Volume 4, Issue 3 - McMicken College of Arts & Sciences - University [PDF]

Graduate Student Journal of. Anthropology. Official Publication of the Graduate Students in the Department of. Anthropol

0 downloads 6 Views 3MB Size

Recommend Stories


College Of Arts And Sciences
Don't ruin a good today by thinking about a bad yesterday. Let it go. Anonymous

Weinberg College of Arts & Sciences:
If you want to go quickly, go alone. If you want to go far, go together. African proverb

Volume 4 Issue 4
Don't fear change. The surprise is the only way to new discoveries. Be playful! Gordana Biernat

College of Arts and Sciences - The Ohio State University
Learning never exhausts the mind. Leonardo da Vinci

(2015), Volume 3, Issue 4, 857-869
Learn to light a candle in the darkest moments of someone’s life. Be the light that helps others see; i

Volume 3, Issue 4, 502-507
The wound is the place where the Light enters you. Rumi

(2016), Volume 4, Issue 3, 12-18
If you feel beautiful, then you are. Even if you don't, you still are. Terri Guillemets

(2015), Volume 3, Issue 4, 1107-1116
Pretending to not be afraid is as good as actually not being afraid. David Letterman

(2016), Volume 4, Issue 3, xxxx
Ask yourself: Which is worse: failing or never trying? Next

Volume 4 Issue 2
Life isn't about getting and having, it's about giving and being. Kevin Kruse

Idea Transcript


   

University  of  Cincinnati   Graduate  Student  Journal  of  Anthropology     Volume  4,  Issue  3   June  2012  

 

  ASSOCIATE  EDITOR   ASHLEY  MCCALL      

EDITOR  IN  CHIEF   LIZ  MILLER     ASSISTANT  EDITOR  IN  CHIEF   ANDRAS  NAGY     INTERIM  ASSOCIATE  EDITOR   DENISE  KNISELY     FACULTY  ADVISOR   DR.  JEREMY  KOSTER    

 

  ASSOCIATE  EDITOR   RYAN  WASHAM      

Graduate Student Journal of Anthropology Official Publication of the Graduate Students in the Department of Anthropology

  Volume  4,  Issue  3       THE  IMPORTANCE  OF  FIELD  EXPERIENCE  IN  YOUR  GRADUATE  CAREER   BROOKE  CROWLEY           LOOK,  ANIMAL  ACTIVISTS!  AN  EXAMINATION  OF  STIGMATIZATION  AND  TYPIFICATON   NIKKI  BERKEBILE           ANATOMY  OF  THE  BICONDYLAR  KNEE:  EVOLUTIONARY,  COMPARATIVE,  AND  FUNCTIONAL  PERSPECTIVES   LAUREN  BOWSER           THE  REDESIGN  OF  THE  HUMAN  PELVIS  FOR  BIPEDALISM  AND  THE  CONSEQUENCES  FOR  PARTUITION   KRISTI  CORRADO             THE  UNIQUENESS  OF  THE  HUMAN  LARYNX:  THE  KEY  TO  MODERN  LANGUAGE   KATHLEEN  FORSTE       AN  ANCIENT  mtDNA  STUDY  OF  NATIVE  AMERICAN  POPULATIONS  AT  THE  RAY  SITE  (12W6)      PHOEBE  PRITCHETT       URARTU:  IRRIGATION  AND  WATER  MANAGEMENT  IN  THE  ARMENIAN  HIGHLAND        JANINE  SPARKS       AN  EXPLORATORY  STUDY  CORRELATING  CLIMATE  CHANGE  AND  THE  ANTHROPOGENIC  MANIPULATION  OF   SPACE  AT  TIKAL,  GUATEMALA        TONY  TAMBERINO

 

 

     June  2012   i    

1  

11  

18  

26  

35  

41  

 

51

The  Importance  of  Field  Experience  in  Your  Graduate  Research   A  Letter  from  Dr.  Brooke  Crowley       Field  experience  is  not  just  about  research.  It  is  a  life  lesson.  When  I  was  a   graduate  student,  I  conducted  fieldwork  in  Madagascar.  On  my  first  trip  to   the  island,  I  thought  I  might  as  well  be  making  a  voyage  to  the  moon.  I  had   no  idea  what  to  expect  and  I  was  very  anxious.  Our  plane  landed  and  I  was   immediately   accosted   with   sights,   sounds,   and   smells   that   were   new   to   me.  At  the  airport,  little  children  pulled  on  my  clothes  and  begged  me  for   money,   and   vendors   tried   to   sell   me   sunglasses,   newspapers   and   rubber   stamps.  At  first,  I  found  this  completely  overwhelming.  I  had  come  to  this   country  to  study  lemurs  in  the  island’s  dwindling  forests.  At  the  time,  this   all  seemed  very  far  away.  Over  the  next  six  weeks,  I  visited  various  parts  of   the  island.  I  did  indeed  get  to  see  lemurs.  I  also  met  many  local  Malagasy.  I   was  repeatedly  amazed  by  how  open,  friendly,  and  generous  these  people   were.  A  family  of  six  living  in  a  one-­‐room  mud  hut  treated  me  like  a  guest   of  honor.  I  was  humbled  and  very  grateful  for  their  hospitality.  Had  it  not   been  for  these  people  with  big  hearts,  my  trip  would  have  been  very  lonely.       My   experience   in   Madagascar   changed   me   and   my   perspective   of   the   world.   In   addition   to   collecting   preliminary   data   for   my   dissertation,   I   had   been   exposed   to   cultures   and   living   conditions   that  radically  differed  from  the  one  I  had  always  known.  Moreover,   fieldwork   has   made   me   more   independent   and   self-­‐reliant.   I   was   frequently  in  charge  of  a  research  team  and  I  had  to  make  my  own   decisions  about  how  to  move  forward  with  my  research.  I  was  not   able   to   double-­‐check   these   decisions   with   my   lab   mates   or   my   advisor.  These  experiences  helped  me  develop  leadership  skills  that   have  since  served  me  very  well.       Although   it   may   seem   daunting   or   even   scary,   taking   yourself   out   of   your   comfort   zone   and   placing   yourself   in   an   unfamiliar   setting   may   be   the   most   important   aspect   of   your   graduate   career.   In   Anthropology,   we   frequently   talk   about   cultural   differences   and   similarities,   but   it   is   not   until   one   immerses  oneself  in  a  new  place  that  it  is  possible  to  fully  appreciate  who  we  are.  Every  time  I  conduct   fieldwork,  I  find  that  I  learn  something  new  about  myself,  how  I  think,  and  how  I  interact  with  others.   Regardless  of  your  research  focus,  getting  out  in  the  field  is  a   formative  experience  that  cannot  be  replicated  in  a  classroom   or   in   front   of   a   computer.   You   do   not   need   to   travel   to   the   other  side  of  the  planet  to  benefit  from  fieldwork.  Working  in   any  setting  that  differs  from  your  normal  learning  environment   will   benefit   you.   Not   everyone   is   given   an   opportunity   to   do   fieldwork.   I   encourage   you   to   get   a   field   opportunity   during   your  time  as  a  graduate  student.  If  your  own  research  project   does  not  involve  fieldwork,  join  a  research  expedition  or  field   school.   Not   only   will   such   an   experience   help   you   become   a   better  researcher,  it  will  change  your  life.    

i

Look,  Animal  Activists!  An  Examination  of  Stigmatization  and   Typification   Nikki Berkebile Introduction     Picture   for   a   moment   an   animal   rights   activist.   What   comes   to   mind?   A   white  hippie  male,  skinny  from  a  vegetarian   diet,  with  long  hair  who  wears  peace  signs,   no   shoes,   and   a   far-­‐away   expression?   An   educated   woman   attired   in   professional   dress   holding   a   briefcase?   Or   a   masked   person   dressed   in   all   black,   wielding   a   pair   of  wire  cutters  with  anger  in  the  eyes?  Now   compare   those   images   with   a   Muslim   traveller  at  an  airport.  What  comes  to  mind   now?  A  Muslim  American,  wheeling  luggage   around   a   terminal   while   trying   to   find   the   right  gate?  Or  a  jihadist  extremist  dressed  in   Arab  garb,  armed  with  an  explosive  device?   There   is   always   more   than   one   way   to   see   or   perceive   something,   as   is   the   case   with   the  differing  images  conjured  by  the  label  of   ‘animal  rights  activist.’     In   the   previous   visualization   exercises,  there  was  a  dichotomy  of  images:   a   peaceful   activist–Muslim   and   a   militant   activist–Muslim,   which   our   society   often   labels   as   a   terrorist.   It   is   this   within   this   visual   dichotomy   between   activists   and   terrorists  that  I  wish  to  explore  how  animal   rights  activists  are  stigmatized  in  our  hyper-­‐ consumerist   society   by   the   media,   spear-­‐ headed   by   biomedical   lobbyists   and   the   meatpacking   industry.   I   argue   that   these   communities   of   practice,   the   large   corporations   which   utilize   animals   as   a   means   for   profit,   propagate   a   negative  

stereotype   of   activists   that   influences   the   ways   in   which   consumers   see   the   movement   and   also   view   products   for   consumption.   Each   side,   activists   and   corporations,   both   frame   and   highlight   themselves   within   certain   criteria   and   boundaries   through   discursive   methods   of   embodiment   and   the   use   of   key   terminology   that   direct   the   viewer   in   a   particular  way.     I  juxtapose   my   exploration   of   stigma   and  typification  of  a  subcultural  movement   by  the  dominant  culture  with  an  example  of   mainstream   Muslims   who   are   typified   as   Islamic   terrorists.   I   will   examine   scholarly   literature   in   the   fields   of   anthropology,   psychology,   and   medical   ethics,   and   I   will   attempt  to  bridge  the  gap  between  the  etic,   or   academic   perspective,   and   the   emic,   or   the   real   world   perspective   of   activists,   through   exploration   of   their   own   literature   and  websites.  To  fully  process  this  stigma  or   form   of   seeing,   one   must   look   at   every   angle   and,   like   anthropologist   Karen   Strassler,   not   isolate   one   image,   but   incorporate   all   genres   to   understand   the   context  and  to  “look  better.”        

 

    1  

Berkebile,  Nikki.  Look,  Animal  Activists!  An  Examination  of  Stigmatization  and  Typification  

The   Terrorist   Stigma   and   Typification:   Animal   Rights   Activists   and   Travelling   Muslims     In   June   1990,   the   Association   of   American   Colleges   met   to   hold   a   press   conference   right   before   24,000   animal   rights   activists   marched   on   Washington   D.C.,   “to   reaffirm   the   message   that   such   activists   are   nothing   more   than   ‘animal   rights   terrorists’”   (Plous   1991:194).   Such   a   preemptive   statement   before   a   peaceful   march   automatically   stigmatized   the   activists  who  were  not  there  to  defend  their   position,   or   themselves,   from   the   negative   onslaught   against   their   character   and   their   goals.   Even   the   secretary   of   the   U.S.   Department   of   Health   and   Human   Services   has   helped   to   propagate   the   negative   view   of   animal   rights   activists   by   referring   to   them   as   “terrorists,”   while   “many   other   members   of   the   medical   and   scientific   communities   have   described   animal   rights   supporters   as   fanatical,   militant,   and   dangerous”  (Plous  1991:194).  By  2003,  even   Science   magazine   lamented   that   “biomedical   lobbyists   and   interests   groups   are  taking  advantage  of  a  society  already  on   edge,   attempting   to   paint   with   one   broad   stroke   anyone   who   works   to   advance   the   welfare   of   nonhuman   animals   use   in   laboratories   as   a   ‘domestic   terrorist’   or   potential   terrorist”   (Miller-­‐Spiegel   &   Teitelbaum  2003:1013).     These  renunciations  are  examples  of   the   use   of   stigma.   Rosemarie   Garland-­‐ Thomson   discusses   the   concept   of   social   stigmatization,   using   sociologist   Erving   Goffman’s   definition   of   stigma   as   a   “social   discrediting   of   those   we   perceive   as   different,   as  lesser  than  we   are”   (2009:44).   If   social   discrediting   happens,   people,   or   in   this   case   animal   right   activists,   have   to   be  

compared   and   evaluated   against   a   set   standard   or   societal   norm   which   labels   them   as   abnormal.   The   concept   of   “normalcy   is   not   what   we   actually   see   everywhere,”  but  in  an  ironic  twist,  “rather   what   we   expect   to   see”   (Garland-­‐Thomson   2009:45).   Therefore,   normal   citizens   and   consumers  would  not  “disrupt  the  effortless   mutual  granting  of  civil  inattention  that  gets   us   through   our   day”   by   protesting   the   cruelty  and  inhumane  treatment  of  animals   that   would   “spark   one   another’s   fears,   anxiety,   embarrassment,   or   disgust”   (Garland-­‐Thomson  2009:45).   Why   might   companies   or   interest   groups   want   to   discredit   animal   rights   activists   by   labeling   them   as   terrorists   in   particular?   One   example   is   the   Animal   Liberation   Front’s   (A.L.F.)   use   of   direct-­‐ action   campaigns   that   try   to   free   animals   from   labs,   farms,   and   slaughterhouses,   which   often   involves   illegal   trespassing   and   sometimes   damage   of   private   property.   Direct-­‐action  campaigns  are  “activist  tactics   that,   like   boycotts   and   sabotage,   are   intended  to  have  an  immediate  impact  on  a   problem   or   its   causes”   (Jones   2004:137).   Some   activist   organizations   find   direct   action   to   be   an   effective   means   of   protest   and   couple   those   campaigns   with   indirect   action.   The   Southern   Poverty   Law   Center   has   documented   “hundreds   of   specific   incidents   of   vandalism   at   animal   laboratories   by   animal   rights   activists,   with   damages   totaling   millions   of   dollars”   (Miller-­‐Spiegel   &   Titelbaum   2003:1014).   Stop  Huntington  Animal  Cruelty  (S.H.A.C.)  is   another   global   direct   action   organization   that   targets   Huntington   Life   Sciences,   Europe’s   largest   animal   testing   laboratory,   and   all   of   its   suppliers   or   investors.   Since   1999,   S.H.A.C.   activists   have   broken   hundreds   of   windows,   splashed   red   paint       2  

Berkebile,  Nikki.  Look,  Animal  Activists!  An  Examination  of  Stigmatization  and  Typification  

on  cars,  cleared  entire  offices  or  city  streets   with   stink   and   smoke   bombs,   phoned   in   bomb   scares   to   cut   business   days   short,   conducted  arson,  and  detonated  explosives   outside   facilities   where   no   life   was   intentionally   put   in   danger   (Jonas   2004:267).     According   to   the   Oxford   English   Dictionary,   terrorists   are   people   who   use   violent   and   intimidating   methods,   typically   against   non-­‐combatants.   The   corporations   and  interest  groups  see  themselves  as  non-­‐ combatants   being   attacked   in   a   violent   fashion  by  animal  rights  activists.  They  take   on   a   public   profile   that   encourages   the   public  to  think   of  them  as   innocent   victims   and   all   activists   as   discredited   aggressors.   However,  because  not  all  activists  use  direct   action   tactics   considered   to   be   terroristic,   how   do   we   work   out   whom   to   label   a   terrorist?    Daniel  Segal’s  article  notes  that  our   sensory  typifications  that  help  us  categorize   people   are   “generated   by   the   very   social   processes   that   co-­‐produce   our   notions”   of   animal   rights   activists’   looks   and   the   movement’s   identity   (1999:236).   These   socially   forged   constructions   shape   our   visual   typification   analysis   process   rendering   it   not   a   very   “reliable   calculation   of  what  is  true  on  average  in  a  given  set  of   persons,”   because   our   “constructions   of   appearance  and  identity  are  components  of   a  self-­‐confirming  and  largely  closed  system”   (Segal   1999:237,239).   This   retroactive   shaping  of  a  person’s  identity,  based  on  our   cultural   perception   of   knowledge,   is   potentially   dangerous   and   leads   to   identity   contradictions.             Segal’s   analysis   of   typification   can   also  be  applied  to  the  travelling  Muslim,  the  

second   example   image.   In   a   post-­‐ September   11th   society,   travelling   Americans   are   often     on   edge   and   the   phrase   “potential   terrorist”   were,   and   still   are,   often   used   when   discussing   how   new   screening   techniques   at   the   airport   could   reduce   the   threat   of   terrorism.   However,   these   new   techniques   often   use   biometric   technologies   to   “secure   ‘identity   dominance’”,  which  is  based  on  “normative   conceptualizations   of   race,   gender,   (dis)ability,  and  bodily  behavior,”  in  order  to   “identify   and   capture   targeted   subjects”   (Pugliese   2008:49).   By   typifying   people   based  on  these  categories  of  distinction,  an   underlying   standard   is   created   of   the   “normative”   and   “exemplary   citizen-­‐ subject”  which  everyone  strives  to  embody   so   as   not   to   be   the   discredited   terrorist   (Pugliese   2008:55).   One   way   Muslims   can   disguise  traits  or  behaviors  that  “cannot  be   readily   absorbed   into  the   [American]   visual   status   quo”   is   to   wear   Western   clothing   when   travelling,   thereby   trying   to   deflect   stigma  (Garland-­‐Thomson  2009:44).  When  a   society  creates  such  a  strict  view  of  what  it   deems   normal,   it   becomes   hard   to   break   away   from   the   socio-­‐cultural   history   and   context  in  which  its  citizens  are  enmeshed.       Consumer   Vision:   America’s   Socio-­‐Cultural   Context   Our   capitalist   society   has   inaugurated   a   new   form   of   looking   that   every   citizen   participates   in,   called   consumer  vision.  Because  we  are  always  on   the   run,   “restlessly   driven   by   modernity’s   mandate   to   consume,   perpetually   distracted   by   an   avalanche   of   information   and   stimulation,   and   shaped   into   conformity   by   a   network   of   intricately       3  

Berkebile,  Nikki.  Look,  Animal  Activists!  An  Examination  of  Stigmatization  and  Typification  

structured   institutions,”   consumer   vision   becomes   our   primary   means   of   sorting   through   and   negotiating   knowledge   in   the   environment   we   live   in   today   (Garland-­‐ Thomson  2009:29).     Consumer   vision   is   casual   and   superficial  and  is  focused  on  the  products  of   consumption,   not   necessarily   people   or   animals   involved   in   the   making   of   such   commodities.   Therefore,   the   activist   calls   attention   away   from   the   product   being   viewed  as  something  desirable  towards  the   ramifications  of  such  one-­‐sided  seeing.  Yes,   those   leather   boots   in   the   store   window   would  look  fabulous  with  that  dress,  but  the   P.E.T.A.  (People  for  the  Ethical  Treatment  of   Animals)   protest   in   front   of   the   shop   redirects   the   consumer’s   vision   to   the   inhumane   treatment   and   slaughter   of   the   cow,   intrinsic   to   the   production   of   the   boots.   Anything   that   detracts   from   this   consumer   vision   or   harms   profit   in   our   industrialized   society   is   often   segregated   and   attacked.   It   is   within   this   social,   historical,  and  economical  context  that  one   may   start   to   understand   why   vehement   stigmatization   of   animal   rights   activists   happens   so   frequently.   I   argue   that   animal   rights   activists   are   not   opposed   to   this   consumer  vision  in  general,  but  in  fact  they   find   it   beneficial   to   raise   awareness   of   sustainable   and   compassionate   consumption.   In   their   campaigns   they   utilize   the   consumer   vision   to   its   full   potential.          

Who  is  An  Animal  Rights  Activist?   To   fully   address   the   role   of   stigma   and   the   discrediting   of   animal   rights   activists,   one   must   understand   what   is   at   the   heart   of   the   movement   and   who   is   defined  as  an  activist.  An  activist  is  a  person   engaged   in   or   advocating   vigorous   political   or  social  activity  (Oxford  English  Dictionary).   Like   any   social   or   political   movement,   the   animal   rights   movement   has   attracted   all   kinds   of   people   who   build   organizations   that   practice   different   philosophies.   As   discussed   above,   there   are   two   types   of   action   that   the   movement   participates   in,   depending   upon   which   philosophy   the   organization  follows:  direct  and  indirect.     While   stigmatization   perpetuates   the   image   of   militant   activists   dictating   violent  protests  from  the  underground,  the   majority   of   organizations   fall   under   the   indirect   action   campaigning   type,   “conducting   their  business   through   entirely   legal  means  in  local  communities  and/or  on   the  state  and  federal  level  and  have  greatly   advanced   the   well-­‐being   or   ended   the   use   of   animals   in   research”   (Miller-­‐Spiegal   &   Teitelbaum   2003:1013).   They   do   this,   not   through  violent  protests  and  actions,  but  by   focusing   their   energy   on   “tools   of   policy   development,   litigation,   legislation,   and   education,”  which  has  made  a  great  impact   on   the   maturing   of   leadership   and   success   of   the   movement   (Miller-­‐Spiegel   &   Teitelbaum   2003:1013).   For   example,   the   movement   initiated   a   large-­‐scale   letter-­‐ writing   campaign,   whereby   “letters   concerning   the   treatment   of   animals   now   make  up  the  third  largest  volume  of  mail  to   the   U.S.   Congress”   (Jamison   &   Lunch   1992:439).    

    4  

Berkebile,  Nikki.  Look,  Animal  Activists!  An  Examination  of  Stigmatization  and  Typification  

Who   then,   is   an   animal   rights   activist?  What  does  one  look  like?  What  are   the  movement’s  demographics?  An  attitude   survey   of   activists   and   some   ethnographic   studies   have   been   conducted   on   the   movement   to   glean   just   that   kind   of   data.   The  case  studies  I  reviewed  seemed  to  have   focused   their   research   on   participants   in   large  marches.  These  studies  show  that  the   majority   of   the   movement   are   white,   middle-­‐aged,  collage  educated  females  who   are   economically   middle-­‐class,   politically   liberal,   and   often   vegan   or   vegetarian     (Plous   1991:194;   Jamison   &   Lunch   1992:438).   These   anthropological   and   psychological  studies  paint  a  much  different   picture  of  an  animal  rights  activist  than  the   biomedical  research  lobbyist’s  masked  man   wielding  wire  cutters  and  planting  bombs  to   terrorize   corporations.   Because   most   animal   rights   activists   do   in   fact   have   college  degrees,  John  Hoyt,  president  of  the   Humane   Society   of   the   United   States   (H.S.U.S.),   spoke   out   against   the   negative   portrayal   of   activists   as   being   ignorant   in   the   field   of   science   and   void   of   all   intellect   by   saying   “we   object   to   characterization   of   animal   activists   as   anti-­‐science,   anti-­‐ intellectual,   and   anti-­‐rational”   (Nicoll   &   Russell  1989:903).      

