action is without its effects,

Quantum thermodynamic cycles and quantum heat engines
At the end of your life, you will never regret not having passed one more test, not winning one more

Quantum Matrices Using Quantum Gates
Every block of stone has a statue inside it and it is the task of the sculptor to discover it. Mich

The quantum efficiency of the bacteriorhodopsin photocycle
Make yourself a priority once in a while. It's not selfish. It's necessary. Anonymous

Complementarity relations for quantum coherence
Life is not meant to be easy, my child; but take courage: it can be delightful. George Bernard Shaw

Macroscopic Quantum Tunneling and Coherence
We can't help everyone, but everyone can help someone. Ronald Reagan

Quantum simulations using split-step quantum walks
The only limits you see are the ones you impose on yourself. Dr. Wayne Dyer

[PDF] Introduction to Quantum Mechanics
So many books, so little time. Frank Zappa

Quantum Chemistry Algorithms: Classical vs Quantum [PDF]
Classical Algorithm 1: Coupled Cluster. • Factorised many-body expansion. • Obtain energy and coefficients via projection (like PT). ˆ. H = ∑pq hpqa1 p aq + ∑ pqrs gpqrsa1 p a1 q aras. T = ∑ai t a i a1 a ai + ∑ abij t ab ij a1 a a1 b aja

Determining quantum coherence with minimal resources
I want to sing like the birds sing, not worrying about who hears or what they think. Rumi

Idea Transcript


Using Quantum Coherence to Improve the Efficiency of Quantum Heat Engines Marlan Scully Texas A&M Universityy

Quantum Heat Engine Power Increased by Quantum Coherence Marlan Scully

with K. Chapin,  . Chapin, K.  K. Dorfman Dorfman, , B.  B. Kim,  Kim, and A.  and A. Svidzinsky Svidzinsky

Texas A&M University and  Texas  A&M University and Princeton  Princeton University    University   

Quantum Coherence Can Improve  Q Quantum Heat Engine (QHE) Efficiency g (Q ) y I. Quantum Thermodynamics II. Photo-Carnot QHE III. The Laser as a QHE Q 1.

From Detailed Balance

2. Quantum Coherence Can Improve Laser QHE Quantum Efficiency by Breaking Detailed Balance Q IV. The Photocell as a QHE 1.

From Detailed Balance

2. Q Quantum Coherence Can Improve p Photocell Q QHE Q Quantum Efficiency y by Breaking Detailed Balance V.

Noise Induced Quantum Coherence Can Enhance: 1) Laser QHE Power 1). 2). Photocell QHE Power 3). Efficiency of Photosynthesis

Heat Engines • Classical Heat Engines produce useful work by  extracting energy from a high temperature  g gy g p energy source and rejecting entropy to a low  temperature entropy sink. • A Photo‐Carnot Engine A Photo Carnot Engine is a Carnot cycle engine in  is a Carnot cycle engine in which photons are the working fluid and the  piston is driven by radiation pressure. Quantum  coherence allows us to achieve thermodynamic  efficiency beyond the Carnot limit without  violating the second law. violating the second law. • Laser and Photocell Quantum Heat Engines are  driven by thermal radiation and governed by the  l laws of quantum thermodynamics. f h d i

Laser/Photocell Quantum Heat Engines  Timeline i li • 1900 Planck Entropy of Thermal Light py g • 1905 Einstein Photon Concept, 1917 Stimulated  Emission, Detailed Balance • 1954 Gordon, Zeiger, and Townes G d Z i dT Fi M First Maser • 1959 Maser as a Quantum Heat Engine • 1994 TAMU Lasing Without Inversion  1994 TAMU Lasing Without Inversion • 2003 Photo‐Carnot Quantum Heat Engine  • 2010 Photocell Quantum Efficiency Improved by  Q y p y Quantum Coherence • 2011 Laser and Photocell Quantum Heat Engines 5