(Plous   1991:195).   Jamison   and   Lunch   point   out   in   their   study   that   the   movement   “encompasses   a   plethora   of   single-­‐   and   multi-­‐issue   interest   groups   that   are   concerned   with   animal   use   in   entertainment,   recreation,   [and]   agriculture”  as  well,  but  it  is  within  the  anti-­‐ biomedical   research   campaign   that   “activists   have   been   able   to   affect   the   greatest   regulatory   impacts”   (1992:439).   Plous’   results   argue   that   such   diversity   of   opinion   and   practice   “challenge   the   accuracy   of   popular   stereotypes,”   thereby   negating   the   monolithic   “terrorist”   label   and   dispelling   any   view   of   the   “normative”   (1991:196).   Animal   right   activists   have   discovered  difference  in  unity  and  a  unity  in   difference   but   they   can   all   agree   on   their   belief   “in   the   legitimacy   of   nonviolent   civil   disobedience   as   a   political   tactic   to   drive   progressive   political   change;   and   they   renounce,   repudiate,   and   revile   animal   exploitation  industries  and  the  bloody  stain   speciesists   leave   on   this   planet   and   the   human   soul”   (Best   &   Nocella   2004:55).   Most   agree   on   the   main   reasons   for   activism,   however,   they   disagree   on   the   best  way  to  carry  out  their  activism.  

The   goals   of   the   animal   rights   movement   are   vast   and   do   vary   depending   on   the   organization   and   philosophy   with   which   an   activist   associates.   There   are   estimated   to   be   over   six   hundred   animal   rights   groups   with   combined   assets   between   $50   to   60   million,   and   growing   (Jamison   &   Lunch   1992:443).   As   social   scientists   have   documented,   big   marches   and   events   often   bring   together   activists   with  very  different  goals  in  mind  and  do  not   necessarily   place   animal   biomedical   research   elimination   as   a   main   priority  

Communities  of  Practice  and  Embodiment:   Activists  vs.  Corporations  

 

  The   stigmatization   of   animal   rights   activists   can   be   critiqued   by   an   analysis   of   the   communities   of   practice   involved,   animal   rights   activists   and   corporations,   which  constitute  the  way  in  which  members   of   a   specific   community   “build   and   contest   the   events   that   structure   their   lifeworld”   (Goodwin   1994:606).   Professional,   or   expert,   visions   are   “socially   organized   ways   of  seeing  and  understanding  events  that  are       5  

Berkebile,  Nikki.  Look,  Animal  Activists!  An  Examination  of  Stigmatization  and  Typification  

answerable   to   the   distinctive   interests   of   a   particular  social  group  (Goodwin  1994:606).   Because   professional   visions   require   an   expertise,   this   type   of   vision   is   unevenly   allocated,   “perspectival,   and   lodged   within   [an]   endogenous   community   of   practice”   (Goodwin   1994:606).   Each   professional   vision  has  shared  ideas  and  is  produced  as  a   collaborative  effort,  which  can  be  applied  to   both   the   animal   rights   movement   and   the   biomedical   research   lobbyists   and   corporations.   They   each   perform   three   practices   that   help   define   how   they   look   and   therefore   how   they   embody   their   ideas:   coding,   highlighting,   and   producing   and   articulating   material   representations   (Goodwin  1994:606).  Animal  rights  activists   and  the  corporations  they  fight  against  both   use  coding  schemes  in  their  everyday  work,   which   Goodwin   describes   as   a   way   the   experts   put   “the   world   into   the   categories   and   events   that   are   relevant”   to   that   field   (Goodwin   1994:608).   PETA   and   HSUS   have   different  coding  schemes  for  different  types   or   levels   of   animal   abuse   as   well   as   the   different   kinds   of   events   they   pursue   to   further  their  cause.       Highlighting   is   used   to   make   a   specific  “phenomena  [one  interesting  to  the   community   of   practice]   in   a   complex   perceptual   field   salient,”   by   which   the   professional  then  “discursively  shapes  from   the   materials   provided…   the   phenomenal   objects…that   are   the   concerns”   of   the   profession   (Goodwin   1994:606   &   611).   Therefore,   a   professional   vision   must   be   embodied   by   those   who   participate   in   the   community.   Below,   I   examine   how   each   community   of   practice   embodies   its   own   professional   image   and   show   how   through   such   discursive   performances,   stigmatization   can   be   enacted   on   the   part  

of  corporations  or  countered  on  the  part  of   activists.              

Biomedical   Research   Lobbyists,   the   Meat   Industry,  and  other  Corporations     There   is   a   great   quantity   of   literature  complied  by  the  medical  field  that   discusses   the   ethics   and   morals   behind  the   rights   that   man   have   over   animals   and   the   subject   of   animal   experimentation.   This   literature   also   becomes   a   good   segue   in   which   eating   animals   for   sustenance   is   justified   and   deemed   normal.   The   underlying   philosophy   for   this   community   of   practice   is   drawn   from   Thomas   Aquinas   who   argued   that   “man   is   essentially   different   from   animals   because   man’s   intellectual   processes   show   evidence   of   an   abstract   mechanism   not   possessed   by   animals”   (Martin   1990:160).   This   does   not   give  man  the  right  to  act  cruelly  to  animals   however,   he   believed   they   should   be   protected,   but   for   the   reasoning   that   they   had   no   legal   rights.   “He   who   is   cruel   to   animals   is   more   likely   to   be   cruel   to   his   fellowman,”   therefore   animal   welfare   is   an   extension   of   human   well-­‐being   (Martin   1990:160).   The   key   terminology   and   highlighting  used  by  this  professional  vision   is   often   the   emphasis   on   this   non-­‐physical   mechanism   (i.e.   man’s   reasoning   mind)   of   makes   man   essentially   different   because   if   it  is  non-­‐physical,  then  the  pain  endured  by   animals’  bodies  will  not  be  the  focus.     Within   this   literature,   the   emotions   of   a   medical   practitioner   toward   animals   are   addressed,   in   that,   certain   situations   they   encounter   will   give   them   opposing   signals:   “the   desire   to   cure   human   disease   and   a   desire   not   to   harm   animals”   (Martin   1990:161).  The  answer  is  always  reason  and       6  

Berkebile,  Nikki.  Look,  Animal  Activists!  An  Examination  of  Stigmatization  and  Typification  

that   their   philosophy   “clearly   justifies   the   pain   of   animals   in   the   service   of   relieving   the  pain  of  man”  (Martin  1990:161).  Man’s   biological   dominance   has   led   to   professional   visions   which   attribute   the   dominate   gaze   applied   to   animals   as   “part   of   the   human   condition,   which   has   developed   from   its   beginning   in   more   or   less  close  association  with  animals,  wild  and   domesticated”  (Petter  et.  al.  1976:119).  The   dominate   gaze   imposed   upon   animals   is   a   direct   link   to   this   community   of   practice’s   stigmatization   of   animal   rights   activists   as   terrorists.   If   human   rights   are   ethically   and   biologically   more   important   than   animals’,   then   destruction   of   human   property   is   a   terrorist   act   since   the   accumulation   of   property  is  every  human’s  right.     These   ideas   and   philosophies   are   embodied   in   individual   professional’s   everyday   practices   and   in   the   broader   professional   norms   and   terminology.   Because   they   are   professionals,   they   have   the   authority,   or   power,   to   speak   and   create   situated   perspectives   on   the   matter   on   animal   rights,   therefore   rendering   it   justifiable  to  stigmatize  activists  as  terrorist,   just   as   the   use   of   biotypologies   by   law   enforcement   to   distinguish   terrorists   is   justified   by   their   authority   (Goodwin   1994:624).   To   fully   embody   the   identity   of   this   community   of   practice,   one   has   to   conform   to   the   rhetoric,   ideology,   tools,   and   cognitive   systems   of   this   vision.   Such   means   of   embodiment   ensure   that   these   professional   individuals   are   walking   canvases,   painted   by   a   corporate   statement.   They   themselves   embody   the   capitalist   system   that   perpetuates   animal   use  and  terrorist  stigma.   However,   due   to   increasing   animal   rights   activity,   this   professional   vision   has  

extended   its   gaze   and   tried   to   develop   initiatives   for   more   humane   treatment   of   animals   in   the   market   and   research.   The   Institutional   Review   Board   is   one   method   for   educating   professionals   on   biomedical   responsibility  in  conducting  animal  research   (IRB,   2011).   The   modules   teach   new   generations   of   biomedical   research   students   the   ethical   and   moral   responsibility  behind  caring  for  animals  and   ensuring  the  least  amount  of  suffering.  The   IRB   also   makes   animal   subject   research   extremely  regulated  and  studies  are  always   subjected  to  constant  reviews.      

Animal  Rights  Activists     Animal   rights   activists   also   have   their   own   community   of   practice   that   incorporates  both  professional  and  amateur   vision.  Certain  activists,  like  Ingrid  Newkirk,   founder   of   PETA,   make   this   a   full-­‐time   profession,   while   the   majority   of   activists   work  at  different  jobs  but  participate  in  the   activist   vision.   Through   the   use   of   coding   schemes,  highlighting,  and  set  terminology,   animal   rights   activists   can   embody   the   ideals   of   their   cause   and   defend   against   stigma.   Most   animal   rights   organizations   agree   on   The   Universal   Declaration   of   Animal   Rights   as   the   defining   set   of   beliefs   and   goals,   which   was   solemnly   proclaimed   in   Paris   on   October   15,   1978,   at   the   UNESCO   headquarters   (Universal   Declaration   of   Animal   Rights,   2006).   Not   only   are   their   basic   ideologies   situated   within   a   professional   vision,   but   there   are   certain   campaigning   tactics   that   seem   normative   across   the   spectrum.   These   include   marches,   letter-­‐writing,   petitions,   and  the  use  of  graphic  photographs  to  shed   light   on   the   plight   of   suffering   animals.   PETA,   HSUS,   ALF,   American   Society   for   the       7  

Berkebile,  Nikki.  Look,  Animal  Activists!  An  Examination  of  Stigmatization  and  Typification  

Prevention   of   Cruelty   to   Animals   (A.S.P.C.A.),  and  Mercy  for  Animals  (M.F.A.),   all   use   visuals   to   alert   the   public   to   the   “truth,”  thereby  also  attempting  to  counter   the   stigma   of   themselves   as   terrorists   by   showing   the   acts   of   cruelty   done   by   the   contested   animal   testing   corporations.   By   using   consumer   vision   for   to   their   advantage,   they   can   take   images   of   suffering   animals   to   promote   a   compassionate   and   informed   form   of   consumption.     Karen   Strassler   acknowledges   that,   by   the   use   of   these   images,   the   camera   becomes   the   “absent   ideal,   the   privileged   vehicle   of   ‘witnessing’”   and   making   the   activist   “makers   of   a   ‘meaningful   history’”   by   extension   (Strassler   2010:209-­‐210).   The   pictures   help   activists   “lay   claim   to   an   authority  that  rests  not  only  in  the  camera’s   transcriptive  powers  of  mechanical  mimesis   but   also   in   the   morally   charged,   highly   personal,  embodied  act  of  seeing  or  bearing   witness”  (Strassler  2010:210).  Animal  rights   activists   utilize   this   understanding   of   bearing   witness   as   a   pseudonym   for   awareness,   therefore   dispelling   the   anti-­‐ intellectual   and   terrorist   typification.   Being   portrayed   as   terrorists   stripes   away   all   professional   and   moral   credibility   from   animal   rights   activists,   but   by   bearing   witness,  they  not  only  give  themselves  back   credibility,   but   also   history   because   they   “stand   self-­‐consciously   at   the   juncture   between   individual   and   national   history”   (Strassler   2010:210).   A   picture   of   a   vivisected  monkey  strapped  to  a  table  held   aloft   at   a   peaceful   march   shifts   the   stigma   and   contests   the   profession   vision   of   the   dominant  form  of  seeing.                       They   are   portrayed   as   terrorists   by   corporations   and   as   white,   middle-­‐aged  

females   by   academia,   so   what   do   the   animal   rights   activists   say   about   what   they   actually   look   like?   The   Compassionate   Choices:   Making   a   Difference   for   Animals   pamphlet  that  Mercy  for  Animals  hands  out   portrays   male   and   female   activists   equally,   but   all   of   them   are   white   (Mercy   for   Animals   2011).   PETA   on   the   other   hand,   unofficially   supports   diversity   by   putting   people  of  all  types  on  their  website  photos.   However,   if   perusing   the   PETA   People   section   that   introduces   the   staff   members   behind   the   PETA   movement,   one   notices   a   majority  of  females  and  only  one  ethnically   different   person,   an   Asian   woman   (PETA,   PETA   2011b).   The   HSUS   though   has   a   greater   number   of   men   working   for   their   organization,   but   again   the   whole   staff   is   white  (Humane  Society  of  the  United  States   2011).  I  argue  that  while  a  slight  majority  of   activists   are   white,   there   is   a   steady   increase   in   ethnic   minority   participation,   especially   as   more   education   programs   are   initiated.   The   use   of   celebrity   or   political   endorsements  also  is  a  way  to  legitimize  the   cause  and  counter  stigma.  The  embodiment   of   the   natural   or   activist   concept   as   sexy   promotes   the   accountability   of   a   community   of   practice   because   famous   people   are   putting   their   reputation   on   the   line   for   a   cause   (such   as   the   Pamela   Anderson  PETA  commercials).     In   addition   to   having   a   professional   vision,   activists   each   have   their   own   personal   ways   of   embodying   practices   unique  to  themselves  or  their  organization.   Another   way   such   groups   combat   stigmatization   is   to   claim   that   the   average   American   is   already   an   activist   simply   by   purchasing   cruelty-­‐free   products,   adopting   a   vegetarian   diet,   and   petitioning   for   legislation   changes.   PETA   and   even   ALF   have   guides   for   becoming   activists   that       8  

Berkebile,  Nikki.  Look,  Animal  Activists!  An  Examination  of  Stigmatization  and  Typification  

explain   how   everyone   can   be   everyday   activists   that   include   engaging   in   bumper   sticker   campaigns,   cooking   vegan   dinners   for   friend,   setting   up   a   library   display,   and   donating   PETA   films   to   local   movie   rentals   (PETA   2011).   Gone   is   the   man   in   a   mask;   there  stands  the  friendly  girl  next  door  and   the   socially-­‐conscious   neighbor   down   the   hall.   “Anyone   can   be   an   activist.   It   doesn't   take   special   skills   or   superhuman   abilities.   You  just  need  to  care  enough  about  animals   to  want  to  help  them.”  (PETA  2011a).       Conclusion            According   to   sociologist   Rachel   Einwohner,   the   animal   rights   movement   “occupies   a   somewhat   contradictory   position   in   American   society”   because   animal   cruelty   laws   are   enacted   in   every   state,   but   the   “American   public   has   been   much   slower   to   show   support   of   the   movement’s  other  goals”  like  vegetarianism   or   animal   experimentation   (2002:509).   This   contradictory   stance   makes   stigmatization   even   more   of   an   issue.   Like   the   innocent,   travelling   Muslim   trying   to   look,   act,   and   speak   according   to   normalized   standards   during   a   security   screening,   animal   rights   activists   as   a   community   of   practice   are   constantly   legitimizing   themselves   by   embodying   traits   that   counter   the   social   discrediting  they  face.  

a   way   to   either   create   or   reduce   the   terrorist   stigma.   By   incorporating   all   three   perspectives   (scholarly,   activist,   and   corporate),   the   precarious   nature   of   “looking”  as  a  form  of  stigma  is  revealed.  All   the   intricacies   and   nuances   from   each   side   show   that   vision   is   embedded   within   our   many   relationships   to   the   social,   cultural,   historical,   economical,   and   ideological   worlds   which   are   then   mitigated   through   our  communities  of  practice  and  our  unique   individual   experiences.   The   dichotomy   of   the   peaceful   versus   the   militant   activist   is   one  that  society  will  always  be  reminded  of   until  we  are  challenged  to  “look  better”  and   critically   evaluate   what   it   is   a   particular   vision  constitutes.    

Both   the   professional   visions   discussed   above   frame   and   highlight   themselves   within   certain   criteria   and   boundaries   through   discursive   methods   of   embodiment   and   the   use   of   key   terminology   that   facilitate   the   viewer   to   look  at  each  in  a  particular  way.  Because  of   the   socio-­‐cultural   context   of   our   society,   consumer  vision  is  utilized  on  both  sides  as       9  

Berkebile,  Nikki.  Look,  Animal  Activists!  An  Examination  of  Stigmatization  and  Typification  

References     Best,  Steven  and  Anthony  J.  Nocella  II.   2004   Behind  the  Mask:  Uncovering  the  Animal  Liberation   Front.  In  Terrorists  or  Freedom  Fighters?  Reflections  on  the   Liberation  of  Animals.  Steven  Best  and  Anthony  J.  Nocella  II,   eds.  Pp.  9-­‐63.  New  York:  Green  Press  Initiative.     Einwohner,  Rachel  L.   2002   Motivational  Framing  and  Efficacy  Maintenance:   Animal  Rights  Activists’  Use  of  Four  Fortifying  Strategies.  Sociol.   Quart.  43(4):509-­‐526.   Garland-­‐Thomson,  Rosemarie.     2009   Staring:  How  We  Look.  Oxford:  Oxford  University   Press.   Goodwin,  Charles.   1994   Professional  Vision.  Amer.  Anthropol.  96(3):606-­‐633.   Humane  Society  of  the  United  States.   2011   The  Humane  Society  of  the  United  States,  Leadership,   Electronic  Document,   http://www.humanesociety.org/about/leadership/,  accessed   November  28,  2011.     Institutional  Review  Board  (IRB).   2011   Using  Animals  Subjects  in  Research  module.   Jamison,  Wesley  V.  and  William  M.  Lunch.   1992   Rights  of  Animals,  Perceptions  of  Science,  and  Political   Activism:  Profile  of  American  Animal  Rights  Activists.  Sci.   Technol.  Hum.  Val.  17(4):438-­‐458.     Jonas,  Kevin.   2004   Bricks  and  Bullhorns  In  Terrorists  or  Freedom  Fighters?   Reflections  on  the  Liberation  of  Animals.  Steven  Best  and   Anthony  J.  Nocella  II,  eds.  Pp.  263-­‐271.  New  York:  Green  Press   Initiative.   Lane-­‐Petter,  W.  with  T.  W.  Hegarty,  A.  N.  Rowan,  Richard  D.   Ryder,  and  Stephen  R.  L.  Clark.   1976   The  Ethics  of  Animal  Experimentation.  J.  Med.  Ethics   2(3):118-­‐126.   Martin,  John.   1990   The  Rights  of  Man  and  Animal  Experimentation.  J.   Med.  Ethics  16(3):160-­‐161.   Mercy  for  Animals   2011   Compassionate  Choices:  Making  a  Difference  for   Animals.  Mercy  for  Animals.   Miller-­‐Spiegel,  Crystal  and  Steven  L.  Teitelbaum.   2003   More  on  the  Animal  Rights  Debate.  Science   299(5609):1013-­‐1014.   Nicoll,  Charles  S.  and  Sharon  M.  Russell.   1989   Animal  Rights  Literature.  Science  244(4907):903.     People  for  the  Ethical  Treatment  of  Animals.   2006   Universal  Declaration  of  Animal  Rights.  http://www.ch-­‐ br.net/quatropatasecia/e/infos/animal_rights.htm,  accessed   November  28,  2011.   2011a   Everyday  Activism.   http://www.peta.org/action/activism-­‐guide/everyday-­‐ activism.aspx,  accessed  November  28,  2011.   2011b   PETA  People,  http://www.peta.org/about/work-­‐at-­‐ peta/jobs-­‐employees.aspx,  accessed  November  28,  2011.       Plous,  S.   1991   An  Attitude  Survey  of  Animal  Rights  Activists.  Psychol.   Sci.  2(3):194-­‐196.     Pugliese,  Joseph.   2008   Biotypologies  of  Terrorism.  Cult.  Stud.  Rev.  14(2):49-­‐ 66.   Strassler,  Karen.    2010   Refracted  Visions:  Popular  Photography  and  National   Modernity  in  Java.  Durham:  Duke  University  Press.  