Quantum Thermo I Planck studies Entropy of Light to Arrive at the Quantum* Wein Entropy

1 2S  2 b  

where   average energy of oscillator with frequency 

Planck Entropy       1900

kB 2S  2  (   ) 

 



e  / k BT  1

*Planck Photon Statistics and Bose Einstein condensation, Progress in Optics 2007

Quantum Thermo II Einstein studies Entropy of Light to Arrive at the Photon* Fluctuations  E 2   2

 n

2

wave



n particle

Wave Particle Duality 1905 Wave Particle Duality     1905

*Progress in Optics 2007

Quantum Coherence Can Improve  Q Quantum Heat Engine (QHE) Efficiency g (Q ) y I. Quantum Thermodynamics II. Photo-Carnot QHE III. The Laser as a QHE Q 1.

From Detailed Balance

2. Quantum Coherence Can Improve Laser QHE Quantum Efficiency by Breaking Detailed Balance Q IV. The Photocell as a QHE 1.

From Detailed Balance

2. Q Quantum Coherence Can Improve p Photocell Q QHE Q Quantum Efficiency y by Breaking Detailed Balance V.

Noise Induced Quantum Coherence Can Enhance: 1) Laser QHE Power 1). 2). Photocell QHE Power 3). Efficiency of Photosynthesis

Photo‐Carnot Engine • Working Fluid(radiation) heated by two‐level atoms

Entropy Sink The image part with relationship ID rId5 was not found in the file.

M. Scully, M. Zubairy, G. Agarwal, and H. Walther y y g

10

Single Mode = Single Atom Single Mode  Single Atom PV  kT PV  n  kT

(O atom) (One t ) kT n  ((One mode))

Tc c  1  Th

Rate equation for photon number (I) Rate equation for photon number (I)

12

Lasing Without Inversion

(a) Use of quantum coherence in ground state b,c to cancel absorption (b) the use quantum coherence in the excited state a,b a b to cancel emission

nlaser   (n  1)( Aa 2  Bb 2 )  n Aa  Bb

2

13

‘‘Continuous wave (cw) amplification and laser oscillation without population inversion have been observed…’’

14

Photo‐Carnot Photo Carnot Engine Engine • Working Fluid heated by phaseonium Working Fluid heated by phaseonium Entropy

The image part with relationship ID rId3 was not found in the file.

15

Rate equation for photon number (II)

16

Efficiency of a Quantum Carnot Engine Efficiency of a Quantum Carnot Engine

17

Quantum Coherence Can Improve  Q Quantum Heat Engine (QHE) Efficiency g (Q ) y I. Quantum Thermodynamics II. Photo-Carnot QHE III. The Laser as a QHE Q 1.

From Detailed Balance

2. Quantum Coherence Can Improve Laser QHE Quantum Efficiency by Breaking Detailed Balance Q IV. The Photocell as a QHE 1.

From Detailed Balance

2. Q Quantum Coherence Can Improve p Photocell Q QHE Q Quantum Efficiency y by Breaking Detailed Balance V.

Noise Induced Quantum Coherence Can Enhance: 1) Laser QHE Power 1). 2). Photocell QHE Power 3). Efficiency of Photosynthesis

Quantum Heat Engine with and without Quantum Coherence ih d ih h    

LLaser Q. H. E. Q H E Laser Q.H.E. by Scovil and Schulz‐DuBois Lasing without inversion Supercharged Quantum heat engine Supercharged Quantum heat engine

19

Laser Quantum Heat Engine (QHE)

Boltzmann distribution

At threshold (nb=na) efficiency of maser QHE

20

At threshold 

21

Summary • Efficiency Efficiency from QHE can exceed the classical  from QHE can exceed the classical Carnot Efficiency by using phased three‐level  atoms. atoms • The Photo‐Carnot QHE can produce work  from a single thermal bath from a single thermal bath. • Efficiency of Laser QHEs can be increased by  quantum coherence. h

22

Quantum Coherence Can Improve  Q Quantum Heat Engine (QHE) Efficiency g (Q ) y I. Quantum Thermodynamics II. Photo-Carnot QHE III. The Laser as a QHE Q 1.