    10  

The  Bicondylar  Knee:  Evolutionary,  Comparative,  and   Functional  Anatomical  Perspectives   Lauren Bowser Introduction

The  bicondylar  knee,  also  referred  to   as   the   valgus   knee,   is   a   highly   specialized   hind   limb   adaptation   found   solely   in   the   hominin   lineage.   This   adaptation   is   imperative   to   the   success   of   human   bipedalism  and  has  a  profound  influence  on   the   reduction   in   energetic   cost   during   upright   locomotion.   Comparative   anatomy   is   essential   to   assessing   the   differences   between  primary  and  secondary  bipedalism   within  primates  while  evolutionary  anatomy   highlights   the   modifications.   Therefore   this   paper   will   review   three   primary   areas   of   literature,   evolutionary   anatomy,   comparative   anatomy,   and   functional   anatomy.   The   first,   evolutionary   anatomy,   will   be   supported   by   evidence   of   selective   pressures   and   morphology   of   Australopitheus   afarensis,   and   early   Homo.   The   second,   comparative   anatomy,   will   primarily   contrast   humans   to   greater   apes.   Lastly,   functional   anatomy   will   be   considered,   specifically   biomechanics,   development,   and   the   sexually   dimorphic   injury  risks       Evolutionary anatomy The   investigation   of   evolutionary    

anatomy   is   often   limited   by   the   state   of   preservation  of  recovered  specimens;  those   assemblages   with   hind-­‐limbs   present   offer   significant   insight.   One   hominid,   A.   afarensis   (3.9   –   2.9   million   years   ago)   has   been   central   to   researching   and  

understanding   early   bipedalism   both   structurally   and   functionally.   Stern   and   Susman   (1983)   evaluated   the   locomotor   anatomy   of   A.   afarensis,   using   two   individuals   from   the   AL   333   collection   discovered   at   Hadar,   Ethiopia.   In   both   specimens,  a  bicondylar  angle  is  present  but   varies   in   extent.   A.L.   333-­‐4   was   found   to   have  a  9  degree  bicondylar  angle  while  A.L.   129-­‐1a   had   a   15   degree   angle.   The   15   degree   angle   is   suggested   to   be   outside   of   the   typical   range   for   the   human   valgus   knee,   but   the   9   degree   angle   would   be   within  the  expected.  However,  it  should  not   be   concluded   from   these   measurements   that   A.   afarensis   walked   bipedally   or   share   the   modern   Homo   bipedal   strategy.   Stern   and   Susman   (1983)   recognize   the   contribution   of   the   valgus   knee   to   bipedalism  but  suggest  that  the  angle  found   in   A.   afarensis   was   at   least   somewhat   an   adaptation   to   climbing.   The   support   for   Stern   and   Susman’s   hypothesis   is   the   evaluation   of   measurements   taken   from   orangutans   and   spider   monkeys,   which   were   calculated   to   overlap   with   humans   (1983).     Later   research   on   A.L.129-­‐1a   performed   by   Sylvester,   Mahfouz,   and   Kramer   (2011)   used   three-­‐dimensional   virtual   models   to   determine   the   mass   moment   arms   and   effective   mechanical   advantage   of   the   specimen’s   bicondylar   knee.   The   values   found   for   mass   moment   arms   and   effective   mechanical   advantage  

11  

Bowser,  Lauren.  The  Bicondylar  Knee:  Evolutionary,  Comparative,  and  Functional  Anatomical  Perspectives  

were  significantly  lower  values  than  that  of   a   human’s.   However   when   relative   body   size   was   considered,   the   effective   mechanical   advantage   is   similar   to   modern   humans.       Lordkipanidze   (2007)   investigated   the   lower   limb   of   more   modern   hominins   found   in   Dmanisi,   Georgia.   The   lower   limb   of   the   large   adult   (in   comparison   to   the   subadult   set   of   remains)   was   the   better   preserved   lower   limb,   including   the   right   femur,  tibia,  and  patella.  This  specimen  has   larger   surfaces   medially   than   laterally,   expected  within  the  hominin  lineage,  but  is   also   thought   to   subsequently   have   a   more   medial   placement   and   even   loading   of   the   foot.  The  lower  limb  is  suggestive  of  a  biped   that   would   have   been   comparable   in   efficiency   and   morphology   to   that   of   modern  Homo.       Ongoing   research   in   the   field   of   evolutionary   anatomy   has   strongly   suggested   the   hind   limb   adaptation   of   bicondylar   angle/valgus   knee   seen   in   the   hominin   lineage   is   a   derived   trait.   More   importantly   the   specimens   with   a   bicondylar   angle   are   concurrently   associated   with   bipedal   adaptations   and   strategies.           Comparative anatomy   Comparative   anatomy   is   important   for  distinguishing  the  lineages  of  those  with   and   without   the   trait.   Within   the   primate   order,   the   bicondylar   or   valgus   knee   is   specialized   to   the   hominin   lineage   (Lovejoy   2007).  Lovejoy  (2007)  considers  differences   between   chimpanzees,   who   lack   the   trait,   and  humans  who  have  the  trait,  noting  that   chimpanzees   have   a   more   circular   cross-­‐ section  of  the  lateral  condyle.       Stern  and  Susman  (1983)  referenced   bicondylar   measurements   taken   by  

Halaczek   (1972)   for   primate   (specifically   orangutans   and   spider   monkeys)   and   human   bicondylar   angle   comparisons.   It   is   suggested   that   these   measurements   range   from   one   degree   to   nine   degrees.   Nine   degrees   is   within   the   range   of   the   human   bicondylar   angle,   but   the   overlap   in   range   may   be   more   indicative   of   climbing   than   terrestrial   bipedal   adaptations.   Functional   anatomy   may   clarify   whether   this   means   a   true  bicondylar  angle  or  valgus  knee.       Tardieu   et   al.   (2006)   researched   human   hind   limb   morphology   and   distilled   the   various   elements   to   help   understand   the  features  and  development.  In  reference   to   other   primates   (orangutans   specifically),   Tardieu   collected   measurements   of   the   obliquity   angle,   specifically   the   measurement   of   femoral   bicondylar   angle,   to   be   compared   with   that   of   a   human.   Many   differentiations   were   made   to   help   discern  the  human  and  greater  ape  angle  of   obliquity.   Perhaps   the   most   important   difference   is   the   symmetry   of   the   medial   and   lateral   trochlea,   and   the   less   constrained  patella   (as   the   lateral   lip   is  not   present)   in   the   orangutan.   These   aspects   combined   create   a   less   stable   joint   which   is   important  during  regular  bipedal  movement.       Because   of   the   novelty   of   the   bicondylar   angle,   researchers   tend   to   evaluate   primates   more   for   the   presence   of   a   valgus   knee.   Additional   research   evaluating   the   development  or  growth  of  the  bicondylar  angle   has   been   helpful   but   has   not   been   consistent   with   the   growth   in   other   primates.   Tardieu   (2006)   proposes   that   the   development   of   a   bicondylar   angle   may   have   genetic   limitations   for   other   bipeds,   for   example   birds,   and   primates   trained   to   be   bipedal.   In   the   case   of   bipedal   primates,   while   some   may   develop   secondary   curvature,   they   do   not   develop   the   bicondylar   angle.   Research   tends   to   focus   on   juvenile   primates   because   the   human   bicondylar  angle  is  largely  formed  by  age  eight.    

12  

Bowser,  Lauren.  The  Bicondylar  Knee:  Evolutionary,  Comparative,  and  Functional  Anatomical  Perspectives  

 

the  bicondylar  angle  is  distinguished  by  the   elongation   of   the   lateral   condyle’s   anteroposterior  length  (Figure  2).  In  bipeds,   the  lateral  lip  (bordering  the  tibia’s  patellar   groove)   and   the   elliptical   profile   of   the   condyles   help   to   determine   the   femoral   obliquity  (Tardieu  et  al.  2006).      

Figure 1 – The growth patterns of the valgus knee from childbirth to age 13 (from Salenius and Vankka 1975).

Lastly,  there  have  been  comparative   studies   evaluating   bicondylar   angles   in   individuals  who  were  not  mobile  during  this   crucial   time   of   development.   Overall   goals   of  non-­‐mobile  infants  through  juvenile  ages   should   help   to   reveal   what   occurs   to   the   femoral   and   tibial   surfaces   when   not   loaded.     Studies   such   as:   hip   dysplasia   (Shefelbine   and   Carter   2004),   stability   and   mobility  of  infants  (Yaguramaki  and  Kimura   2002),   and   general   development   (Selenius   1975),   have   shown   that   the   bicondylar   angle   is   not   present   in   newborns   and   only   develops   under   continued   loading   of   the   knee  (Figure  1).   Functional anatomy To   best   understand   the   bicondylar   knee,   it   is   important   to   know   the   characteristics   that   contribute   to   the   angle   exhibited   by   the   knee.   Lovejoy   (1999)   explains   that   the   femoral-­‐tibial   joint   is   a   synovial,  or  fluid-­‐filled,  joint  which  requires   compliance   or   the   ability   to   conform   and   yield   to   pressure,   the   strength   to   resist   overall   deformation,   and   the   de-­‐ stabilization   of   the  patella.   Within   humans,  

Figure 2 – Illustration of the elongated surfaces of the lateral condyle (A), medial condyle (B), and the anteroposterior length (from Tardieu et al. 2006).

Shefelbine   provides   a   different   definition,  saying  that  “the  bicondylar  angle   is   the   angle   between   an   axis   through   the   shaft  of  the  femur  and  a  line  perpendicular   to   the   infracondyle   plane”   (2002:765).   In   adults,   this   definition   indicates   an   average   of  8  to  11  degrees  with  a  range  from  6  to  14   degrees  (Tardieu  and  Damsin  1997).     Figure   3   displays   the   difference   between   the   bicondylar   angle   of   a   human,   Australopithecus,   and   a   chimpanzee.   This   visualization   is   helpful   to   understanding   how   the   breadth   of   the   pelvis   will   subsequently   widen   the   angle   of   the   bicondylar  angle.      

13  

Bowser,  Lauren.  The  Bicondylar  Knee:  Evolutionary,  Comparative,  and  Functional  Anatomical  Perspectives  

Bipedalism One    

Figure 3 – The bicondylar angle in a) modern Homo, b) A. afarensis, and c) chimpanzee (from Shefelbine 2002)

It   appears   that   the   obliquity   is   not   synonymous   with   the   tibio-­‐femoral   angle.   However   the   obliquity   assist   to   determine   the  degree  of  the  tibio-­‐femoral  angle  as  it  is   restrained   to   the   lateral   movement   and   placement   of   the   patella   (Tardieu   et   al   2006).  A  more  defined  lateral  lip  will  help  to   maintain   proper   placement   and   thus   stabilize   the   patella   during   the   various   degrees  of  movement.       The  biomechanics  of  the  valgus  knee   are   complex   and   specific   to   the   human   structure.   Other   primates   may   have   elements   that   can   be   compared   or   contrasted  to  hominins,  but  the  anatomical   unit,  as  a  whole,  is  unproven.      

of   the   most   significant   adaptations   in   the   hominin   evolution   is   bipedal  locomotion.  Lovejoy  (2007)  explains   bicondylar   angles   in   A.  afarensis   in   relation   to   the   modern   bipedalism,   explaining   that   the  overall  similar  looking  bone  (specifically   condyle)   morphology   had   small   but   significant   differences.   Bipedalism   is   enabled  by  the  placement  of  the  feet  as  the   bicondylar  angle  draws  the  hind  limb  in  and   under   the   body’s   center   of   mass.   Additionally,   Lovejoy   (2007)   compared   the   degree   of   bicondylar   angle   during   knee   flexion   and   found   that   it   is   greatest   at   full   extension   and   the   least  at  full   flexion.    The   stance  limb  with  a  bicondylar  angle  helps  to   support   and   stabilize   the   center   of   mass   longer  while  the  alternating  limb  is  in  swing   phase  (Stern  and  Susman  1983).  The  lack  of   a   bicondylar   knee   in   bipeds   removes   the   supporting   limb   from   under   the   body   and   forces  a  shift  in  weight  distribution.     It  is  important  to  mention  the  inter-­‐ related   effects   of   bipedalism   and   load   versus   the   bicondylar   angle.   As   briefly   discussed   before,   the   bicondylar   angle   is   formed  during  the  juvenile  growth  period  of   newborn   to   pre-­‐adolescence   (Yaguramaki   and   Kimura   2002).   This   is   important   to   consider   as   without   proper   loading   the   bicondylar   angle   will   not   develop   but   that   the  bicondylar  angle  facilitates  a  less  costly   bipedal   locomotion   as   it   brings   the   hind   limbs  medially.     Development The   study   of   development   of   the   bicondylar  angle  has  been  contributed  from   a   variety   of   sources.   One   very   important   contribution   is   the   biological   or   Physical   anthropology   comprised   of   subfields:   osteology,   development   of   bipedal  

14  

Bowser,  Lauren.  The  Bicondylar  Knee:  Evolutionary,  Comparative,  and  Functional  Anatomical  Perspectives  

locomotion,   gait   and   posture.   Additional   contributions   are   biomechanical   engineering   and   the   medical   field,   specifically   surgical,   juvenile   development   and   conditions.   Researchers   have   found   that  development  of  the  bicondylar  angle  is   completed   during   childhood   (Selanius   and   Vankka   1975).   The   bicondylar   angle   is   a   consequence   of   the   morphological   change   and   growth   of   the   tibia   and   the   femur’s   epipheyseal   growth.   It   can   be   observed   from  the  image  taken  at  three  years  of  age,   that   the   knee   has   begun   to   transition   to   a   valgus   knee   (Figure   4).   These   adaptations   correspond   to   what   is   expected   in   a   three   year   old,   particularly   in   an   individual   that   has  been  walking  and  loading  the  joints.  

Figure 4 – Radiographs of an infant Homo at (L to R) 14 months, 20 months, 3 years, and 5 years (adapted from Selanius and Vankka 1975).

Learning   to   properly   locomote   and   develop   the   bicondylar   angle   is   challenging   for   infants   for   many   reasons.   The   upper   body   is   proportionally   top-­‐heavy   which   affects   the   stability   and   continued   upright   stature   that   allows   for   a   proper   alignment   of   center   of   mass   over   the   hind   limbs   (Yaguramaki  and  Kimura  2002).  Considering   that   infants   learning   to   walk   bipedally   will   still  have  a  slightly  varus  knee  (the  opposite   of  a  valgus  knee),  they  will  have  difficulty  in   balancing  their  center  of  mass  because  their   limbs  are  not  yet  positioned  centrally  under   the   body.   Achievement   of   well   stabilized   center   of   mass   is   therefore   compensated   for   by   decoupling   the   shoulder   girdle   and   hips.   There   is   also   a   notable   lateral   orientation   within   the   swing   phases   which  

is   exaggerated   to   create   better   control   in   stride  (Yaguramaki  and  Kimura  2002).     An   additional   challenge   to   bicondylar   development   is   abnormal   lower   limb   morphology.   Shefelbine   (2004)   investigated  developmental  dysplasia  of  the   hip,   “the   most   common   orthopedic   problem  of  new  born  children”  (346).  While   the   dysplasia   is   the   primary   concern,   the   secondary   concern   is   the   dislocation   of   all   joints   involving   the   femur.   Dislocation   is   a   subsequent   result   of   uneven   medial   to   lateral   growth.   Treatment   is   required   for   a   normal   locomotion   (as   well   as   to   reduce   future   deterioration   and   pain),   but   if   treated   within   the   first   two   weeks,   the   dysplaxia   can   essentially   be   corrected   with   a   Pavlik   harness   (Shefelbine   2004).   Continued   research   in   juvenile   bone   development   is   intended   to   evaluate   additional   abnormal   loading   and   the   resulting  bone  irregularities.         Sexual Dimorphism and injury   Sexual  dimorphism  appears  to  be  an   aspect   in   injury   bias.   It   is   important   to   understand   the   pelvic   breadth   affects   the   valgus  knee.  As  pelvic  breath  increases,  the   valgus   knee   should   subsequently   increase   as  well  to  maintain  foot  position  under  the   body   (Lovejoy   2006).   Generally   women   have   broader   pelvic   widths   than   males   as   obstetrics   require   wider   birthing   canals   (Langdon  2005).   Basic   statistics   suggest   that   women   have   a   much   higher   prevalence   to   injury   in   the   knee   as   a   subsequent   effect   of   having   a   wider   pelvis   and   larger   bicondylar   angle.   Ford’s   (2003)   study   provided   three   theories   of   why   gender   differences   exist.   The   first   theory   is   the   anatomical,   this   theory   suggest   that   there   may   be   an   increased   mobility   in   female  hind  limb  than  male  hind  limbs.  The  

15  

Bowser,  Lauren.  The  Bicondylar  Knee:  Evolutionary,  Comparative,  and  Functional  Anatomical  Perspectives  

second   is  hormonal,  a   theory  that   suggests   female   hormones,   especially   during   menstruation,   will   cause   a   change   and   weakening   to   ligament   and   muscle   strength.     The   third   is   biomechanical,   which   consists   of   three   sub   theories,   ligament   dominance,  quadriceps  dominance,  and  leg   dominance. Ligament   dominance   which   suggests   that   a   weakness   in   the   musculature   forces   a   dependence   on   ligament   reliance   and   therefore   applies   increased   force   to   ligaments. Quadriceps   dominance   theorizes   that   the   quadriceps   are  more  prominently  used  in  females  while   males   balance   use   or   rely   on   hamstrings   more   than   quadriceps.   Lastly,   leg   dominance   hypothesizes   that   preferred   limbs  reduce  the  robusticity  of  the  alternate   limb   and   therefore   create   an   asymmetrical   force  during  loading.    Ford   (2003)   hypothesized   that   due   to   anatomical,   hormonal,   and   biomechanical   differences,   females   would   inadvertently   use   a   valgus   knee   and   that   these   affect   impacts   to   the   joint.   Findings   suggest   that   there   is   an   increase   degree   of   valgus   angle   in   females’   stance   (Figure   5).   Additionally,   during   landing,   females   maintain   a   greater   degree   of   valgus   knee   than  male  counterparts.      

Figure 5 – Degree of valgus knee in stance by gender (from Ford 2003).

  Follow-­‐up   research   by   Hewett   (2005)   hypothesized   that   the   significantly   increased   risk   of   anterior   cruciate   ligament   (ACL)  injury  in  females  is  related  to  a  higher   valgus   angle   and   reduced   neuromuscular   control.   Results   indicate   that   the   valgus   angle  is  increased  in  those  who  suffered  an   injury.   Correlations   with   the   ground   reaction   force   and   reduced   stance   time   appears   to   occur   as   well.   Hewett   (2005)   admittedly   cautions   that   other   factors   may   be   involved   in   the   increased   injury   to   the   female   anterior   cruciate   ligament.   Two   of   Hewett’s   (2005)   possible   confounding   variables  are  foot  pronation  and  quadriceps   angle.   These   are   important   variables   in   the   proper   utility   of   the   bicondylar   angle   because  they  can  alter  correct  placement  in   the   femoral/tibial   joint   during   locomotion   and  landings.   Lastly,   Russell   (2006)   investigated   the  effects  of  the  gluteus  medias  muscle  in   relation   to   sexual   dimorphism   of   knee   placement  during  a  drop  landings.  Although   it  is  important  to  consider  stabilizing  factors   in   the   hind   limb,   the   gluteus   medias   does   not   appear   to   correlate   with   sexually   dimorphic   valgus   angles.   Most   research   in   this   area   indicates   that   males’   landing   positions   may   be   varus   while   females’   landing   positions   are   valgus,   which   could   account   for   the   additional   injury   risk   in   females.         Conclusion Bicondylar   angles   are   highly   specialized   bipedal   adaptations.   Significant   differences  have  been  found  in  comparative   and   evolutionary   anatomy.   Functional   anatomy   provides   insights   into   the   necessary  balance  of  strength  and  plasticity.   Future   research   can   aid   in   a   better  

16  

Bowser,  Lauren.  The  Bicondylar  Knee:  Evolutionary,  Comparative,  and  Functional  Anatomical  Perspectives  

understanding  of  biomechanics  and  related   injury.   Research   on   sexual   dimorphism   and   injury   will   likely   continue   and   hopefully   incorporate   the   ideas   of   confounding   variable  as  proposed  by  Ford  (2003).      

References   Ford  K.R.,  with  G.D.  Myer  and  T.E.  Hewett     2003   Valgus   Knee   Motion   During   Landing   in   High   School   Female   and   Male   Basketball   Players.   Med.   Sci.   Sport   Exer.   35:1745.     Hewett,  T.E.,  et  al.     2005   Biomechanical   Measures   of   Neuromuscular   Control   and   Valgus   Loading   of   the   Knee   Predict   Anterior   Cruciate   Ligament  Injury  Risk  in  Female  Athletes:  A  prospective  study.   Am.  J.  Sport  Med.  33:492.     Langdon,  J.H.     2005   The   Human   Strategy:   An   Evolutionary   Perspective   on   Human  Anatomy.  New  York:  Oxford  University  Press   Lordkipanidze,  D.D.,  et  al.     2007   Postcranial   Evidence   from   Early   Homo   from   Dmanisi,   Georgia.  Nature  449:305-­‐10.     Lovejoy  C.O.,  with  M.J.  Cohn  and  T.D.  White   1999   Morphological   Analysis   of   the   Mammalian   Postcranium:   A   Developmental   Perspective.   P.   Natl.   A.   Sci.   USA.  96:13247-­‐52.     Lovejoy  C.O.     2007   The   Natural   History   of   Human   Gait   and   Posture.   Gait   Posture  25:325-­‐41.     Russell  K.A.,  et  al.   2006   Sex   Differences   in   Valgus   Knee   Angle   During   a   Single-­‐ leg  Drop  Jump.  J.  Athl.  Training  41:166.     Salenius  P.,  and  E.  Vankka   1975   The   Development   of   the   Tibiofemoral   Angle   in   Children.  J.  Bone  Joint  Surg.  Am.  57:259.     Shefelbine  S.J.,  and  D.R.  Carter     2004   Mechanobiological   Predictions   of   Growth   Front   Morphology   in   Developmental   Hip   Dysplasia.   J.   Orthop.   Res.   22:346-­‐52.     Shefelbine  S.J.,  with  C.  Tardieu  and  D.R.  Carter     2002   Development   of   the   Femoral   Bicondylar   Angle   in   Hominid  Bipedalism.  Bone  30:765-­‐70.     Stern  Jr.  J.T.,  and  R.L.  Susman     1983   The  Locomotor  Anatomy  of  Australopithecus  Afarensis.   Am.  J.  Phys.  Anthropol.  60:279-­‐317.     Sylvester  A.D.,  with  M.R.  Mahfouz  and  P.A.  Kramer   2011   The  Effective  Mechanical  Advantage  of  A.L.  129-­‐1a  for   Knee  Extension.  Anat.  Rec.  294:1486-­‐99.     Tardieu  C.,  et  al.     2006   Relationship   Between   Formation   of   the   Femoral   Bicondylar   Angle   and   Trochlear   Shape:   Independence   of   Diaphyseal   and   Epiphyseal   Growth.   Am.   J.   Phys.   Anthropol.   130:491-­‐500.   Tardieu  C.,  and  J.P.  Damsin   1997   Evolution   of   the   Angle   of   Obliquity   of   the   Femoral   Diaphysis   During   Growth   -­‐   Correlations.   Surg.   Radiol.   Anat.   19:91-­‐7.       Yaguramaki  N.,  and  T.  Kimura   2002   Acquirement   of   Stability   and   Mobility   in   Infant   Gait.   Gait  Posture  16:69.    