From Detailed Balance

2. Quantum Coherence Can Improve Laser QHE Quantum Efficiency by Breaking Detailed Balance Q IV. The Photocell as a QHE 1.

From Detailed Balance

2. Q Quantum Coherence Can Improve p Photocell Q QHE Q Quantum Efficiency y by Breaking Detailed Balance V.

Noise Induced Quantum Coherence Can Enhance: 1) Laser QHE Power 1). 2). Photocell QHE Power 3). Efficiency of Photosynthesis

Photovoltaics Enhanced by Microwave  Induced Quantum Coherence

Outline

Solar spectrum with the bandgaps of  semiconductors Gregory F. Brown, and Junqiao Wu, Laser & Photon Review 3, No. 4, 394, (2009)

Quantum Dot Photo/Solar Cell Solar cell with array of quantum dots

Texas A&M Texas A&M University

Electron-hole separation

Dividing photon flux onto monochromatic components t

Solar Cells and Detailed Balance

P. Würfel, P Würfel Chimia 61, 61 770 (2007) “That leaves radiative recombination as the major [energy loss] process. Can this be avoided? The answer is no. If a radiative upward transition to generate the excitation is allowed, its reversal, the radiative downward transition must be allowed as well.”

Average photon number

Thermodynamic efficiency

Thermodynamic efficiency

Detailed balance revisited Detailed balance revisited “That That leaves radiative recombination as the major [energy loss] process. Can this be avoided? The

Yes!

answer is no. If a radiative upward transition to generate the excitation is allowed, its reversal, the radiative downward transition must be allowed as well well.”

can be mitigated by breaking detailed balance  via quantum coherence! via quantum coherence!

Summary • Quantum coherence induced by an external  microwave field can increase the quantum efficiency  ( (open circuit voltage) of the photocell. i i l ) f h h ll • Furthermore Furthermore such a coherent driven photocell  such a coherent driven photocell generates more power. The extra power produced by  the device is much larger then that derived from the  g microwave source which creates the coherence. • Induced coherence results in more efficient  utilization of the pump photons by increasing  absorption and/or quenching unwanted emission absorption and/or quenching unwanted emission. 

Quantum Coherence Can Improve  Q Quantum Heat Engine (QHE) Efficiency g (Q ) y I. Quantum Thermodynamics II. Photo-Carnot QHE III. The Laser as a QHE Q 1.

From Detailed Balance

2. Quantum Coherence Can Improve Laser QHE Quantum Efficiency by Breaking Detailed Balance Q IV. The Photocell as a QHE 1.

From Detailed Balance

2. Q Quantum Coherence Can Improve p Photocell Q QHE Q Quantum Efficiency y by Breaking Detailed Balance V.

Noise Induced Quantum Coherence Can Enhance: 1) Laser QHE Power 1). 2). Photocell QHE Power 3). Efficiency of Photosynthesis

Noise induced quantum coherence      

External source: External source: Lasing Without Inversion Supercharged Quantum Heat Engine No external field Fano interference (quantum noise) Agarwal (Fano‐Harris) lasing without inversion (Fano Harris) lasing without inversion

“…The preceding coherent drive model illustrates the role of quantum coherence in a simple way. However, it is possible to generate coherence without the use of an external field. For example, quantum noise induced coherence via Fano coupling…”

Fano Interference I. LWI

Fano Interference II. Tunneling g 

1  2 2 b

Bare state Bare state

2

a1 a2 b





Mixing of damping terms due to Fano

Noise induced coherence

Steady state coherence

Steady state coherence

Noise induced quantum coherence can double Noise induced quantum coherence can double the laser  the laser power at no extra cost!

Entropy Sink

Energy Source

Tc

Th  laser



 laser   h 1 TThc



a Th b

a

laser l

 Tc

Plaser   h nh  nc   laser

Th b1 b2

laser

 Tc

Plaser  2 h nh  nc  laser

Noise induced coherence can double Noise induced coherence can double photocell power at  photocell power at no extra cost! Transparent electrode

a

Quantum dots

a

Tc 

b

Load



eVoc   h 1 TThc



j

Th



n



j

Th

p

Tc

Tc

Pcell  12 e h nhV

b1 b2

 Tc

Pcell  e h nhV

For proper cell design noise-induced coherence is robust against g environmental decoherence 0.04

Cell p power

Full coherence

0.03

0.02

~

=10 =100~ No coherence

0.01

0.00 0.0

0.5

1.0

Energy

1.5

Robustness of noise induced coherence a 1

Ta , nc

2

~ 

c



TS , n

~1

b1

b2

12 

j

v ~2 Ta , nv

i



Noise induced coherence:

Noise induced coherence in  p photosynthetic systems y y

Konstantin Dorfman, Dmitri Voronine, Shaul Mukamel, and Marlan Scully

Charge separation in photosynthesis

Reaction Center of PSII of PSII Special pair

Photon echo experiments reveal quantum coherence in photosynthetic complexes

But: previous studies used lasers to induce quantum  coherence. Can we get noise‐induced quantum coherence in  photosynthetic complexes?

Conclusion: noise‐induced quantum coherence can enhance  electron transport yield in photosynthetic complexes

SUMMARY Quantum Coherence Can Improve  Quantum Heat Engine (QHE) Efficiency I. Quantum Thermodynamics II. Photo-Carnot QHE Q III. The Laser as a QHE 1.

From Detailed Balance

2. Quantum Coherence Can Improve Laser QHE Quantum Efficiency by Breaking Detailed Balance IV The Photocell as a QHE IV. 1.

From Detailed Balance

2. Quantum Coherence Can Improve Photocell QHE Quantum Efficiency Breaking Detailed Balance V.

Noise Induced Quantum Coherence Can Enhance: 1). Laser QHE Power 2). Photocell QHE Power 3). Efficiency of Photosynthesis

by

References 1. D.M. Greenberger, b N. Erez, M.O. Scully, ll A.A. Svidzinsky d k and d M.S. Zubairy. Progress in Optics, 50:275 (edited by E. Wolf, Elsevier, Amsterdam, 2007). 2 M.O. 2. M O Scully, S ll M.S. M S Zubairy, Z b i G.S. G S Agarwal, A l H. H Walther, W lth Science S i 299:862 (2003). 3. H.E.D. Scovil, E.O. Schulz‐DuBois, Phys. Rev. Lett. 2:262(1959). 4. M.O. Scully, Phys. Rev. Lett. 106:049801 (2011). 5. M.O. Scully, Phys. Rev. Lett. 104:207701 (2010). 6. M.O. Scully, y, K.R. Chapin, p , K.E. Dorfman,, M.B. Kim,, A.A. Svidzinsky, PNAS 108:15097 (2011). 7. K.E. Dorfman, D.V. Voronine, S. Mukamel, M.O. Scully, to be p published.

Laser QHE Entropy Sink

Energy Source

Tc

Th

 laser  laser

App I

a

 laser



Th b

Tc

Laser power

MOS, Chapin, Dorfman, Kim, and Svidzinsky, PNAS 108 15097 (2011).

54

App II

Laser QHE with noise induced coherence Q Entropy py Sink

Energy gy Source

Tc

Th

a

 laser

Th b1 b2

 laser  laser l

(

 Tc

+

Smile Life

When life gives you a hundred reasons to cry, show life that you have a thousand reasons to smile

Get in touch

© Copyright 2015 - 2024 PDFFOX.COM - All rights reserved.