17  

The  Redesign  of  the  Human  Pelvis  for  Bipedalism  and  the   Consequences  for  Parturition   Kristi Corrado   Introduction The  fitness  of  a  species  is  dependent   on   individuals’   rate   of   successful   reproduction   despite   physical   or   environmental  challenges.  Known  indicators   of  a  female’s  fitness  include  the  ratio  of  the   size   and   thickness   of   the   musculo-­‐skeletal   structure  of  the  pelvis  to  that  of  the  fetus’s   cranium   and   body   size   (Rosenberg   and   Trevathan  2002:1203).  For  every  increase  in   the   mechanical   advantage   (MA)   associated   with   a   specific   anatomical   feature,   there   will   be   an   expected   equal   and   reactive   increase   in   its   limitations.     As   the   human   pelvis  has  improved  its  overall  MA  in  terms   of   bipedal   locomotor   activity,   parturition   has   correspondingly   become   more   demanding   and   strenuous   on   the   pelvis   (Rosenberg   and   Trevathan   2002:1199,   1203).     The   human   pelvis   is   impacted   by   two  diverging  trends:  more  efficient  bipedal   locomotion  and  less  strenuous  reproduction   of   viable   offspring.   To   understand   the   delicate  balance  of  bipedal  locomotion  and   obstetric   performance   within   the   human   pelvis   region,   I   will   compare   the   structure,   function,  and  evolution  of  the  human  pelvis   against   the   fossilized   remains   and   modern   anatomy   of   our   biologically   closest   related   primates:   chimpanzees,   apes,   and   Australopithecines.                      Inherent  survival  instincts  provide   species   with   a   willingness   to   adapt   against   their   accustomed   physical   capabilities.   The  

physical   differences   between   species   thus   imply   unique   adaptations   to   demanding   environments.   Examining   the   history   of   Homo  sapiens,  there  are  distinct  shifts  that   allow   for   the   development   of   unique   derived   structures.   For   the   human   pelvis,   there   are   two   main   factors   that   have   affected   its   modern   structure:   bipedal   (erect)   behaviors   and   pelvic   obstetric   (birthing)   dimensions   (Abitbol   1987:243).   Encephalization,   the   increase   in   fetus   cranium   size   over   time,   has   impacted   the   orientation   of   the   human   pelvis   thereby   affecting  the  essential  stages  involved  in  the   birthing   process   (Abitbol   1987:243).   Concurrently,   the   human   pelvis   exhibits   a   structure  which  emphasizes  a  wide  range  of   motion  and  possible  activities  which  include   walking,  jumping,  running,  climbing,  as  well   as  birthing  offspring.     The   human   pelvis   is   composed   of   four   main   sections:   the   iliac   blades,   the   sacrum   (inferior   section   of   the   spine   that   consists  of  five  boney  fused  vertebrae),  the   ischium   (posterior   caudal   pelvic   section),   and   the   pubis   (anterior   caudal   pelvic   section)   The   first   point   of   fusion   is   located   dorsally   on   the   iliac   crest   where   the   iliac   blades   fuse   posteriorly   with   the   sacrum   at   the  sacroiliac  joint.  The  second  fusion  point   is   located   anteriorly,   at   the   pubic   symphysis,   where   the   two   innominates   are   fused   together.   These   two   points,   along   with   the   pelvic   girdle,   form   a   boney   ring,   the  main  structure  of  the  pelvis  (Berge  and   Goularas  2010:262).  The  pelvic  girdle  is  the  

18

Corrado,  Kristi.  The  Redesign  of  the  Human  Pelvis  for  Bipedalism  and  the  Consequences  for  Parturition.  

formation   of   the   lateral   fusion   of   three   innominate   features,   resulting   in   a   highly   stable   joint   known   as   the   acetabulum,   or   the  hip  joint.  The  three  innominate  features   that   comprise   the   hip   joint   include:   the   ilium,  the  ischium,  and  the  pubis.    The deep, smooth  cavity  of  the  acetabulum  articulates   with   the   head   of   the   femur,   creating   a   ball   and   socket   joint   associated   with   various   hindlimb   movements   (Langdon   2005:100-­‐ 102).   Although   the   hip   joint   is   significantly   stable,   it   can   still   perform   a   variety   of   different   anatomical   movements:   flexion/extension,   abduction/adduction,   internal/external   rotation,   and   circumduction   (Langdon   2005:100-­‐104).   Examination   of   these   movements   aids   in   understanding   the   significance   of   the   anatomical   differences   between   humans   and  primates.  Even  the  slightest  variation  in   structural   formation   can   lead   to   large  

Figure 1 - Anatomical differences in pelvic structure between chimpanzee, Australopithecus, and Homo, highlighting the variation that results from different loading and parturition practices (from Langdon 2005).

differences  in  adaptive  capabilities.       An  examination  of  the  human  pelvis,   displays   significant   evolutionary   changes   in   comparison   to  the   pelvises   of   other   closely   related   primates   (Figure   1).   Some   of   the  

differences  in  the  orientation  and  structure   of   the   human   pelvis   include   innominate   orientation,   iliac   blade   orientation,   and   muscular  orientation  and  function  (Langdon   2005:100-­‐104,  Lieberman  et  al.  2006:2152).   The   human   pelvis   also   has   physical   dimensions  that  are  wider  and  shorter  than   that  of  the  ape  pelvis.  The  distancing  of  the   sacrum   from   the   iliac   crests   reorients   the   human   pelvic   anatomy.   The   shortened   height   of   the   iliac  blades   lowers   the   center   of  mass  in  humans  relative  to  an  ape  which   possesses   much   taller   iliac   blades.   This   is   a   defining   feature   that   helps   in   the   stabilization   of   the   trunk   within   an   upright   bipedal  stance  (Sockol  et  al.  2007:12267).     Another   key   characteristic,   the   human   innominate   has   a   frontal-­‐facing   orientation   while   the   ape   innominate   is   more   lateral-­‐facing.   Also,   the   human   iliac   blades   flare   out   with   robust   outer   crests.   Dorsally,  the  iliac  blades  are  oriented  in  the   coronal  plane   and   curve   anteriorly   into   the   sagittal   plane.   This   orientation   gives   an   identifiable   curvature   to   the   iliac   blades   which  results  in  a  laterally  placed  waist.  The   ape’s   iliac   blades   are   aligned   in   the   same   coronal   plane   whereas   the   human’s   iliac   blades   wrap   around   from   the   coronal   to   sagittal   plane.   This   results   in   a   posterior   placement  of  the  ape’s  waist  and  a  different   positioning   of   gluteus   muscles   (Lieberman   et   al.   2006:2143-­‐2144).   The   lateral   realignment  of  the  human  iliac  blades  along   with   the   gluteus   muscles   allows   for   muscular   contraction   at  the  hip   in   a   lateral   direction.  This  allows  the  leg  to  abduct  and   adduct  (move  laterally  away  or  towards  the   body)   due   to   the   repositioning   of   the   attachment   sites   of   the   medius   and   minimus   gluteus   muscles   (Langdon   2005:104).   In   addition,   in   humans   the   gluteus  maximus  has  grown  in  size  to  satisfy  

25

Corrado,  Kristi.  The  Redesign  of  the  Human  Pelvis  for  Bipedalism  and  the  Consequences  for  Parturition.  

an   increased   need   for   leg   extension   during   complex  motions  such  as  climbing  and  most   importantly   running   (Lieberman   et   al.   2006:2143).      An   examination   of   fossilized   remains   illuminates   the   evolution   of   the   human  pelvis  through  time.  However,  there   are   only   two     documented   fossilized   pelvic   remains:   (1)   the   sacrum   and   left   iliac   blade   of  A.L.  288-­‐1  (“Lucy”),  a  female  A.  afarensis   recovered   in   Hadar,   Ethiopia,   and   (2)   a   complete   fossilized   pelvis   from   STS-­‐14,   an   A.   africanus   recovered   in   Sterkfontein,   South   Africa   (Berge   and   Goularas   2010:262).   Scientists   do   not   agree   on   their   anatomical   configuration.   The   reconstruction   of   Lucy’s   pelvis   was,   according   to   Lovejoy,   broad   and   flat;   however,   a   few   years   later   Schmid’s   reconstruction  lead  him  to  believe  that  the   correct   orientation   was   more   narrow   and   had   a   posterior   tilt   to   the   sacrum   (Berge   and   Goularas   2010).   It   is   very   difficult   to   determine   the   correct   orientation   of   a   fossilized   pelvis   because   few   complete   fossilized   pelvises   have   been   recovered   (Ashton   1981:78).   These   studies   still   aid   in   general   understanding   of   the   functions   these   pelvises   were   capable   of   performing   “by   quantitative   biomechanical   and   morphological   study”   (Ashton   1981:78).   From   these   reconstructions   we   know   that   Australopithecus   (six   to   eight   million   years   ago),   developed   bipedal   locomotion   (Langdon   2005:241-­‐243)   More   recently   within   our   lineage,   another   shift   to   long-­‐ distance  bipedalism   took   place   around   two   million   years   ago   with   the   transition   from   Australopithecus  to  Homo  sapiens  (Langdon   2005:243).       The   shift   from   quadrupedal   to   bipedal   locomotion   “marks   a   critical  

divergence   of   the   human   lineage   from   other   apes”   (Sockol   et   al.   2007:12265)   and   aided   in   the   advancement   of   physical   fitness   in   a   number   of   ways.   First,   it   demonstrated   the   importance   of   forelimb   freedom.  This  anatomical  shift  allowed  for  a   greater   advantage   in   daily   performance,   which   included   foraging   activities,   predator   monitoring,   higher   tool   manipulation   capabilities,   and   increased   speed   in   terrestrial   locomotion   (Langdon   2005:121-­‐ 124).   This   wide   range   of   activity   and   consequent   loading   required   significant   changes   in   the   human   musculo-­‐skeletal   system.   Some   scholars   hypothesize   that   bipedalism   emerged   as   a   means   to   reduce   locomotive   energetic   costs,   thereby   allowing  more  energy  to  be  utilized  in  other   daily   or   physical   tasks   (Sockol   et   al.   2007:12265).  These  anatomical  changes  not   only   increased   bipedal   efficiency   but   also   resulted   in   a   decrease   or   even   a   complete   loss   in   other   valued   characteristics   such   as   the   loss   of   the   divergent   big   toe   and   hand/foot   phalange   length   for   suspensory   locomotion   (Langdon   2005:108-­‐109).   It   is   therefore   reasonable   to   question   what   other   functions   or   features   humans   lost   to   compensate  for  bipedal  efficiency.  This  is  a   key   connection   in   understanding   how   primates’   obstetric   processes   can   differ   so   greatly   from   humans   due   to   anatomically   different  functions  of  these  pelvises.         Another   advantage   to   bipedalism,   beside   forelimb   freedom,   is   a   possible   increase  in  energy  efficiency.  A  decrease  in   energetic   costs   would   indicate   a   key   advantage  in  adapting  the  pelvis  to  a  more   bipedally   efficient   form.   Sockol   et   al.   experimented   with   the   walking   speeds   of   four   adult   humans   against   that   of   five   juvenile   and   adult   chimps   (2007:12265-­‐ 12266).   They   found   that   bipedal   walking  

25

Corrado,  Kristi.  The  Redesign  of  the  Human  Pelvis  for  Bipedalism  and  the  Consequences  for  Parturition.  

was  more  energy  efficient  for  humans  than   chimpanzees  by  about  seventy  five  percent   Knuckle-­‐walking,   a   locomotion   strategy   utilized   by   chimpanzees,   was   shown   to   generate   similar   speeds   to   bipedal   locomotion.   However,   quadrupedal   knuckle-­‐walking   showed   a   ten   percent   increase   in   energetic   cost   for   chimpanzees   (Sockol   et   al.   2007:12266).     The   authors   asserted   that   these   results   were   due   to   three  factors:  (1)  the  chimps  having  shorter   legs,   thus   reducing   their   mechanical   advantage;   (2)   the   orientation   of   chimps’   center  of  mass  and  iliac  blades  resulting  in  a   compensation  for  an  imbalanced  body  mass   distribution   and   upper   body   tilt;   and   (3)   flexion   at   the   knees   requiring   greater   torque   to   fully   extend   the   leg   to   increase   gait   length   (Sockol   et   al.   2007:12266-­‐ 12267).   This   orientation,   present   in   a   number   of   primates,   also   indicates   a   variation   in   the   attachment,   insertion,   and   size   of   surrounding   hip   muscles   known   as   gluteus  muscles.     The   gluteus   maximus   (posterior   to   the   pelvis),   gluteus   medius   (lateral),   and   gluteus  minimus  (lateral)  are  three  main  hip   muscles   that   enable   extension/flexion   and   abduction/adduction  movements  at  the  hip   (Langdon   2005:   103-­‐104).   The   gluteus   muscles   of   a   human   play   a   very   different   role   than   what   is   seen   in   other   primates.   Lieberman   notes   that   the   human   gluteus   maximus   is   “anatomically   distinctive   .   .   .   in   several   respects,   notably   in   its   overall   enlargement,  in  the  expansion  of  its  cranial   portion  and  in  the  loss  of  its  caudal  portion”   (2007:2143).   Humans   also   lack   a   gluteus   maximus   ischiofemoralis   muscle   which   sits   below   the   gluteus   maximus   muscle   and   inserts   in   the   ischial   tuberosity   (Lieberman   et   al.   2007:2144).   As   a   consequence,   the   gluteus   maximus   of   a   human   is   1.6   times  

larger   than   that   of   chimpanzees   and   functions   as   a   hip   extensor   and   medial/lateral   rotator   of   the   thigh   (Lieberman   et   al.   2007:2144).   Another   important   feature   is   a   muscle’s   angle   of   insertion   which   impacts   the   possible   range   of   motion.   The   gluteus   maximus   muscle   of   chimpanzee   inserts   into   the   femur   at   a   90   degree   angle.   The   human   gluteus   maximus   inserts   at   a   lesser   angle   due   to   shortened   muscular   fiber.   A   comparison   of   these   angles   indicates   that   the   redesign   of   skeletal  orientation  and  muscle  insertion  in   humans   was   a   “pelvic   reorganization   for   bipedality”   (Lieberman   et   al.   2007:2144).   Electromyographic   studies   conducted   by   Lieberman   (2006)   tested   several   hypotheses   about   the   gluteus   maximus’   role   in   walking   and   running   in   humans   These   studies   indicated   that   these   muscles   in   humans   are   used   primarily   during   climbing   and   running   activities   to   stabilize   trunk  flexion,  decelerate  the  swing  leg  while   running,   and   possibly   act   as   active   thigh   extensors   during   stance.   Comparing   the   walking   mechanisms   and   muscle   activity   of   chimpanzees  to  humans  demonstrates  that   extant  primates  do  not  have  a  fully  adapted   bipedal   pelvis   like   humans;   however,   they   are   capable   of   performing   bipedal   actions   for   a   limited   period   of   time.   Modern   humans’  muscular  coordination  takes  place   in   the   vertical   plane   and   therefore   enables   humans   to   maintain   longer   distances   of   bipedalism.     The   characteristics   described   above   are   clear   markers   of   separation   between   long  distance  bipedalism  versus  quick  spurts   of   bipedal   behavior.   However,   “some   critical   medical   anthropologists   argue   that   biology  and  evolutionary  history  tell  us  little   about   experiences   we   have   today,   particularly   as   they   relate   to   power   and  

25

Corrado,  Kristi.  The  Redesign  of  the  Human  Pelvis  for  Bipedalism  and  the  Consequences  for  Parturition.  

control  over  our  own  individual  bodies  and   minds”  (Trevathan  1996:287).     The   evaluation   of   the   pelvic   structure  and  functions  indicates  that  it  is  a   bipedally-­‐adapted   anatomical   feature.   However,   other   concurrent   processes   such   as  parturition  have  been  negatively  affected   in  the  process.  “Investigating  this  problem  is   of   a   particular   importance   because   it   is   obvious   that   the   female   pelvis   of   modern   Homo   sapiens   does   not   always   respond   to   the   actual   obstetric   requirements”   (Abitbol   1987:243).   In   modern   times,   it   is   not   uncommon   for   women   to   require   assistance   during   parturition   due   to   the   constraints   of   the   human   pelvic   structure   The   primary   complication   experienced   is   the   upward   trajectory   in   fetal   cranial   size   within   Homo,   starting   around   2.5   million   years   ago,   and   the   resulting   obstetric   limitations   meant   that   the   pelvic   structure   needed   to   be   reorganized   (Rosenberg   and   Trevathan   2002:1199).   “Obstetric   requirements  came  later…maybe  too  late  to   influence  greatly  the  pelvis,  almost  entirely   shaped   already   for   erect   posture”   (Abitbol   1987:253).   As   a   consequence,   the   reorganization   of   the   human   pelvis   for   bipedal   locomotion   led   to   an   increased   need   for   labor   and   delivery   assistance   (Trevathan   1996:287).   As   the   fetal   cranium   size   increased   through   time,   a   corresponding  shift  away  from  independent   births   to   social   interactive   birthing   processes   occurred   (Trevathan   1996:287-­‐ 288).   This   shift   in   cultural   interaction   is   a   consequence   of   the   compromise   between   obstetric   and   the   greater   bipedal   concerns   within  the  pelvis.    

canal   has   three   planes:   the   inlet   (superior   section   of   the   pelvis-­‐iliac   blade   area),   the   midplane   (middle   section   approaching   the   sacrum)  and  the  outlet  (caudal  and  inferior   sections   of   the   sacrum   and   pubic   arch).   These   planes   are   present   in   both   primates   and   humans.   However,   these   proportions   differ   significantly   between   the   two.   When   it  comes  to  primates’  skeletal  features,  their   birth   canals   are   more   “spacious”   and   fetuses  are  relatively  smaller  in  comparison   (Rosenberg   and   Trevathan   2002:1199).   As   illustrated   in   Rosenberg   and   Trevathan’s   research,   primates,   such   as   apes   and   gorillas,   have   wider   pelvic   planes   allowing   for   an   easier   passing   through   of   the   fetus   (2002:1200).   This   diagram   also   demonstrates   that   humans   and   smaller   primates   like   macaques   have   a   closer   fit   between  fetus  cranium  and  pelvis  structure.   For   humans,   this   is   due   to   humans’   short   and  broad   pelvic   bipedal   anatomy   whereas   macaques   struggle   due   to   their   smaller   overall  body  size  (Rosenberg  and  Trevathan   2002:1199-­‐1200).   The   biggest   obstacle,   as   this   indicates,   is   fetal   size.   The   largest   part   of  the  fetus  is  the  cranium,  and  for  humans   there   is   a   diameter   range   of   9   to   10   centimeters  -­‐  a  close  fit  for  the  average  10.5   by   1.5   centimeters   diameter   of   a   human   pelvis   (Abitbol   1987:244).   Chimpanzees   birth  infants  that  are  “3.3  percent  the  mass   of   the   mother”   whereas   humans’   fetuses   compose   5.7   percent   of   the   mother’s   body   mass   (DeSilva   2010:1022;   Figure   3).   When   the  fetus  begins  to  drop  down  through  the   inlet,  midplane,  and  outlet  planes,  the  fetal   cranium   must   be   oriented   into   a   position   that  best  allows  the  fetus  to  move  through   the  birth  canal.  

    Parturition  is  the  expulsion  of  a  fetus   from   the   parent’s   womb   from   the   uterus,   typically   through   the   birth   canal.   The   birth  

25

Corrado,  Kristi.  The  Redesign  of  the  Human  Pelvis  for  Bipedalism  and  the  Consequences  for  Parturition.  

  Figure  2  -­‐  Depiction  of  the  pelvic  dimensions  of  different   species  in  relationship  to  fetal  cranial  dimensions.  These   show   the   physical   demands   parturition   places   upon   the   pelvic  structure  (from  Trinkaus  1984).  

In  modern  primates,  it  was  originally   thought   that   the   fetus   passed   through   the   three  planes  of  the  birth  canal  without  any   signs  of  rotation  (Rosenberg  and  Trevathan   2002:1200).   However,   there   is   a   slight   rotation   seen   in   baboon   and   squirrel   monkey   neonates   where   the   head   enters   the  inlet  in  one  position  and  rotates  into  an   extended   position   in   the   outlet   (Figure   3).   This   places   the   neonate   in   a   frontal   facing   cranial  orientation  of  the  head.  As  primates   go   into   labor,   they   tend   to   situate   themselves   in   a   squatted   position   (Rosenberg  and  Trevathan  2002:1200).  As  a   consequence   of   the   frontal   positioning   of   primate   fetal   cranium   during   birth,   the   mothers  can  guide  offspring  out  of  the  birth   canal  (Rosenberg  and  Trevathan  2002:1200-­‐ 1202).   Because   female   primates   don’t   require   birthing   assistance,   they   tend   to   have   secluded   births   rather   than   social   births   (Rosenberg   and   Trevathan   2002:1200).   A   secluded   birth   may   help   protect   newborns   by   removing   them   from   the   presence   of   other   group   members   or   possible  predators.     The   primate   neonate   can   even   help   out   once   its   shoulders   are   freed   from   the   birth   canal   by   climbing   up   to   the   female’s  

nipples   itself   (Trevathan   1996:288).   This   demonstrates   a   difference   in   primate   vs.   human  newborn  behavior,  showing  about  a   three   month   variation   in   behavioral   capabilities   (Trinkaus   1984:510).   This   raises   the   question   of   the   correlation   between   gestation   length,   fetal   size,   and   pelvic   constrictions   that   humans   place   on   their   offspring   due   to   bipedal   transformation   (Trinkaus   1984:510-­‐511).   If   the   human   pelvis   was   not   as   restricted   to   bipedal   limitations,   would   the   gestation   length   be   longer?   Due   to   pelvic   constrictions,   it   is   imperative  that  human  infants  are  expelled   before  they  expand  beyond  the  dimensions   of  female  pelvises;  however,  an  increase  in   gestation   length   is   not   correlated   with   newborn   weight   or   pelvic   constrictions   (Trinkaus   1984:510-­‐511;   Abitbol   1987:246-­‐ 247).    

 

Figure   3   -­‐   Detailed   depiction   of   the   birthing   process   experienced   by   chimpanzee,   Au.   afarensis,   and   humans.   The   emergence   of   the   fetal   cranium   is   depicted   as   it   drops   through   the   birth   canal   (from   Rosenberg   and   Trevathan  2002).  

  Compared   to   primates,   humans   have   a   very   different   pelvic   structure   and   birthing   processes.   Human   fetuses   have   a   greater   degree   of   rotation   as   they   push   through   the   birth   canal   (Rosenberg   and   Trevathan   2002:1200-­‐1204).   Due   to   pelvic   constrictions,   the   fetus   has   to   complete   a   series   of   rotations   in   order   to   be   safely   expelled   (Rosenberg   and   Trevathan   2002:1200-­‐1204).   As   the   neonate  

25

Corrado,  Kristi.  The  Redesign  of  the  Human  Pelvis  for  Bipedalism  and  the  Consequences  for  Parturition.  

approaches   the   inlet   plane,   the   cranium   is   oriented   in   a   frontal-­‐facing   position   and   is   flexed  at  the  neck.  As  the  fetus  reaches  the   inlet  plane,  it  rotates  into  a  lateral  position   to  pass  through  the  narrowed  area.    As  the   fetus   drops   down   and   approaches   the   midplane,   there   is   more   space   so   the   cranium  rotates  again  into  a  flexed  occipital   position   (Rosenberg   and   Trevathan   2002:1203-­‐1205).  In  short,  the  fetus  rotates   180   degrees   during   parturition.   The   transition   of   the   cranium   is   not   the   only   factor   behind   these   series   of   rotations.   Humans’   broad   shoulders   also   led   to   the   need   for   rotation   during   childbirth.   “Because   the   long   axis   of   the   shoulders   is   perpendicular  to  the  long  axis  of  the  infant   head,  the  infant’s  body  must  also  rotate  as   it  passes  through  the  birth  canal  so  that  the   shoulders   can   navigate   the   tight   space”   (Trevathan  and  Rosenberg  2000:584).     The  internal  rotation  of  the  cranium   and   shoulders   leads   to   an   increased   risk   of   birthing   complications.   The   occipital   emergence   of   the   head   prevents   the   mother   from   guiding   the   infant   out   of   the   birth   canal   (Rosenberg   and   Trevathan   2002:1201-­‐1203).  Guiding  a  neonate  in  this   orientation   runs  the   risk   of   hyperextending   the   infant’s   neck.   This   would   lead   to   an   increasingly   higher   mortality   rate   even   in   modern   times   (Trevathan   1996:288).   As   a   result,   the   evolution   of   a   bipedal   pelvis   increases   the   need   for   birthing   assistance.   Hence,   unlike   primates,   humans   seek   a   more   social   birth   in   order   to   avoid   birthing   complications   (Trevathan   1996:287-­‐288).   The   advantages   seen   in  social   birthing   may   explain   why   it   is   considered   “a   phenomenon   that   comes   close   to   being   universal   in   our   species”   (Rosenberg   and   Trevathan   2002:1203).   It   is   thought  that   as   obstetric   complications   become   readily  

more   apparent,   there   was   a   simultaneous   slow   shift   in   the   behavioral   interactions   exhibited   in   birthing   routines   (Rosenberg   and  Trevathan  2002:1205).          The   differences   between   the   birthing  processes  of  humans  and  primates   are   in   direct   correlation   with   the   position   and   orientation   of   varying   sections   of   the   pelvis.   In   comparison   to   apes   and   gorillas,   humans   have   a   much   more   complicated   delivery   to   the   point   that   outside   help   is   needed   to   ensure   the   protection   of   both   the  infant  and  mother.  The  three  variations   between  ape  and  human  pelvises  that  have   contributed   to   humans’   cramped   birthing   canal   and   fetus   are   (1)   humans’   inlet   has   more  space  in  the  transverse  plane  than  the   sagittal  plane  causing  the  initial  rotation,  (2)   humans’   midplane   is   narrow   due   to   the   positioning   of   the   ischial   spines   causing   a   second  rotation,  and  (3)  the  ventral  curve  of   the   sacrum   and   coccyx   limits   the   outlet   opening   and   cramps   the   cranium   upon   exiting   the   birthing   canal   (Abitbol   1987:252).   In   turn,   this   series   of   rotations   result   in   the   head   emerging   in   an   occipital   position  thereby  completely  eliminating  the   mother’s  capability  of  guiding  and  handling   her  newborn  independently  from  her  canal   (Trevathan  1996:288).     Throughout   the   entire   process,   parturition   is   influenced   and   restricted   by   the   bipedal   form,   shape,   and   function   of   our   pelvis   (Walrath   2003:5).   The   “medicalization   of   birth”   has   thus   developed   over   generations   due   to   a   response   to   our   bipedal   adaptations   (Walrath  2003:19).  Humans  have  evolved  a   unique   and   complex   bipedal   pelvis.   but   these   adaptations   have   had   a   significant   impact   on   their   obstetric   capabilities.   This   leads   to   an   interesting   dilemma   where  

25

Corrado,  Kristi.  The  Redesign  of  the  Human  Pelvis  for  Bipedalism  and  the  Consequences  for  Parturition.  

humans   have   increased   their   locomotion   potential   and   fitness   at   the   cost   of   complicating   their   own   genetic   survival.   In   this   light,   extant   primates,   our   genetic   cousins,   have   become   a   mirror   opposite   of   humans   in   terms   of   evolutionary   adaptations.         References     Abitbol,  M.  M.   1987   Obstetrics  and  Posture  in  Pelvic  Anatomy.  J.  Hum.  Evol.   16:243-­‐255.   Ashton,  E.H.   1981    Primate   Locomotion:   Some   Problems   in   Analysis   and   Interpretation.  Biol.  Sci.  292  (1057):77-­‐87.     Berge,  C.  and  Goularas,  D.    2010   A   New   Reconstruction   of   Sts   14   Pelvis   (Australopithecus  africanus)  from  Computed  Tomography  and   Three-­‐Dimensional   Modeling   Techniques.   J.   Hum.   Evol.   58:262-­‐272.   DeSilva,  J.M.     2011   A  Shift  Toward  Birthing  Relatively  Large  Infants  Early  in   Human  Evolution.  Proc.  Natl.  Acad.  Sci.  108(3):1022-­‐1027.   Langdon,  J.H.     2005   The   Human   Strategy:   An   Evolutionary   Perspective   on   Human  Anatomy.  New  York:  Oxford  University  Press.   Lieberman,   D.E.,   Raichlen,   D.A.,   Pontzer,   H.,   Bramble,   D.M.   and   Cutright-­‐Smith,  E.     2006   The  Human  Gluteus  Maximus  and  its  Role  in  Running.   J.  Exp.  Biol.  209:2143-­‐2155.   Rosenberg,  K.  and  Trevathan,  W.R.     2002   Birth,   Obstetrics   and   Human   Evolution.   Int.   J.   Obst.   Gyn.  109:1199-­‐1206.   Sockol,  M.D.,  Raichlen,  D.  A.,  and  Pontzer,  H.     2007   Chimpanzee   Locomotor   Energetics   and   the   Origin   of   Human   Bipedalism.   Proc.   Natl.   Acad.   Sci.   104(30):12265-­‐ 12269.   Trevathan,  W.R.   1996   The   Evolution   of   Bipedalism   and   Assisted   Birth.   Am.   Anthropol.  Assoc.  10(2):287-­‐290.   Trevathan,  W.R.  and  Rosenberg,  K.    2000   The  Shoulders  Follow  the  Head:  Postcranial  Constraints   on  Human  Childbirth.  J.  Hum.  Evol.  39:583-­‐586.   Trinkaus,  E.   1984   Neandertal   Pubic   Morphology   and   Gestation   Length.   Curr.  Anthropol.  25(4):509-­‐514.   Walrath,  D.   2003   Rethinking   Pelvic   Typologies   and   the   Human   Birth   Mechanism.  Curr.  Anthropol.  44(1):5-­‐31.  

25

The Uniqueness of the Human Larynx: The Key to Modern Language Kathleen Forste  

Introduction     The  larynx,  commonly  known  as  the   voice   box   and   located   in   the   throat,   is   one   of   the   organs   associated   with   speech   production.   It   participates   in   the   processes   of   human   respiration,   swallowing,   and   vocalization.  The  human  larynx  operates  as   a   “one   tube”   system   that   restricts   air   and   food   to   one   space   at   a   time   within   the   pharynx,   while   other   mammals,   including   non-­‐human   primates,   have   a   “two   tube”   system   that   allows   for   simultaneous   breathing   and   swallowing.   Because   the   larynx   is   comprised   of   soft   tissue   and   therefore   rarely   preserved,   it   is   difficult   reconstruct  laryngeal  evolution.  However,  it   is   theorized   that   this   “one   tube”   system   evolved   first   to   confer   a   biomechanical   advantage  in  swallowing  and  then  provided   a  pre-­‐adaptive  configuration  for  phonation.   Comparative   morphological   studies   of   extant   hominoids   and   extinct   hominins   coupled   with   recent   advances   in   neuroscience   have   furthered   our   understanding  of  the  larynx.     Anatomical  description   The   larynx   is   a   component   of   the   upper  respiratory  system  (Crelin  1987:6).  It   is   a   box   that   is   located   on   the   top   of   the   trachea,  and  in  an  adult  human,  it  averages  

30   to   40   cubic   millimeters   in   size   (Lieberman  2011:284).  It  has  a  cartilaginous   skeleton   with   individual   articulated   and   moveable  cartilage  rings,  and  it  attaches  to   the   hyoid   bone   via   an   “extensive   sheet”   of   connective   tissue   (the   thyrohyoid   membrane)   (Crelin   1987:6)   (Figure   1).   Together,   the   hyoid   and   larynx   are   often   referred   to   as   the   “hyolaryngeal   complex”   (Lieberman   2011:285).   A   slitted   fibroelastic   membrane,   the   rima   glottides,   spans   the   top   of   the   larynx   (Crelin   1987:13).   The   edges   of   this   slit   form   the   vocal   ligaments,   and   in   conjunction   with   their   epithelial   coverings   they   comprise   the   vocal   cords,   also   known   as   the   vocal   folds   (Crelin   1987:13)  (Figure  2).    In  reference  to  standard  anatomical   position,   the   hyoid   bone   is   located   at   the   base   of   the   tongue     and   lies   ventral   to   the   third   cervical   vertebra,   with   the   larynx   just   deep  to  the  hyoid  and  ventral  to  the  fourth   through  sixth  cervical  vertebrae  (Lieberman   2011:285).   Cranial   to   the   hyolaryngeal   complex   and   caudal   to   the   base   of   the   tongue   is   the   epiglottis,   a   largely   vertical   paddle-­‐shaped   flap   of   cartilage   that   flips   down   during   the   swallowing   process   to   close   off   the   vocal   cords   (Lieberman   2011:284).   In   most   mammals,   the   larynx   functions   primarily   as   a   covering   for   the   trachea   to   prevent   choking   (Lieberman   2011:285),   but   in   humans   (and   arguably       26  

Forste,  Kathleen.  The  Uniqueness  of  the  Human  Larynx:  The  Key  to  Modern  Language  

hominins)   it   plays   a   fundamental   role   in   speech  production,  as  discussed  below.    

is   the   space   between   the   tip   of   the   epiglottis   and   cricoid   cartilage   ring   at   the   top   of   the   trachea   below   the   larynx   (Lieberman  2011:284)  (Figure  3).

  Figure 1 – The general structure of the larynx from a slightly oblique anterior view (a) as well as a posterior view (b) (from Lieberman 2011).

  Figure 3 - The divisions of the human pharynx (from Lieberman 2011).

    Figure 2 – Lateral view of the larynx, and cranial view looking down over the vocal cords (from Lieberman 2011).

The  pharynx   The   larynx   forms   the   lower   part   of   the  pharynx,  which  is  a  12  to  14  centimeter   long  passage  through  the  head  from  the  lips   to   the   bottom   of   the   larynx   (Lieberman   2011:282).  The  pharynx  is  divided  into  three   spaces.   The   nasopharynx   is   the   uppermost   space   behind   the   nasal   cavity,   the   area   made   up   of   soft   tissue   and   bound   by   the   upper   portion   of   the   tongue   and   the   sphenoid   bone   (hard   palate),   and   is   where   the   Eustachian   tubes   connect   to   the   oral   cavity   from   the   middle   ear   (Lieberman   2011:282-­‐3).   The   oropharynx   is   the   space   behind   the   oral   cavity   between   the   soft   palate   and   uvula   down   to   the   epiglottis   (Lieberman   2011:284).   The   laryngopharynx  

Intranarial  vs.  nonintranarial  position     The   position   of   the   larynx   within   the   pharynx   differs   between   mature   primates   and   adult   humans.   The   larynx   of   a   mature   primate  is  said  to  be  intranarial;  that  is,  the   trachea   and   the   nasopharynx   form   a   “tube   within   a   tube”   (Lieberman   2011:295).   Air   flows   directly   between   the   nasopharynx   to   the   trachea   because   the   epiglottis   and   soft   palate  come  into  contact  with  one  another,   allowing   air   to   directly   pass   through   the   nose,  nasopharynx,  larynx,  trachea,  and  into   the   lungs   (Lieberman   2011:295,   Laitman   et   al.   1992:388).   The   food   is   retained   by   the   interlocked   epiglottis   and   soft   palate,   but   there  are  piriform  sinuses  on  either  side  of   the   epiglottis   through   which   the   food   passes   as   it   continues   into   the   esophagus,   enabling  breathing  and  swallowing  to  occur   simultaneously   (Lieberman   2011:295,   Laitman   et   al.   1992:388).The   larynx   of   an   adult   human,   on   the   other   hand,   is       27  

Forste,  Kathleen.  The  Uniqueness  of  the  Human  Larynx:  The  Key  to  Modern  Language  

nonintranarial.   In   this   position,   the   larynx   sits   lower,   and   as   a   consequence   the   epiglottis  also  sits  lower,  the  result  of  which   is  the  inability  to  close  off  the  nasopharynx   to  create  a  separate  space  for  food  and  air.   The   epiglottis   can   only   flip   down   to   cover   the   vocal   cords   (which   also   draw   together)   when   swallowing   to   prevent   choking,   thus   ceasing   airflow   and   preventing   simultaneous   swallowing   and   breathing   (Lieberman   2011:295-­‐6)   (Figure   4).   Given   that  humans  would  be  more  likely  to  choke   on   inhaled   food   particles,   the   possible   advantages   offered   by   this   laryngeal   arrangement,   such   as   speech   production,   must  have  outweighed  the  diadvantages.    

hyolaryngeal   complex   further   down   the   pharynx   relative   to   the   soft   palate   (Lieberman  2011:296).  

 

Development     Embryological  Development   The   larynx   and   the   other   elements   of   the   upper   respiratory   system   develop  from  the   ectoderm   and   endoderm   (the   outer   and   inner   layers,   respectively,   of   developing   cells)   and   begin   developing   in   a   four-­‐week   old  embryo  (Crelin  1987:42).  The  oral  cavity   rises   from   the   ectoderm,   while   the   larynx   and   pharynx   structures   develop   from   the   endoderm-­‐derived  foregut  (Crelin  1987:43).     Maturation  and  Descent    In   humans,   the   hyolaryngeal   complex  sits  at  a  lower  position  than  within   non-­‐human   primates   and   other   mammals   because   it   is   restricted   by   the   position   and   proportions   of   other   anatomical   features.   The   hyoid   is   located   beneath   the   base   of   the   tongue   and   the   epiglottis   is   positioned   at  the  root  of  the  tongue  so  the  shape  and   orientation   of   the   tongue   determines   the   relative   placement   of   these   structures.   Humans   have   a   tongue   that   is   round   and   large,   and   its   deep   origin   pushes   the  

Figure 4 – Comparing a nonintranarial larynx (human) and an intranarial larynx (chimpanzee) (from Lieberman 2011).

  Figure 5 – Comparing the SVT (supralaryngeal vocal tract) of chimpanzee, a human newborn, and a human adult (from Lieberman 2011).

However,   the   hyolaryngeal   complex   in  a  human  neonate  remains  relatively  high   (leading  to  an  intranarial  larynx)  until  about   three   months   after   parturition,   when   the   complex   begins   to   descend   (Lieberman   2011:296)   (Figure   5).   This   transitional   period   is   not   well   understood   but   is   of   heightened   interest   because   Sudden   Infant   Death   Syndrome   (SIDS)   can   occur   around   three   months,   suggesting   a   relationship   between   the   shifting   of   the   larynx   and   breathing  failure  (Laitman  et  al.  1992:  389).   If  the  infant  sleeps  in  a  prone  position,  the   force  of  gravity  on  the  cranium  will  cause  it       28  

Forste,  Kathleen.  The  Uniqueness  of  the  Human  Larynx:  The  Key  to  Modern  Language  

to  extend,  potentially  causing  the  epiglottis   and   soft   palate   to   come   into   contact   with   the   back   of   the  throat,  blocking   the   airway   and   causing   asphyxiation   (Laitman   et   al.   1992:389)   (Figure   6).   By   approximately   eighteen  months,  the  larynx  has  descended   deep   enough   to   enable   the   utterance   of   phonemes   (Nishimura   2006:80).   By   the   ninth  year,  the  larynx  has  descended  to  the   adult   level,   which   in   turn   causes   the   epiglottis   to   descend   and   lengthens   the   oropharynx  (Nishimura  2006:79).     The   increasing   flexure   of   the   cranial   base   in   humans   during   maturation   was   thought   to   have   affected   the   size   and   position   of   the   larynx   and   the   process   of   phonation,   but   its   effect   has   since   been   dismissed  (Lieberman  2002:556).  The  larynx   continues   to   descend   after   human   crania   reached  maximum  flexure  around  the  third   year   after   parturition,   not   reaching   its   maximum   descent   until   adolescence   (Lieberman  2002:556).  

Function  in  Speech  Production     Phonation,   the   physiological   mechanism   of   creating   sound   with   the   larynx,   is   controlled   by   the   vocal   cords/vocal   folds   (the   rima   glottides   and   epithelial  coverings,  as  described  above)  as   air   passes   over   them   and   causes   them   to   vibrate   (Crelin   1987:13,   Nishimura   2006:77).   Through   numerous   muscle   attachments,   the   vocal   cords   contract   and   relax   in   various   ways   to   produce   various   sounds   as   air   and   the   opening   through   which  is  passes  are  manipulated,  producing   sound   waves   (Crelin   1987:13).   The   degree   of  tension  in  the  vocal  cords,  the  size  of  the   laryngeal  opening,  and  the  force  with  which   air  is  pushed  through  affects  the  phonations   (Lieberman  2011:319).  Because  of  its  sound   production,  the  larynx  can  be  thought  of  as   the  “source  of  acoustic  energy”  (Lieberman   2011:317).   These   sound   waves   are   carried   through   and   further   manipulated   in   the   supralaryngeal   vocal   tract   (SVT),   which   is   comprised   of   the   pharynx   and   oral   cavity,   running   from   the   lips   to   the   top   of   the   larynx   (Crelin   1987:15,   Lieberman   2011:321).       Quantal  Theory  

  Figure 6 - Positioning of infant human head while lying supine (A and B) and lying prone (C and D). “G” denotes the force exerted by gravity. Note the contact of the epiglottis (from Crelin 1976).

  The   most   salient   feature   of   modern   human   speech   is   that   it   is   quantal   –   there   are   specific   formant   frequencies   (sound   wave   lengths   unique   to   an   identifiable   vowel   phoneme)   that   allow   humans   to   distinguish  between  vowel  sounds.  Quantal   theory  provides  a  functional  explanation  for   the  unique  shape  of  the  human  SVT  in  that   the   configuration   of   the   SVT   has   a   direct   effect  on  its  acoustic  output  (Stevens  1972).   There   is   a   range   of   vowel   formant   frequencies   in   which   the   sound   is   still       29  

Forste,  Kathleen.  The  Uniqueness  of  the  Human  Larynx:  The  Key  to  Modern  Language  

perceptible   but   ultimately   allows   “sloppy   articulation”  so  long  as  the  sound  produced   lies   within   the   correct   range   of   formant   frequencies   (Stevens   1972;   Lieberman   2007)   (Figure   7).   This   allows   for   the   distinction   between   similar   sounds   such   as   “ee”,   “ih”,   “eh”,   “ah”,   “uh”,   and   “aw”   (Lieberman   2011:324).   In   order   to   produce   these   quantal   sounds,   Stevens   asserts   that   the  SVT  needs  to  be  comprised  of  two  tubes   of   similar   length   and   that   the   cross-­‐section   of   one   of   those   tubes   needs   to   have   the   ability   to   be   modified   independently   from   the   other   to   a   ratio   of   approximately   10:1   (Stevens   1972).   The   first   stipulation   is   satisfied   by   the   descent   of   the   larynx,   creating   a   SVTh   (horizontal   portion   of   the   SVT,  or  the  oral  cavity)  equal  to  that  of  the   SVTv   (vertical   portion   of   the   SVT,   or   the   pharynx).  The  second  stipulation  is  satisfied   by   the   roundness   of   the   tongue,   which   manipulates   the   size   and   shape   of   the   oral   cavity   as   sound   waves   move   out   through   the   SVT   from   the   larynx   (Lieberman   2011:324-­‐5).    

  Figure 7 – Formant frequencies of vowels, showing the two ranges for each sound (from Lieberman 2007).

Selection  for  speech?     There   may   have   been   selective   pressures   that   favored   a   descended   larynx   in   human   evolution   in   order   to   produce   as   large  a  range  of  sounds  as  possible  (de  Boer   2010:679).   De   Boer   conducted   a   series   of   experiments   during   which   he   modeled   the   human   throat   and   increased   the   depth   of   the  larynx,  ranging  from  6  centimeters  to  16   centimeters,   while   generating   sounds   at   every   centimeter   increment   (de   Boer   2010:681).  With  this  exploratory  model,  he   showed   that   a   larynx,   having   descended   nine  centimeters,  has  the  greatest  available   acoustic   range   (de   Boer   2010:681-­‐2).   He   also   conducted   experiments   with   modeled   male   and   female   vocal   tracts   in   order   to   better   understand   the   role   of   a   more   descended   larynx   as   well   as   the   effects   of   sexual   dimorphism   on   the   larynx.   In   females,  the  larynx  is  descended  an  average   of   8.8   centimeters,   whereas   in   males   the   larynx   is   descended   an   average   of   11   centimeters  (de  Boer  2010:682).  In  females   the   epiglottis   is   also   smaller   while   the   esophagus   is   closer   to   the   larynx   (de   Boer   2010:682).  According  to  his  results,  females   appeared   to   have   an   acoustic   space   (the   area  through  which  sound  waves  created  in   the   larynx   pass)   closest   to   the   ideal   length   and  can  form  quantal  sounds  within  a  larger   formant   frequency   range   than   can   males.   They   have   a   SVT   ratio   more   optimal   for   producing  a  large  range  of  sounds  (de  Boer   2010:68-­‐3,   685).   He   argued   that   the   need   for   usable   acoustic   space   created   an   evolutionary   pressure   for   a   descended   larynx   (de   Boer   2010:685).   The   emphasis,   however,   is   on   the   ratio,   not   the   raw   measurements.   That   said,   a   taller   person   will   have   a   longer   SVT   than   a   shorter   person,   but   they   will   both   have   the   same       30  

Forste,  Kathleen.  The  Uniqueness  of  the  Human  Larynx:  The  Key  to  Modern  Language  

articular   abilities   assuming   they   both   maintain  the  1:1  ratio.       The  Larynx  in  Pan   Because   Pan   troglodytes   (chimpanzees)   and   Pan   paniscus   (bonobos)   are  our  closest  extant  relatives,  we  can  use   information   about   their   larynxes   to   discern   evolutionary   changes   within   the   configuration  of  the  human  larynx.     The  chimpanzee  larynx  is  intranarial   through   adulthood,   unlike   a   human   larynx,   but   they   experience   a   similar   developmental   trajectory.   A   neonate   chimpanzee’s   larynx   starts   out   relatively   high   and   gradually   descends   as   it   matures,   but   to   a   lesser   degree   than   a   human’s   larynx   (Nishimura   2006:82).   The   vertical   dimensions   of   the   SVT   expand   rapidly   in   chimpanzees   and   humans   during   the   first   year   (as   the   neck   develops   and   elongates).   However,  the  chimpanzee  SVT   also  expands   outward   more,   as   accounted   for   the   by   more   prognathic   face   (Nishimura   2006:82).   Moreover,  the  chimpanzee  larynx  descends   relative   to   only   the   hyoid,   whereas   the   human   laryngeal   descent   is   coupled   with   hyoid   descent   relative   to   the   palate   (Nishimura   2006:82)   (see   Figure   5).   Although   the   larynx   and   hyoid   are   tightly   lashed   together   (hence   the   “hyolaryngeal   complex”),   they   move   somewhat   independently   from   one   another   in   hominoids.  Yet,  the  two  structures  occur  as   a   single   unit   in   both   Old   World   and   New   World   monkeys,   suggesting   that   the   descending   larynx   originated   in   the   last   common   ancestor   (LCA)   of   chimpanzees   and   humans   and   that   the   trait   of   further   descent   with   the   hyoid   occurred   in   the   hominin  lineage  (Nishimura  2006:84).    

Insights  for  the  modern  human  larynx   There   are   two   sequential   steps   to   the  mosaic  evolution  of  the  modern  human   larynx:  the  descent  of  the  larynx  relative  to   the   hyoid   in   the   LCA   of   extant   hominoids,   and   the   descent   of   hyoid   relative   to   the   palate   in   the   human   lineage   (Nishimura   2006:86).   The   second   step   is   thought   to   have   resulted   from   a   shift   in   cranial   structure   that   was   spurred   by   a   change   in   diet   (Nishimura   2006:91).   Because   the   larynx   descended   before   the   divergence   of   the   human   lineage,   it   must   have   conferred   an   advantage   prior   to   the   production   of   speech   sounds   (Nishimura   2006:87).   The   development   of   an   effective   swallowing   mechanism   is   thought  to   be  a   major   factor   in   the   larynx   descent,   even   though   a   nonintranarial   larynx   increases   the   chances   of   choking.   However,   this   is   mitigated   by   the   functional   relationship   between   the   larynx   and   the   epiglottis.   In   the   adult   swallowing   mechanism,   the   bolus   of   food   enters  the  pharynx  through  the  mouth,  and   the  larynx  moves  anteriosuperiorly  towards   the   hyoid.   The   pull   of   the   larynx   on   its   connective   tissues,   some   of   which   are   attached   to   the   epiglottis,   pulls   the   epiglottis   posteriocaudally   over   the   larynx,   thus   closing   off   the   trachea   to   allow   the   bolus   to   pass   through   the   esophagus   (Nishimura   2006:87)   (Figure   8).   So   while   there   are   not   separate   spaces   for   air   and   food   to   pass   through   in   the   human   larynx,   there   is   an   effective   division   of   pipes   that   guides   the   substances   down   the   correct   tubes.    

    31  

Forste,  Kathleen.  The  Uniqueness  of  the  Human  Larynx:  The  Key  to  Modern  Language  

  Figure 8 – The swallowing mechanism that draws the larynx (L) up and pulls the epiglottis (Eg) down. SB denotes the swallowed bolus, T denotes the tongue, V denotes the velum/soft palate, HB denotes the hyoid bone, and VF denotes the vocal folds (from Nishimu 2006).

angle   (MA)   is   the   angle   formed   at   the   juncture  of  two  cranial  planes:  the  first  from   the   orbital   midpoint   to   the   external   auditory   meatus,   and   the   second   from   the   external   auditory   meatus   to   the   maxillary   tuberosity   (Bromage   1992:241).   Thus,   a   large   MA   is   indicative   of   a   more   retracted,   more   tightly   packed   face.   There   is   an   apparent   progression   of   increased   MAs   through   the   human   lineage   that   supports   the  theory  of  multi-­‐step  evolution  over  the   theory  of  single-­‐step  evolution.  Also,  from  a   neurological   point   of   view,   there   is   also   an   increase   in   braincase   size   over   time,   and   it   is   likely   that   late   Homo   had   some   speech   production   capacity   because   of   their   large   brain   capacity   and   sophisticated   tool   use   (Lieberman  2011:587)  (Figure  9).  

The  Larynx  in  Early  Hominins     It  is  difficult  to  recreate  the  pharynx   and   larynx   of   ancient   hominins   because   those   soft-­‐tissue   anatomical   features   are   largely   not   well   preserved   in   the   fossil   record  (Lieberman  2011:588).  While  ancient   hyoid   bones   can   be   recovered,   they   lack   their   anatomical   context   and   positioning.   The   only   hard   evidence   available   about   ancient   SVTs   is   provided   by   cephalometric   measurements,  specifically  the  size  of  facial   bones,  which  allow  for  an  estimation  of  the   distance  the  SVT  has  descended   (Lieberman   2011:588).   As   hominin   faces   increasingly   retracted,   there   is   a   suspected   correlation   to   increasingly   precise   speech   production   (Lieberman  2011:554).       According  to  cephalometric  analyses   of   Australopithecines,   Paranthropids,   and   early  Homo,  there  is  indeed  a  trend  towards   a   more   tightly   packed   face   beneath   the   brain   (Bromage   1992:249).   The   meatus  

  Figure 9 – Illustrating the increase of the meatus angle through the hominin line, as well as in chimpanzee (from Bromage 1992).

The  Homo  lineage     Homo   erectus   is   thought   to   have   lived   1.8   Ma   to   1.3   Ma   in   Africa   and   Asia.   Lieberman   (2011:334)   asserts   that   depending   on   tongue   size,   this   hominin   could   have   had   either   an   intranarial   or   nonintranarial  larynx.  If  it  did  indeed  have  a       32  

Forste,  Kathleen.  The  Uniqueness  of  the  Human  Larynx:  The  Key  to  Modern  Language  

nonintranarial   larynx,   the   fact   that   it   had   a   long  face  makes  it  unlikely  that  its  SVTv:SVTh   ratio   was   1:1,   therefore   its   speech   would   not   have   been   as   articulate   as   H.   sapiens   (Lieberman  2011:509).       H.   heidelbergensis   flourished   from   600,000   to   400,000   in   Europe   and   Africa   and   featured   a   longer,   taller   face   and   a   more  extended  cranial  base  than  H.  erectus,   suggesting   a   thicker   SVT.   It   still   lacked   the   1:1   ratio   for   SVT   dimensions,   seeing   as   the   face   was   still   somewhat   prognathic   (Lieberman  2011:564).     H.   neanderthalensis   had   horizontal   SVT  dimensions  similar  to  H.  heidelbergensis   (Lieberman   2011:571).   The   reconstruction   of   the   SVT   of   La   Chapelle-­‐aux   Saints   1,   a   partial   Neanderthal   skeleton,   suggests   that   its   vocal   tract   was   similar   to   that   of   a   human   infant,   and   therefore   the   physical   speech   capacities   of   Neanderthals   would   have  been  similar  to  that  of  a  human  infant   (Lieberman   2007:45).   Also,   the   necks   of   Neanderthals  would  have  been  too  short  to   provide   for   a   larynx   descended   enough   to   create   the   1:1   SVT   ratio   (Lieberman   2007:47).   In   addition,   this   reconstruction   placed   the   tongue   almost   entirely   within   the   oral   cavity,   thus   limiting   the   ability   of   the  tongue  to  create  the  10:1  ratio  required   to   produce   quantal   sounds,   although   limited   speech   would   have   been   possible   (Lieberman  2002:554).  As  Lieberman  (2002)   notes,  there  remains  much  debate  over  the   extent  of  Neanderthal  speech  production.         However,   there   is   evidence   that   Neanderthal   hyoid   bones   were   similar   in   size  and  shape  to  those  of  modern  humans   (Martinez   et   al.   2008).     The   comparison   of   two  Neanderthal  hyoid  bones  from  Sima  de   los   Huesos,   Spain   (which   has   yielded   some  

of   the   oldest   hominin   fossil   remains)   to   modern   human   hyoid   bones   indicated   that   they   were   morphologically   similar   across   species   and   shared   a   similar   range   of   variation   in   muscle   attachment   surfaces   (Martinez   et   al.   2008:121-­‐2).   One   shared   characteristic  is  a  strong  anterior  tubercle,  a   prominence  on  the  apex  of  the  arch  of  the   bone   (Martinez   et   al.   2008:122).   Thus   Neanderthals   had   a   vocal   tract   nearly   identical  to  that  of  a  modern  human.       The  Larynx  in  Homo  sapiens     Modern   humans   have   relatively   smaller,   more   retracted   faces.   The   shortened   face   further   reduces   the   length   of   the   nasal   cavity,   affecting   the   arrangement   of   the   tubes   (Lieberman   2011:333-­‐5).   Also,   the   shift   of   the   foramen   magnum   to   a   more   anterior   position   relative  to  the  basicranium  results  in  a  small   oral   cavity,   which   in   turn   causes   the   hyolaryngeal  complex  to  be  pushed  further   down   in   the   throat,   creating   a   nonintranarial  larynx  (Lieberman  2011:336).   The   average   anterior/posterior   length   of   the   modern   human   oropharynx   is   approximately  one  centimeter  shorter  than   archaic  Homo  (Lieberman  2011:575-­‐9).         The  FOXP2  Gene     Advances   in   neurological   and   genetic   studies   have   contributed   to   an   increasingly   detailed   understanding   of   speech   production   beyond   anatomical   description.   One   requirement   of   speech   is   the   ability   to   reiterate,   or   freely   order   a   finite   number   of   motor   gestures   to   form   a   potentially   infinite   number   of   words   and       33  

Forste,  Kathleen.  The  Uniqueness  of  the  Human  Larynx:  The  Key  to  Modern  Language  

sentences   (Lieberman   2007:39).   Neurologically,   this   requires   the   ability   to   control   fine   motor   function   and   an   increased  cognitive  ability.  The  FOXP2  gene   regulates   the   development   of   the   neural   structures   that   control   motor   function,   aspects   of   cognition,   emotional   regulation,   and  the  development  of  lung  tissue,  among   others   (Lieberman   2007:51).   This   gene   is   present   in   all   mammals,   but   there   were   three   mutations   in   the   peptide   sequence   within   the   human   evolutionary   trajectory.   The   first   change   occurred   prior   to   the   LCA   of   chimpanzees   and   humans   while   the   second   and   third   change   occurred   within   the  hominin  lineage  (Enard  et  al.  2002:870).   It   has   been   suggested   that   individuals   with   disruptions  in  these  sequences  experience  a   lack   of   motor   control   and   reduced   cognition,   highlighting   the   gene’s   vitality   in   speech  production  (Enard  et  al.  2002:869).       Conclusion   While  the  larynx  is  an  organ  present   in  all  mammals,  its  size,  shape,  location  and   function  in  humans  is  unique  to  our  species.   The   evolutionary   perspective   afforded   by   such  comparative  studies  provides  a  deeper   understanding   of   what   makes   us   distinct   from   other   mammals,   primates,   and   hominins   and   how   that   contributes   to   our   unique  humanness.    

References     Bromage,  T.  G.   1992   The  ontogeny  of  Pan  troglodytes  craniofacial   architectural  relationships  and  implications  for  early   hominids.  J  Hum  Evol  23:235-­‐251.   Crelin,  E.   1987   The  Human  Vocal  Tract:  Anatomy,  Function,   Development,  and  Evolution.  New  York:  Vantage  Press.     de  Boer,  B.   2010   Letter  to  the  Editor:  Investigating  the  acoustic  effect  of   the  descended  larynx  with  articulatory  models.  J  Phonet   38:679-­‐686.     Enard,  Wolfgang,  Molly  Przeworski,  Simon  E.  Fisher,  Cecilia  S.  L.   Lai,  Victor  Wiebe,  Takashi  Kitano,  Anthony  P.  Monaco,  and   Svante  Pääbo   2002   Molecular  evolution  of  FOXP2,  a  gene  involved  in   speech  and  language.  Nature  22(418):869-­‐872.   Laitman,  Jeffrey  T.,  Joy  S.  Reidenberg,  Patrick  J.  Gannon     2011   Fossil  Skulls  and  Hominid  Vocal  Tracts:  New   Approaches  to  Charting  the  Evolution  of  Human  Speech.  In   Language  Origin:  A  Multidisciplinary  Approach.  J.  Wind,  B.   Chiarelli,  B.    Bichakjian,  and  A.  Nocentini,  eds.    Pp.  385-­‐397.   Boston:  Kluwer  Academic  Publishers.   Lieberman,  Daniel  E.   2011   The  Evolution  of  the  Human  Head.  Cambridge,   Massachusetts:  The  Belknap  Press  of  Harvard  University   Press.   Lieberman,  Philip   2002   Letter  to  the  Editor:  Current  views  on  Neanderthal   speech  capabilities:  A  reply  to  Boe  et  al.  J  Phonet  35:552-­‐563.     2007   The  Evolution  of  Human  Speech:  Its  Anatomical  and   Neural  Bases.  Curr  Anthropol  48:39-­‐66.     Martínez,  I.,  J.  L.  Arsuaga,  R.  Quam,  J.  M.    Carretero,  A.  Gracia,  L.   Rodriguez   2008   Human  hyoid  bones  from  the  middle  Pleistocene  site   of  the  Sima  de  los  Huesos  (Sierra  de  Atapuerca,  Spain).  J  Hum   Evol  54:118-­‐124.     Nishimura,  Takeshi   2006    Descent  of  the  Larynx  in  Chimpanzees:  Mosaic  and   Multiple-­‐Step  Evolution  of  the  Foundations  for  Human   Speech.  In    Cognitive  Development  in  Chimpanzees.  T   Matsuzawa,  M.  Tomonaga,  and  M.  Tanaka,  eds.  Pp.  75-­‐95.   Tokyo:  Springer-­‐Verlag.   Stevens,  K.  N.    1972    The  Quantal  Nature  of  Speech:  Evidence  from   Articulatory-­‐Acoustic  Data.  In  Human  Communication:  A   Unified  View.  E.  E.  David  and  P.  B.  Denes,  eds.  Pp.  51-­‐66.  New   York:  McGraw-­‐Hill.  

     

    34  

An Ancient mtDNA Study of Native American Populations at the Ray Site (12W6) Phoebe Pritchett Introduction     DNA  

retrieved   from   ancient   populations   (aDNA)   can   be   used   to   determine   the   level   of   biological   relatedness  and  to  “test  hypotheses  of  past   population   movements   or   interaction[s]”   (Bolnick   and   Smith   2007:627).   At   archaeological   sites   with   indeterminable   relationships   between   human   skeletal   assemblages,   mitochondrial   DNA   (mtDNA)   can   be   used   to   further   shed   light   on   the   relationships   both   within   the   population   and   between   populations   by   comparing   skeletal  assemblages  between  two  or  more   archaeological  sites.     aDNA   studies   of   Native   American   populations   focus   largely   on   mtDNA   haplogroups   (Bolnick   and   Smith   2007;   Kaestle   and   Smith   2001;   Raff   2008).   Haplogroups   are   important   because   “populations   that   share   recent   common   ancestry   usually   exhibit   similar   haplogroup   frequencies.   Only   closely   related   populations   share   similar   or   identical   haplogroups”  (Bolnick  and  Smith  2007:630).   Worldwide,   there   are   27   major   mtDNA   haplogroups   (Jobling   et   al.   2004:291).   Due   to   a   founder   effect,   or   “reduced   genetic   diversity  of  a  population  founded  by  a  small   number   of   individuals”   (Jobling   et   al   2004:502),   indigenous   populations   in   the   Americas   only   exhibit   five   different   haplogroups:   A,   B,   C,   D,   and   X.   Despite   the   low   amount   of   genetic   diversity   in   ancient   Native   Americans,   mtDNA   can   still   help   to   resolve   the   long-­‐debated   biological  

relationship   between   Yankeetown   and   Mississippian   cultures.       The   Yankeetown   phase  is  a  Late  Woodland  culture  that  dates   from  C.E.  700  to  1100  (Redmond  1996).  It  is   also   referred   to   as   an   Emergent   Mississippian   population   because   Yankeetown   precedes   Mississippian   populations    with  significant  overlap.  Angel   Mounds   (12Vg1)   is   a   Mississippian   site   located  close  to  the  Yankeetown  type  site  in   southern   Indiana.   Angel   Mounds   was   most   intensely   occupied   from   C.E.   1050   to   1400   (Marshall   2011).   Because   the   Yankeetown   type   site   does   not   have   enough   skeletal   material,   I   will   be   focusing   my   research   on   the   Ray   site   (12W6),   a   pene-­‐contemporary   site   in   the   same   area   that   contains   both   Yankeetown   and   Mississippian   cultural   material.      A   similarity   in   haplotypes   between   the   Ray   site   and   Angel   Mounds   would   suggest   that   these   two   cultures   share   ancestry.   Significantly   different   haplogroup   frequencies   at   the   Ray   site   would   suggest   that  these  individuals  share  ancestry  with  a   different   culture,   for   example,   the   Oneota   at  Norris  Farms  (Stone  and  Stoneking  1998).   Looking   at   haplotypes   can   make   this   analysis   even   more   specific.   Shared   haplotypes  between  the  Ray  site  and  Angel   mounds   would   be   a   definite   indicator   of   gene  flow  between  these  two  populations.        

    35  

Pritchett,  Phoebe.  An  Ancient  mtDNA  Study  of  Native  American  Populations  at  the  Ray  Site  (12W6).  

 

Previous  Studies   To   date,   only   a   handful   of   aDNA   studies  have  been  conducted.  These  include   Shultz-­‐Schook   (2005),   Stone   and   Stoneking   (1998),   Napier   (2000),   Bolnick   and   Smith   (2007),   Mills   (2003),   Marshall   (2011),   Kaestle  and  Smith  (2001),  Parr  et  al.  (1996),   Schultz   et   al.   (2001),   Merriwether   et   al.   (1995),  Tankersley  and  Tench  (2009),  Dewar   et   al.   (2010),   and   Raff   (2008).   Of   these   studies,   three   in   particular   investigate   Mississippian   populations   (Marshall   2011;   Napier   2000;   Raff   2008;   Schultz-­‐Shook   2005).   Napier   (2000),   who   studied   human   skeletal  remains  from  Mound  72  at  Cahokia,   found   that   62.5   percent   of   the   sample   belonged  to  Haplogroup  B,  25  percent  were   from   Haplogroups   A,   and   12   percent   were   from   Haplogroup   C.   Raff   (2000)   worked   with   the   Schild   Mississippian   population   in   Illinois.   She   found   that   38.3   percent   of   the   individuals  studied  belonged  to  Haplogroup   A,   23.4   percent   belonged   to   Haplogroup   C,   12.8   percent   were   from   Haplogroup   B,   8.5   percent   to   Haplogroup   D,   and   17   percent   belonged  to  Haplogroup  X.  So  far,  the  Schild   Mississippian   sample   is   the   only   Mississippian   population   to   include   any   individuals  from  haplogroup  X.       The   most   relevant   study   to   this   proposal  is  Marshall’s  dissertation  (2011)  on   the   mtDNA   from   the   Angel   Mounds   population.  Marshall  found  that  52  percent   of   her   sample   was   associated   with   Haplogroup   A2,   4   percent   to   Haplogroup   B2,  20  percent  to  Haplogroup  C1,  8  percent   to   Haplogroup   C4c,   and   12   percent   to   Haplogroup   D1.   Both   C1   and   C4c   are   Haplogroup   C   subclades.   According   to   Marshall,   C1   is   common   among   Native   Americans   but   C4c   is   relatively   rare,   only   reported  in  three  living  individuals  from  the   Americas  (Marshall  2001:52).    

  As   noted   above,   haplogroup   frequencies   between   ancient   Native   American   populations   vary   greatly,   even   among   Mississippian   sites.   Therefore,   it   is   difficult   to   predict   the   outcome   of   the   haplogroup   frequencies   of   the   human   skeletal  remains  at  the  Ray  site.  Despite  the   geographic  proximity  of  Angel  Mounds  and   the  fact  that  the  morphology  of  the  remains   seems   to   resemble   other   Mississippian   populations,   the   actual   frequencies   may   remain   unpredictable.   It   is   for   this   reason   that  obtaining  the  aDNA  for  the  Ray  site  (or   any   archaeological   site)   is   so   important:   there  is  still  so  much  that  we  do  not  know.   Many   of   these   past   studies   also   include   an   analysis   of   the   haplotypes   represented   by   their   sample   sizes   (Schultz-­‐Shook   2005;   Stone   and   Stoneking   1998;   Napier   2000;   Bolnick   and   Smith   2007;   Mills   2003;   Marshall  2011;  Tankersley  and  Tench  2009;   Dewar  et  al.  2010).     Methods   While   other   aDNA   studies   have   compiled  lists  from  prior  research  on  Native   American   haplogroups   (Mills   2003;   Raff   2008;   Malhi   et   al.   2001),   there   is   no   comprehensive   list   of   haplotype   frequencies   for   ancient   Native   American   populations.   The   best   way   to   assess   the   relationships   between   these   previous   studies   is   to   look   at   their   results   side   by   side.  In  order  to  interpret  these  data,  I  used   the  Network  4.6.1.0  program  by  Fluxus.  This   program   reconstructs   least-­‐complex   phylogenetic   networks   when   given   genetic   loci  which  vary  within  the  sample.     Before   the   mtDNA   sequences   are   entered   into   Network,   they   have   to   be   modified   to   satisfy   the   constraints   of   the   program.   First,   the   number   of   loci   (the   mtDNA  base  locations)  for  the  diagram  has       36  

Pritchett,  Phoebe.  An  Ancient  mtDNA  Study  of  Native  American  Populations  at  the  Ray  Site  (12W6).  

 

to   be   determined.   In   order   to   determine   this   parameter,   the   amount   of   mtDNA   sequenced   in   each   study   was   compared.   Studies  with  significantly  shorter  portions  of   mtDNA   sequenced   were   removed.   Fortunately,   this   did   not   add   up   to   a   large   number   of   omissions   (Table   1).   Ten   individuals  from  Cahokia  were  left  out,  and   nine   out   of   those   were   over   fifty   percent   incomplete  (Napier  2000).  A  final  sequence   from   Riker-­‐Todd   Mound   was   also   omitted   due  to  length  (Tankersley  and  Tench  2009).  

Glacial   Kame   sequences   and   one   Orendorf   Mississippian   sequence   (from   Schultz-­‐ Shook’s   dissertation),   and   one   sequence   from  Dewar’s  2010  study  of  Great  Western   Park   were   omitted.   Of   the   155   different   individuals  included  in  this  study,  77  unique   haplotypes  were  identified.

Table 1 – Human mtDNA sequences from Missippian sites that were investigated.

Sequence Length 1604816368 1604916429 1602416423 1605516368 1601616367 1505616409 1621716445 1626016335

Source

Status

Schultz-Shook 2005 Mills 2003

Included

Marshall 2011

Included

Dewar et al. 2010 Bolnick and Smith 2007 Stone and Stoneking 1998 Tankersley and Tench 2009 Napier 2000

Included

Included

Included Included Not Included Not Included

The   program   cannot   accurately   analyze   sequences   with   missing   data;   therefore,   individuals   that   were   not   fully   complete   (i.e.   with   any   missing   loci)   were   excluded  from  this  analysis.  In  total,  twenty   incomplete   sequences   were   excluded   from   the   Network   diagram.   Fifteen   of   these   incomplete  sequences  were  from  Marshall’s   2011   dissertation   on   Angel   Mounds.   Three  

  Figure 1 – Human mtDNA network showing clustering of discussed haplotypes by Native American culture.

Four  diagrams  were  created  to  show   clustering   of   the   mtDNA   haplotypes.   In   Figure   1,   the   haplotypes   are   organized   by   Native   American   culture.   Figure   2   divides   the   haplotypes   into   three   general   time   periods:   Early   Woodland   (3,000   to   2,000   years   ago),   Middle   Woodland   (2,000   to   1,200   years   ago),   and   Late   Woodland   &   Missippian  (1,200  to  400  years  ago).  Figure   3  separates  the  data  into  Haplogroups  A,  B,   C,   D,   and   X.   The   haplogroups   are   further   delineated  by  culture  in  Figure  4.       37  

Pritchett,  Phoebe.  An  Ancient  mtDNA  Study  of  Native  American  Populations  at  the  Ray  Site  (12W6).  

 

Results In   Figure   1,   the   majority   of   the   haplotypes   are   associated   with   only   one   individual,  and  many  of  these  only  differ  by   a   single   locus.   The   more   populous   haplotypes   are   shared   across   multiple   cultures   with   no   discernible   patterning.   While   the   clustering   of   these   haplotypes   seems   to   be   rather   haphazard,   there   are   some  observable  groupings  of  the  data  into   culture-­‐specific   clusters.     The   majority   of   the   samples   are   scattered   evenly,   though   the   Hopewell   individuals   form   a   tighter   cluster.      

variation  within  indigenous  populations  has   stayed  very  low  since  the  migration  into  the   Americas.      

  Figure 3 – Human mtDNA network showing clustering of discussed haplotypes by haplogroup.

  Figure 2 – Human mtDNA network showing clustering of discussed haplotypes by time period.

    Figure   3   shows   the   haplotypes   as   organized   by   the   five   major   haplogroups   associated   with   Native   American   populations:   A,   B,   C,   D,   and   X.   There   is   a   very  clear  differentiation  of  each  haplotype   into   clusters   of   haplogroups.   Given   that   haplotypes   are   a   subgrouping   of   haplogroups,   their   clustering   isn’t   a   surprise.    

  Figure   2   suggests   that   the   variation   in  haplotypes  has  remained  nearly  constant   through   time.   This   pattern   is   consistent   with   other   studies   noting   that   genetic       38  

Pritchett,  Phoebe.  An  Ancient  mtDNA  Study  of  Native  American  Populations  at  the  Ray  Site  (12W6).  

 

  Figure 4 – Human mtDNA network showing clustering of discussed haplotypes by haplogroup and Native American culture.

    Correlations   between   haplogroups   and   the   sampled   cultures   are   represented   in   Figure   4.   All   cultures   are   equally   represented   in   Haplogroups   A   and   C.   The   Orendorf,   Red   Ocher,   and   Great   Western   Park   cultures   are   absent   from   Haplogroup   B,   and   only   a   single   individual   from   Angel   Mounds   is   represented.   Hopewell,   Klunk   Middle  Woodland,  and  Norris  Farms  Oneota   are   represented   equally.   The   Hopewell   culture   is   dominant   in   Haplogroup   D.   Only   two   cultures   have   the   rare   Haplogroup   X:   Norris  Farms  and  Klunk  Middle  Woodland.       Conclusions     The  next  step  in  this  study  will  be  to   extract,   clone,   and   amplify   the   genetic   material   from   15   individuals   from   the   Ray   site.   These   sequences   will   be   added   to   the   network   haplotype   diagrams.   The   question  

for   now   is   where   will   the   Ray   site   fit   into   these   diagrams?   Given   the   wide   variability   of  haplogroups  within  each  culture  and  the   fact   that   no   clear-­‐cut   patterns   arise   in   association  with  time  periods  or  cultures,  it   is   hard   to   predict   currently   where   the   Ray   site  population  will  fall.  Given  the  proximity   to  Angel  Mounds,  it  is  probable  that  the  Ray   site   population   will   exhibit   similar   percentages   of   the   five   main   haplogroups.   The   Angel   Mounds   individuals   exhibit   high   frequencies  of  Haplogroup  A  and  to  a  lesser   extent   Haplogroups   B   and   C.   After   accounting   for   incomplete   sequences,   it   is   evident   from   Figure   4   that   the   remaining   Angel   Mounds   individuals   are   predominantly  Haplogroup  C.       It  cannot  be  assumed,  however,  that   two   sites   that   are   geographically   close   will   exhibit   similar   genetic   signatures.   As   suggested   by   the   haplotype   diagrams,   it   is   difficult   to   organize   ancient   Native   American   cultures   into   conspicuous   clusters.   This   is   most   likely   because   Native   American   populations   as   a   whole   experienced  a  significant  genetic  bottleneck   during   the   first   migrations   into   the   Americas   (15ka)   (Jobling   et   al   2004).   This   reduced   variability   means   that   the   Native   American   cultures   will   be   much   more   similar  than  they  are  different.  If  there  were   more   evident   variability,   there   would   be   more   distinct   clustering   of   haplotypes   and   haplogroups   by   population   and/or   time   period.    

    39  

Pritchett,  Phoebe.  An  Ancient  mtDNA  Study  of  Native  American  Populations  at  the  Ray  Site  (12W6).  

 

References   Bolnick,  D.A.,  and  D.G.  Smith   2007   Migration   and   Social   Structure   among   the   Hopewell:   Evidence  from  Ancient  DNA.    Am  Antiquity  72(4):627-­‐644.   2003   Unexpected   patterns   of   mitochondrial   DNA   variation   among  Native  Americans  from  the  southeastern  United  States.     Am  J  Phys  Anthropol  122(4):336-­‐354.   Ball,  Stephen  J.     1996   The   Ray   site:   Angel   phase   mortuary   behavior   at   an   outlying   site.   from   http://www.gbl.indiana.edu/abstracts/93/ball_93.html,   accessed    January  31,  2012.   Curry,  Hilda  J.     1954   Archaeological   notes   on   Warrick   County   Indiana.   Indianapolis:  Indiana  Historical  Bureau.   Dewar,  G.,  Ginter,  J.  K.,  Shook,  B.  A.  S.,  Ferris,  N.,  &  H.  Henderson   2010   A  bioarchaeological  study  of  a  Western  Basin  tradition   cemetery  on  the  Detroit  River.  J  Archaeol  Sci  37(9):2245-­‐2254.   Jobling,  M.A.,  Hurles,  M.E.,  &  Tyler-­‐Smith,  C.   2004   Human   evolutionary   genetics:   Origins,   peoples,   and   disease.  New  York:  Garland  Publishing.   Kaestle,  Frederika  A.  and  K.  Ann  Horsburgh   2002   Ancient   DNA   in   anthropology:   Methods,   applications,   and  ethics.  Am  J  Phys  Anthropol  119(35):  92–130   Kaestle,  Frederika  A.  and  David  Glenn  Smith   2001   Ancient   mitochondrial   DNA   evidence   for   prehistoric   population   movement:   The   Numic   expansion.   Am   J   Phys   Anthropol  115(1):1-­‐12.   Malhi,  R.S.,  B.A.  Schultz,  &  D.G.  Smith   2001   Distribution   of   Mitochondrial   DNA   Lineages   Among   Native   American   Tribes   of   Northeastern   North   America.     Hum   Biol  73(1):17-­‐55.   Marshall,  Charla     2011   An  ancient  DNA  perspective  on  Angel  Mounds  (12-­‐Vg-­‐ 1):   A   Mississippian   archaeological   site.   Unpublished   Ph.D.   dissertation,   Department   of   Anthropology,   Indiana   University,   Bloomington.   Mills,  L.   2003   Mitochondrial   DNA   Analysis   of   the   Ohio   Hopewell   of   the   Hopewell   Mound   Group.     Unpublished   Ph.D.   Dissertation,   Department  of  Anthropology,  The  Ohio  State  University.     Napier,  Nancy  S.   2000   The   Inter-­‐   and   Intrapopulation   Genetics   of   the   Early   Mississippian   Elite   of   Cahokia,   an   Ancient   Native   American   Metropolis.   Unpublished   Ph.D.   dissertation,   Department   of   Anthropology,  University  of  Wisconsin-­‐Milwaukee.     Parr,  R.L.,  Carlyle,  S.  W.,  &  O’Rourke,  D.  H.   1996   Ancient   DNA   analysis   of   Fremont   Amerindians   of   the   Great  Salt  Lake  Wetlands.  Am  J  Phys  Anthropol  99(4):506-­‐518.   Raff,  Jennifer  Anne   2008   An   ancient   DNA   perspective   on   the   prehistory   of   the   lower   Illinois   valley.   Unpublished   Ph.D.   dissertation,   Department  of  Anthropology,  Indiana  University,  Bloomington.   Redmond,  Brian  G.   1996   A   survey   of   Yankeetown   phase   sites   in   southwestern   Indiana.   Retrieved   from   http://www.gbl.indiana.edu/abstracts/86/redmond_86.html.   Accessed  April  31,  2012.   Stone,  A.  C.  and  Mark  Stoneking   1998   mtDNA   analysis   of   a   prehistoric   Oneota   population:   implications   for   the   peopling   of   the   New   World.   Am   J   Hum   Genet  62(5):1153-­‐1170.    

Schultz-­‐Shook,  B.A.   2005   Ancient  DNA  and  the  Biological  History  and  Prehistory   of  North  America.  Unpublished  Ph.D.  dissertation,  Department   of  Anthropology,  University  of  California,  Davis.   Tankersley,  K.  B.  and  P.  A.  Tench     2009   Riker-­‐Todd  Mound:  A  Salvaged  Ohio  Hopewell  Mound.  N   Am  Archaeolog  30(2):195-­‐217.      

    40  

Urartu: Irrigation and Water Management in the Armenian Highland Janine Sparks   Introduction     Stretching   across   parts   of   modern-­‐ day   Armenia,   Iran,   and   eastern   Turkey   (Figure  1),  the  ancient  state  of  Urartu  is  not   typically  the  first  region  that  comes  to  mind   when   considering   ancient   irrigation   constructions.   More   often,   scholars’   eyes   and  research  questions  drift  southward  into   the   heart   of   Mesopotamia   for   examining   irrigation  and  water  management  schemes.   Despite  this,  the  Armenian  Highlands  are  an   interesting   region   to   explore   irrigation   and   water   structures   due   to   its   unique   placement  in  the  wider  landscape.     The  core  time  period  of  the  Urartian   state   spanned   from   859   to   590   B.C.E.   The   first  significant  mention  of  Urartu  occurs  in   the   13th   century   B.C.E.   by   the   neighboring   Assyrian   empire.   The   Assyrian   king,   Shalmaneser   I,   left   an   inscription   mentioning   his   campaign   against   Urartian   warriors  in  1275  B.C.E.  However,  it  was  not   until   the   9th   century   B.C.E   that   continuous   and   extensive   references   about   Urartu   appeared.     Like   several   of   its   Near   Eastern   neighbors,   agriculture   was   not   unknown   to   the  Urartian  people  in  the  Caucasus.  Water   management   strategies   for   irrigating   fields   as   well   as   for   the   growing   cities   would   become   a   necessity   due   to   the   arid   landscape.   By   framing   the   irrigation   and   water   systems   within   the   history   and   geography   of   the   region   as   well   as  

comparing   Urartu   with   Assyria,   a   more   comprehensive  understanding  can  emerge.      

Figure 1 - The general location and extent of the Urartian state from 859 to 590 B.C.E. Lake Van (black arrow), Lake Urmia (blue arrow), and Lake Sevan (red arrow) are discussed later in the text (adapted from Armenica 2011).

History  of  Urartu     It   is   crucial   to   assess   the   history   of   Urartu   before   investigating   its   associated   irrigation   strategies.   Urartu   is   featured   heavily  within  Assyrian  textual  sources,  and   they  are  often  used  in  conjunction  with  the   Urartian   records.   Many   of   the   inscriptions   from   Urartu   come   from   buildings,   often   naming   the   ruler   who   commissioned   the   building.   As   with   any   source,   the   biases   of   the   writers   must   be   considered.   The   Assyrian   sources   may   not   always   be   accurate   as   they   were   not   always   on   good   terms   with   Urartu.   Besides   the   textual   evidence   and   archaeological   data   from   Urartu   and   Assyria,   there   is   also   geographical   evidence.   This   last   piece   of   information   could   “be   categorized   as  

41

Sparks, Janine. Urartu: Irrigation and Water Management in the Armenian Highland.

geographical   studies,   concerning   the   physical   environment   and   ethnography   of   the  Urartian  region,  as  observed  in  modern   times”   (Zimansky   1985:4).   This   involves   using  the  modern  landscape  to  inform  upon   the  past  landscape.     An   exploration   into   the   history   of   Urartu   should   begin   with   the   name   of   the   state  itself.  The  term  Urartu  actually  has  its   roots   in   the   Assyrian   language.   The   name   that  the  Urartians  used  for  themselves  was   Biaini   or   Biainili   (Chahin   2001:43).   The   predominance   of   Urartu   instead   of   Biaini   indicates   how   much   more   prevalent   the   Assyrian   sources   have   been   in   academic   scholarship   than   the   Urartian   sources.   This   might  be  due  to  the  abundance  of  Assyrian   writings   and   that   Assyria   is   generally   more   widely  known  than  Urartu.     The   first   known   king   of   Urartu   was   Aramu,  who  reigned  from  858  to  844  B.C.E.   (Chahin   2001:63).   His   successor,   Sarduri   I   moved   the   capital   of   Urartu   to   Tushpa,   which  lay  on  the  eastern  shore  of  Lake  Van   (Chahin  2001:68).  Another  notable  king  was   Menua   who   ruled   from   810   to   785   B.C.E.   Besides   leading   a   number   of   successful   military   campaigns,   he   also   improved   the   infrastructure   of   the   kingdom,   which   included   the   expansion   of   roads   and   the   construction   of   several   canal   systems   (Chahin   2001:72-­‐74).   Menua’s   expansion   within   the   Lake   Van   region   was   beneficial   for  the  development  of  agriculture  because   it   was   well-­‐suited   for   cultivation   (Zimansky   1985:17).     Details  surrounding  the  fall  of  Urartu   are   not   specific.   Nevertheless,   authors   still   speculate   on   what   likely   occurred.   It   was   possibly  destroyed  around  590  B.C.E.  by  the   Median   Empire   (Chahin   2001:103-­‐108).   Others   seem   to   agree   that   the   Medes   certainly   inherited   Urartu’s   territory,   but  

they   may   not   have   dealt   the   final   blow.   Since   the   dates   of   Urartu’s   texts   cannot   always   be   trusted,   it   is   also   possible   that   Scythians   destroyed   Urartu   and   the   Medes   simply   moved   into   a   now   ruined   territory   (Sagona  and  Zimansky  2009:345).       Geography     In  order  to  place  water  management   strategies   and   irrigation   techniques   in   the   proper   context,   it   is   important   to   understand   the   landscape   in   which   Urartu   was   located.   It   can   often   be   difficult   to   situate   ancient   cultures   on   a   modern   landscape   due   to   shifting   geopolitics.   Modern   Armenia   is   located   north   of   Iran   and   east   of   Turkey.   Now   independent,   Armenia   was   often   part   of   larger   civilizations   in   its   past.   The   boundaries   of   ancient   Armenia   and   the   state   of   Urartu   extend  beyond  these  modern  borders.       The   landscape   of   ancient   Urartu   as   well   as   of   modern   Armenia   is   a   dynamic   one.  Several  mountain  chains  cross  through   the   region,   with   a   high   plateau   situated   about   five   thousand   feet   above   sea   level   (Bournoutian  1995:3).  Rivers  and  lakes  were   present   in   the   Urartian   heartland   but   are   not   necessarily   helpful   in   promoting   either   a   centralized   government   or   intensive   irrigation  strategies.     The  Urartian  heartland  encompasses   the   three   lakes:   Van,   Urmia,   and   Sevan   (Figure   1).   However,   these   are   mostly   unusable   for   irrigation   and   drinking.   Lake   Urmia   is   both   extremely   salty   and   quite   shallow.   Although   Lake   Van   is   the   deepest   lake   in   the   area   and   stocked   with   fish   (Frankel   1979:1),   it   is   highly   saline   and   contains  a  high  level  of  borax  (Bournoutian   1995:5)   due   to   a   lack   of   outflow.   While   several  streams  feed  the  lake,  water  is  only   removed   by   evapotranspiration.   However,  

42

Sparks, Janine. Urartu: Irrigation and Water Management in the Armenian Highland.

the   level   of   the   lake   is   relatively   stable   (Hewsen   1997:9).   Lake   Sevan,   on   the   outermost   reaches   of   Urartu,   is   not   commonly  discussed,  but  it  is  hinted  that  it   contained   fresh   water.   Within   the   region,   the   rivers   are   not   suitable   for   transportation,   and   as   a   result,   it   is   likely   that   they   did   not   play   a   significant   role   in   the  development  of  centralized  government   (Sagona  and  Zimansky  2009:316).     Even   though   the   ground   water   and   geography   leave   much   to   be   desired,   the   natural   resources   and   soils   offset   these   drawbacks.   The   natural   abundance   of   iron,   copper,   tin,   lead,   and   silver   helped   ensure   the   manufacture   of   weapons,   agricultural   implements,   and   works   of   art   (Chahin   2001:143).   Because   of   its   volcanic   origin,   the  soil  is  quite  fertile  and  only  requires  the   use   of   artificial   irrigation   to   allow   intensive   farming  (Bournoutian  1995:5).     Urartu’s   location   within   a   natural   crossroads   meant   that   it   might   have   often   been   prone   to   attack   from   outsiders.   Surface   surveys   at   several   Urartian   sites   indicate   that   most   had   large   perimeter   walls   and   were   often   fortified   citadels   or   cities   (Frankel   1979:25).   The   presence   of   numerous   mountain   ranges   may   have   also   served   as   a   natural   defense.   While   the   terrain  could  have  aided  in  defense,  it  may   have   helped   to   inhibit   the   formation   and   longevity   of   the   centralized   Urartian   state.   Zimansky   (1985)   argues   “mountain   ridges   isolate   the   restricted   areas   of   arable   land   from   one   another,   channeling   communications   along   a   few   major   routes.   The   passes   over   which   these   ran   could   easily   be   blocked   by   small   military   forces   and   were   closed   for   most   of   the   winter   by   the   heavy   snowfall.”   Due   to   the   mountainous  terrain  and  lack  of  arable  soil,   a   heavy   focus   on   cultivation   would   have  

been   difficult   to   achieve   (Zimansky   1985:12).   Despite   this,   there   are   still   areas   where  agriculture  was  a  successful  venture.   Garbrecht   (1988)   writes   about   the   geography   of   Tushpa,   which   is   one   such   area.   The   fertile   soils   of   this   plain   only   require   regular   irrigation   for   agricultural   practices   to   flourish.   He   mentions   the   presence  of  two  seasonal  streams  from  the   Engusner  Çayi  and  Doni  Çayi  but  states  they   needed   to   be   supplemented   with   another   water   source   (Garbrecht   1988:187).   The   nearby   Erek   mountain   provides   water   sources   that   could   be   brought   to   the   Van   plain   (Belli   1997b:11).   The   fertile   plain,   along  with  the  Erek  mountain  sources,  may   have  been  the  reason  for  placing  the  capital   of   Tushpa   in   this   otherwise   seemingly   poorly   located   region.   Garbrecht   (1988)   reiterates   this   oddly   chosen   site   for   a   capital.  He  highlights  the  lack  of  usability  of   the  water  from  Lake  Van,  and  that  this  site   must   have   had   some   military   or   political   potential   for   it   to   be   chosen   (Garbrecht   1988:186).       Irrigation     Urartu  utilized  a  variety  of  strategies   to   manipulate   the   availability   and   use   of   water.  These  included  dams,  reservoirs,  and   canal   systems.   Mays   (2010)   writes   that   the   Urartians  were  the  only  people  in  the  Near   East   that   had   comparable   water   management   systems   to   those   in   Mesopotamia   and   Egypt   (18).   The   Urartian   economy  may  have  had  a  greater  emphasis   on   large   animal   holders   than   on   crop   cultivation,   but   it   certainly   still   played   an   important   role   in   the   success   of   the   Urartian   state   (Wilkinson   2003:198).   The   importance   of   irrigation   for   cultivation   can   be   seen   in   its   prominent   role   within   Urartian  texts,  which  reference  it  27  times,  

43

Sparks, Janine. Urartu: Irrigation and Water Management in the Armenian Highland.

making   it   one   of   the   most   talked   about   building  activities  (Zimansky  1985:66).       Textual   evidence   for   the   presence   for  incipient  agriculture  includes  references   to   fruit   orchards   and   vineyards   in   inscriptions.   Frankel   (1979)   states   “the   size   of  the  store-­‐houses  does  seem  to  indicate  a   large-­‐scale  production,  as  well  as  the  ability   of   the   ruling   and   wealthy   classes   to   secure   the   administration   of   a   major   part   of   the   harvest”   (128).   The   irrigation   systems   benefited  nearby  grain  fields,  orchards,  and   vineyards   the   most.   However,   Assyrian   sources   also   indicate   that   meadows   may   have   been   irrigated,   a   nod   to   the   importance   still   of   pastoralism   within   the   region  (Wilkinson  2003:197).     The   royal   economy   of   Urartu   was   also  structured  around  regional  agriculture.   It   was   “based   on   large   tracts   of   land   that   included   hundreds   and   thousands   of   people,  developed  near  rivers  and  lakes  and   on  arable  lands,  and  its  agriculture  included   vineyards   and   large-­‐scale   farming”   (Payaslian  2007:6).  Slavery  played  a  key  role   in   the   provisioning   of   this   labor   force   on   royal   lands.   Given   their   importance,   it   is   likely   that   these   royal   lands   were   in   the   direct   vicinity   of   the   royal   capitals.   The   Urartian   kings   were   clearly   proud   of   their   irrigation   canals   and   mentioned   them   in   several  inscriptions.  Both  Argishti  I  and  Rusa   II  claimed  that  they  had  constructed  canals   from   rivers   and   turned   the   Armavir   and   Karmir-­‐Blur   areas   from   deserts   to   arable   land  (Redgate  1998:36).       A   few   of   the   irrigation   canals,   including   some   of   those   originally   built   by   King  Menua,  are  still  in  use  today.  In  light  of   tectonic   activity   within   the   region,   the   canals’   ability   to   withstand   destruction   suggests   the   high   level   of   craftsmanship   that   the   Urartians   possessed.   In   the  

intervening   years,   many   of   these   water   systems  have  been  destroyed  by  floods  and   erosion.  Even  more  have  been  destroyed  by   modern  construction  projects  or  submerged   underneath  the  Euphrates  (Belli  1997:36).     The   actual   construction   of   these   original   irrigation   canals   was   on   such   a   massive   scale   that   they   would   have   been   impossible   if   the   Urartians   had   not   mined   their   land   for   the   iron   from   which   they   would   make   tools.   It   was   these   iron   tools   that   allowed   them   to   build   so   many   structures   in   such   a   short   amount   of   time   (Belli  1997b:37).       The   Urartians’   extensive   water   management   systems   did   not   develop   in   a   vacuum.   Wilkinson   (2003)   shows   that   early   inscriptions   hint   at   the   presence   of   irrigation  canals  in  the  Ararat  plain  prior  to   the  centralization  of  the  region  although  on   a   much   less   monumental   scale   (201).   A   pollen   analysis   from   northwestern   Turkey   indicates   that   irrigated   waterways   were   being   constructed   in   the   Late   Bronze   to   Early   Iron   Age,   around   1400   B.C.   to   1000   B.C.  within  Anatolia  (Wilkinson  2003:201).       Burney   (1972)   cites   three   different   factors   that   would   encourage   the   construction  of  irrigation  works:  shortage  of   annual   precipitation,   which   would   have   reduced  the  amount  of  water  from  melting   snow,  growth  in  population,  or  political  gain   (180).   The   political   gain   associated   with   irrigation   projects   may   have   been   an   increase  in  the  king’s  popularity  even  if  the   current   situation   was   not   dire   enough   to   truly   need   an   increase   in   water   availability   (Burney   1972:180).   Zimansky   (1985)   also   considers   the   factors   that   would   push   for   irrigation  systems.  He  speculates  that  there   was   a   large   population   growth   from   the   forced   immigration   of   conquered   people   into   the   region,   chronicled   in   the   royal  

44

Sparks, Janine. Urartu: Irrigation and Water Management in the Armenian Highland.

annals   (Zimansky   1985:68).   Even   if   this   forced   immigration   is   not   taken   into   consideration,   the   work   force   that   would   have  been  needed  to  construct  the  massive   fortresses   would   have   still   necessitated   a   sizable   increase   in   agricultural   production   (Zimansky   1985:68).   The   formation   of   new   capitals   of   the   state   would   have   brought   people  into  the  surrounding  areas  that  may   not   have   always   been   well-­‐watered.   Garbrecht   (1988)   states   that   the   environmental   conditions   of   the   area   mandated   that   in   order   for   a   state   to   flourish  here,  intensive  irrigated  agriculture   was  necessary  (186).       Menua  Canal     A   prominent   and   early   builder   of   irrigation   systems   was   King   Menua,   arguably   the   most   prolific   builder   of   the   Urartian   kings.   The   Menua   irrigation   canal,   also  known  as  Shamiram  or  Semiramis,  was   51   kilometers   long.   The   width   of   the   canal   varies  from  3.5  to  4  meters  and  has  a  depth   from   1.5   to   2   meters.   The   canal   brought   fresh  water  to  the  Van  Plain  where  Tushpa   was  located  from  the  Gürpinar  plan.  It  was   able   to   water   an   area   over   five   square   kilometers   (Belli   1997a:39).   An   interesting   aspect   of   the   Menua   Canal   is   that   an   aqueduct  was  built  to  carry  the  fresh  water   above  the  HoƔĂƉZŝǀĞƌ;ĞůůŝϭϵϵϳĂ͗ϰϬͿ͘ĂŬĞ ZƵƐĂ΁ ĚĂŵ ďƵŝůƚ ŽŶ ϯϮϬϬ meters  high  Erek  Mountain  east  of  the  Van   Plain   still   water   the   plain.   Some   of   the   ǁĂƚĞƌƐ ŽĨ ƚŚĞ ĚĂŵ ŝƐ ĐŽůůĞĐƚĞĚ ŝŶ ƚŚĞ ^ŦŚŬĞ pool  also  built  by  the  Urartians”  (27).  These   dams  transformed  the  Kesis  Golu  basin  into   an   artificial   lake   (Mays   2010:19).   Irrigation   canals   brought   this   water   down   to   Toprakkale   (Belli   1986:50-­‐51).   In   order   to   transform   the   basin   into   the   lake   and   to   control  the  flow  of  the  water,  several  dams   were   put   in   place.   The   dam   mentioned   by   Belli  is  just  one  of  the  two  dams  that  were   used   to   block   the   basin’s   natural   outlets   (Mays   2010:19-­‐20).   Rusa’s   system   incorporated   elements   that   diverted   rivers,   moved   the   water   from   catchment   areas,   and   stored   water   through   the   implementation   of   dams   (Garbrecht   1988:197).       Dams     Urartian   dams   were   another   aspect   of  the  state’s  civil  architecture.  Belli  (1997a)   lists  several  dams  surrounding  the  Van  Plain   in  his  article  Dams,  Reservoirs  and  irrigation   Channels   of   the   Van   Plain   in   the   Period   of  

the  Urartian  Kingdom.  The  Van  Plain,  which   is   approximately   nine   kilometers   wide   and   17   km   long,   is   irrigated   with   water   sources   from   around   Mount   Erek   (Belli   1997b:11).   Some   Urartian   period   dams   were   later   reconstructed   so   the   original   plans   of   the   dams   are   lost.   Examples   of   this   include  the   Harabe  Dam,  which  is  southeast  of  Van,  and   the   Kadim   Dam,   which   lies   on   the   southwestern   slopes   of   Mount   Erek   (Belli   1997b:11-­‐17).       Qanats     Several   authors   cite   that   the   Urartians   also   developed   qanats   to   irrigate   their   land.   Qanats   are   subterranean   channels   that   bring   water   from   an   aquifer   typically   over   a     long   distance   to   another   area   without   the   use   of   a   pump.   Because   the   qanat   relies   on   gravity   to   move   the   water,  the  channel  had  to  be  carved  into  a   gentler   slope   than   the   surrounding   upland   area   (Hodge   2000:35).   Qanats   are   a   common   strategy   in   arid   and   semiarid   regions   in   Asia   and   Africa   because   it   reduces   the   water   loss   from   seepage   and   evapotranspiration   while   also   buffering   populations   from   significant   variations   in   annual  precipitation.     Textual   evidence   from   Assyria   hints   that   the   Assyrians   may   have   adopted   the   use  of  qanats  after  seeing  the  Urartians  use   them.  Specifically,  Sargon  II  claimed  that  he   learned   the   technique   during   one   of   his   campaigns   against   the   Urartians   (Wilkinson   2003:47).   However,   Dalley   (2001)   states   that   qanats   in   the   region   are   likely   not   attributable   to   the   Urartian   state.   She   writes   that   recent   work   shows   that   the   qanats   do   not   follow   the   Urartian   settlement   pattern   and   must   be   from   a   later   date   (Dalley   2001:446).   Re-­‐reviewing   the   language   that   Sargon   II   used,   she  

46

Sparks, Janine. Urartu: Irrigation and Water Management in the Armenian Highland.

demonstrates  that  his  terminology  does  not   necessarily  indicate  the  presence  of  qanats.         Cities   Water   management   systems   within   the   capitals   and   fortresses   are   unfortunately   less   well   studied   than   their   canal   and   dam   counterparts.   Once   the   water   was   brought   to   the   desired   location,   it   is   unknown   how   it   was   parceled   out   or   arranged   within   the   city   limits.   There   is   some  archaeological  evidence  that  indicates   some  channels  and  storage  areas  within  the   citadels   and   fortresses.   In   the   Van   Castle   (Tushpa)   there   is   evidence   of   a   water   tank   (Belli   1986:48).   Garbrecht   writes,   “the   water   supply   system   of   Urartian   Tushpa   is   an  excellent  example  of  a  well-­‐planned  and   superbly  realized  large-­‐scale  hydrotechnical   project,   which   has   demonstrated   its   capacity  to  resist  the  destructive  powers  of   ŶĂƚƵƌĞ ΀ĚĞĐĂLJ͕ ĞĂƌƚŚƋƵĂŬĞ΁ ĂŶĚ ŽĨ ŚƵŵĂŶƐ ĚŝƐĂƐƚĞƌƐ ΀ǁĂƌĨĂƌĞ΁͕ ĂŶĚ ŝƐ Ɛƚŝůů ƉƌŽĚƵĐƚŝǀĞ today”   (1980:311).   Burney   considers   the   entire   citadel   of   Toprakkale   to   be   a   large   cistern   as   it   was   cut   out   of   solid   rock   and   had   a   small   channel   run   through   it   by   way   of  a  porthole  entrance  (1972:183).  Figure  2   displays  the  irrigation  works  in  the  Lake  Van   region  during  the  time  of  the  Urartian  state.  

Figure 2 – Map of the Lake Van region. Both Tushpa (labeled “Vankale”) and Toprakkale can be seen. Menua’s canal and the artificial Lake Rusa are also visible. From Garbrecht (1980).

The   ÇavuƔƚĞƉĞ &ŽƌƚƌĞƐƐ͕ ďƵŝůƚ ďLJ Sarduri  II,  contains  an  inscription  relating  to   the  irrigation  of  the  region.  The  inscription,   which   lies   on   the   wall   of   a   temple,   states   ŚŽǁ ^ĂƌĚƵƌŝ // ƚƵƌŶĞĚ ƚŚĞ 'ƺƌƉŦŶĂƌ WůĂŝŶ into   a   fertile   area   for   agriculture.   It   also   states  ƚŚĂƚĐĂŶĂůƐƐƚĞŵŵŝŶŐĨƌŽŵƚŚĞ,ŽƔĂď Stream   brought   water   to   the   plain   (Belli   1986:60).  This  fortress  also  contained  three   rock   cisterns   that   supplied   water   to   the   palace.  There  was  evidence  of  a  latrine  and   a   septic   tank   measuring   2   by   2   meters   as   well  (Belli  1986:60).       Assyria   A  bitter  rival  of  Urartu,  the  Assyrian   empire   also   demonstrated   evidence   of   water  management.  Examining  the  Assyrian   irrigation   strategies   provides   a   contemporary  comparison  with  Urartu.  The   core   of   Assyria   was   centered   along   the   middle   of   the   Tigris   River.   However,   during   its   history,   it   reached   down   into   Egypt   and   into   Persia   (Saggs   1984:2).   Dalley   (2001)   points   out   that,   like   in   Urartu,   Assyrian   irrigation   technologies   are   not   often   mentioned   with   contemporary   literature   about  early  water  technologies  (443).       The   geography   and   agricultural   capabilities   differed   from   those   in   the   Urartu  heartland.  Water  for  cultivation  was   less   of   an   issue   in   Assyria   as   rain-­‐fed   agriculture   was   feasible   throughout   much   of   the   region.   This   means   that   while   irrigation   technologies   may   have   been   important,   they   were   not   essential   for   Assyrian   agriculture   (Saggs   1984:132).   While   Urartu   lacked   useable   waterways,   Assyria   had   the   benefit   of   using   the   Tigris   River   as   well   as   its   two   major   tributaries.   Large  springs  would  fill  seasonal  ponds  and   wells  allowed  access  to  groundwater  (Saggs   1984:160-­‐161).    

47

Sparks, Janine. Urartu: Irrigation and Water Management in the Armenian Highland.

However,   irrigation   technologies   were   still   advantageous   and   many   Assyrian   kings   built   canals   to   bring   water   to   their   capital   cities.   Examples   of   this   are   Ashur-­‐ nasir-­‐pal,   who   brought   water   to   Calah,   Sargon   to   Dur-­‐Sharrukin,   and   Sennacherib   to  Nineveh  (Saggs  1984:163).  Sennacherib’s   aqueduct   at   Jerwan,   which   supplied   water   to   Nineveh,   displays   the   prominence   of   irrigation   techniques   in   Assyria.   The   aqueduct   at   Jerwan   was   just   one   of   Sennacherib’s   irrigation   structures.   He   also   “channeled   water   from   several   mountain   streams   east   of   Nineveh   across   varied   terrain,  making  eighteen  different  channels,   beginning   at   Bavian,   50   km   away   to   the   northeast”   (Dalley   and   Oleson   2003:5).   While   archaeologists   only   have   a   few   written   texts   that   hint   at   Urartu   having   some   qanats,   evidence   of   an   Assyria   qanat   has   been   recovered   (Dalley   and   Oleson   2003:6).       Ur   (2005)   breaks   down   Sennacherib’s   irrigation   works   into   four   building   phases.   These   stages   began   with   the   building   of   the   Kisiri   canal,   which   lay   above   Nineveh.   The   next   stage,   the   Mount   Musri   canals   are   currently   only   known   through  textual   evidence   and   were   located   to  the  northeast  of  Nineveh.  The  third  stage   is  referred  to  as  the  “Northern  System,”  and   the   final   stage   is   the   “Khinis   System.”   Both   of   these   final   stages   were   more   complex   and   operated   on   a   larger   scale   than   their   predecessors   (Ur   2005:320-­‐335).   As   with   Tushpa,   the   water   that   came   to   Nineveh   served   both   the   city   and   the   surrounding   agricultural  fields.  It  is  interesting  that  all  of   these   more   well-­‐known   irrigation   projects   were  being  built  around  the  same  time  that   Urartu  was  also  constructing  their  irrigation   works.   Information   from   Assyrian   kings   during   their   campaigns   indicates   that   they  

had   paid   attention   to   the   irrigation   works   that  the  Urartians  were  constructing.       Theory     Zimansky   (1985)   briefly   mentions   the   theory   of   Karl   Wittfogel   in   conjunction   with   Urartu’s   relationship   with   water   management  systems.  He  writes,  “although   Urartu  exhibits  many  traits  characteristic  of   what   Wittfogel   has   called   a   ‘hydraulic   society,’   it   has   largely   been   ignored   in   the   discussion”   (Zimansky   1985:66).   Wittfogel’s   theory  of  hydraulic  societies  considered  the   link  between  a  centralized  state  system  and   the  formation  of  extensive  irrigation  works.       Isaac  (1993)  points  out  that  this  link   between   domineering   ancient   powers   and   ancient   water   constructions   is   really   only   required   if   the   constructions   developed   very  rapidly.  However,  evidence  from  many   ancient  constructions  seems  to  hint  that  the   growth   occurred   over   years   or   decades   (Isaac   1993:463).   It   is   difficult   to   say   whether  or  not  this  principle  can  be  applied   to   Urartu   or   Assyria.   Even   if   Wittfogel’s   theory   was   to   be   seriously   considered,   irrigation   and   agriculture   shared   importance   with   pastoralism,   at   least   for   Urartu.     The   possible   presence   of   earlier   canals  before  the  coalescing  of  the  Urartian   state   serves   to   further   demonstrate   that   a   centralized   society   does   not   have   to   occur   before   irrigation   does.   On   the   other   hand,   the   emphasis   of   kings   being   named   in   inscriptions   on   these   works   suggests   that   they   were   the   motivators   for   the   more   complex   canals   and   dams.   Perhaps   agriculture   would   not   have   developed   as   fully  as  it  did  in  Urartu  if  the  kings  had  not   gone  out  of  their  way  to  commission  these   massive   irrigation   works.   As   stated   earlier,   the   royals   may   have   held   some   sort   of  

48

Sparks, Janine. Urartu: Irrigation and Water Management in the Armenian Highland.

monopoly   on   part   of   the   cultivated   crops   within   the   surrounding   areas   of   their   capital.   The   equal   importance   of   pastoralism  and  animal  husbandry  indicates   that   Urartu   was   not   solely   a   “hydraulic   society.”     Conclusion     It  is  clear  from  the  evidence  that  the   Urartians  were  skilled  in  manipulating  their   environment   for   water   and   irrigation   purposes.   Even   without   the   textual   evidence   and   inscriptions,   the   remains   of   the   numerous   irrigation   structures   indicate   the  importance  of  irrigation  for  the  Urartian   State.   The   development   of   irrigation   structures   seemed   an   inevitable   occurrence.   Whether   they   would   be   massive   constructions   or   minor   canals,   all   the   areas   suitable   for   true   agricultural   cultivation   required   the   use   of   irrigation   works.        

References     Armenica   2010   “Maps   of   Armenia”.   History   of   Armenia.   http://www.armenica.org/cgi-­‐ bin/armenica.cgi?63404718487621=1=3==Armenia==1=3=AA A.  Accessed  May  12,  2012.   Belli,  Oktay.        1986   The   Capital   of   Urartu:   Van,   Eastern   Anatolia.   Istanbul:   Net  Turistik  Yayinlar.     1997a   Dams,   Reservoirs   and   Irrigation   Channels   of   the   Van   Plain  in  the  Period  of  the  Urartian  Kingdom.  Anatolian  Studies   49:11-­‐26.   1997b     Urartian  Irrigation  Canals  in  Eastern  Anatolia.  Istanbul:   Baski.   Bournoutian,  George  A.   1995   A   History   of   the   Armenian   People,   Volume   1:   Pre-­‐ History  to  1500  A.D.  Costa  Mesa,  CA:  Mazda  Publishers.     Burney,  C.  A.     1957     Urartian   Fortresses   and   Towns   in   the   Van   Region.   Anatolian  Studies  7:37-­‐53.   Burney,  Charles.   1972   Urartian   Irrigation   Works.   Anatolian   Studies   22:179-­‐ 186.   Chahin,  M.     2001   The  Kingdom  of  Armenia:  A  History.  Surrey,  UK:  Curzon   Press.   Dalley,  Stephanie.   2001   Water   Management   in   Assyria   from   the   Ninth   to   the   Seventh  Centuries  BC.  ARAM  Periodical  14:443-­‐460.   Dalley,  Stephanie,  and  John  Peter  Oleson.   2003   Sennacherib,   Archimedes,   and   the   Water   Screw:   The   Context   of   Invention   in   the   Ancient   World.   Technology   and   Culture  44(1):1-­‐26.   Frankel,  David.   1979   The   Ancient   Kingdom   of   Urartu.   London:   British   Museum  Publications  Limited.     Garbrecht,  Gunther.   1980   The   Water   Supply   System   at   TuƔƉĂ ;hƌĂƌƚƵͿ͘ tŽƌůĚ Archaeology  11(3):306-­‐312.   1988   Water   Management   for   Irrigation   in   Antiquity   (Urartu   850  to  600  B.C.).  Irrigation  and  Drainage  Systems  2:185-­‐198.   Isaac,  Berry   1993   AMP,  HH  &  OD:  Some  Comments.  In  Economic  Aspects   of  Water  Management  in  the  Prehispanic  New  World.  Vernon   L.   Scarborough   and   Barry   L.   Isaac,   eds.   Greenwich,   CT:   JAI   Press.     Jacobsen,  Thorkild,  and  Seton  Lloyd.    1935   Sennacherib’s  Aqueduct  at  Jerwan.  Chicago:  University   of  Chicago  Press.   Olmstead,  A.  T.   1951   History   of   Assyria.   Chicago:   The   University   of   Chicago   Press.   Özgüç,  Tahsin.   1967   Ancient  Ararat.  Scientific  American  216(3):38-­‐46.   Parker,  Bradley  J.   2001   The   Mechanics   of   Empire:   The   Northern   Frontier   of   Assyria   as   a   Case   Study   in   Imperial   Dynamics.   Helsinki:   Neo-­‐ Assyrian  Text  Corpus  Project.   Payaslian,  Simon.   2007   The   History   of   Armenia:   From   the   Origins   to   the   Present.  New  York:  Palgrave  Macmillan.      

49

Sparks, Janine. Urartu: Irrigation and Water Management in the Armenian Highland.

Piotrovskii,  B.  B.   1967   Urartu:   The   Kingdom   of   Van   and   its   Art.   Peter   S.   Gelling,  trans.  London:  Evelyn,  Adams  &  Mackay  Ltd.   Piotrovsky,  Boris  B.   1969   The   Ancient   Civilization   of   Urartu.   James   Hogarth,   trans.  New  York:  Cowles  Book  Company.     Hodge,  A.  Trevor   2000   Qanats.   In   Handbook   of   Ancient   Water   Technology.   Örjan   Wikander,   ed.   Pp.   35-­‐38.   Leiden,   Netherlands:   Brill   Publishers.   Mays,  Larry  W.   2010   A   Brief   History   of   Water   Technology   During   Antiquity:   Before   the   Romans   In   Ancient   Water   Technologies.   Larry   W.   Mays,  ed.  Pp.  1-­‐28.  Dordrecht,  Netherlands:  Springer.     Hewsen,  Robert  H.   1997   The   Geography   of   Armenia   In   The   Armenian   People   from   Ancient   to   Modern   Times:   The   Dynastic   Periods:   From   Antiquity   to   the   Fourteenth   Century.   Richard   G.   Hovannisian,   ed.  Pp.  1-­‐17.  New  York:  St.  Martin’s  Press   Ragozin,  Zénaïde  Alexeïevna.   ϮϬϬϱ΀ϭϴϴϴ΁   Assyria:  From  the  Rise  of  the  Empire  to  the   Fall  of  Nineveh.  London:  T.  Fischer  Unwin.   Redgate,  A.  E.   1998    The  Armenians.  Malden:  Blackwell  Publishers.     Saggs,  H.  W.  F.   1984   The   Might   That   Was   Assyria.   London:   Sidgwick   and   Jackson.     Sagona,  Antonio  and  Paul  Zimansky   2009   Ancient  Turkey.  London:  Routledge.     Ur,  Jason   2005   Sennacherib’s   Northern   Assyrian   Canals:   New   Insights   from  Satellite  Imagery  and  Aerial  Photography.  Iraq  67(1):317-­‐ 345.     Wilkinson,  T.J.   2003   Archaeological   Landscapes   of   the   Near   East.   Tucson:   The  University  of  Arizona  Press.     Zimansky,  Paul  E.   1985   Ecology   and   Empire:   The   Structure   of   the   Urartian   State.  Chicago:  The  Oriental  Institute.     Zimansky,  Paul.   1990   Urartian   Geography   and   Sargon’s   Eighth   Campaign.   Journal  of  Near  Eastern  Studies  49(1):1-­‐21.    

50

An Exploratory Study Correlating Climate Change and the Anthropogenic Manipulation of Space at Tikal, Guatemala Tony Tamberino   Introduction     At   Tikal,   Guatemala,   a   spectator   with  a  view  towards  the  East  at  sunrise  will   witness  the  darkness  of  night  giving  way  to   a   red-­‐orange   glow   along   the   horizon,   and   slowly   the   illumination   of   a   grey   mist   blanketing   the   lowland   bajo   swamps.     The   mist   of   the   bajos   marches   from   the   west   with  the  cadence  of  the  forest—the  calls  of   a   thousand   birds   and   the   wavering   rumble   of   the   howling   monkeys.     The   mist   climbs   the   citadel   of   Tikal.     At   the   summit,   it   rolls   up  through  the  thick  and  twisted  forest  and   wraps   around   the   alien   stones   peering   through  the  canopy.    As  the  sun  breaks  the   horizon,   the   dark   silhouettes   of   the   stones   become   crisp   against   the   glow   of   the   morning  sky.  

  Figure  1  -­‐  View  from  the  top  of  the  Lost  World  Pyramid,   looking  east  towards  the  South  Acropolis.  

  The   alien   stones   of   Tikal   represent   the   abandoned   efforts   of   ancient   humans  

around   the   citadel.     The   mystery   of   its   abandonment   captivates   anyone   gazing   upon   the   ruins.     One   of   the   first   questions   that  come  to  mind  could  be  “where  did  the   ancient   occupants   go?”     The   ruins   also   represent  the  continuous  efforts  of  humans   over   a   millennium.     Imagine   a   human   digging   into   the   earth   and   carving   a   shape   from   the   mother   rock   of   Tikal,   then   lifting   the   stone   and   placing   it   at   the   pinnacle   of   their   known   world.     This   scene   was   repeated  century  after  century  but  came  to   an   end   around   C.E.   900.   Why   did   construction   in   Tikal   cease,   and   what   lessons   can   be   learned   from   the   ruins?     Many   have   attempted   to   salvage   lessons   from   the   ruins   that   are   slowly   being   reclaimed  by  the  earth.         Archaeologists   are   among   the   many   who  have  attempted  to  recover  the  past  of   Tikal.   Like   other   cultures   of   Mesoamerica,   the  ancient  Maya  did  record  the  richness  of   their  culture  in  the  pages  of  paper  codices.     So   perhaps   the   efforts   of   the   archaeologist   began  when  the  ancient  Maya  codices  were   burned  in  the  fires  by  Friar  Diego  de  Landa   (Gates   1978).     Their   preserved   memories   were  destroyed  as  the  pages  were  reduced   to  ash.    Now,  only  what  has  been  preserved   from   the   decomposition   of   time   can   be   teased   out   of   the   dirt   and   the   dust.     I   am   among   the   archaeologists   who   face   this   challenge  at  Tikal.  I  ask  “could  drought  be  a   major   factor   in   the   termination   of   monumental  investment  at  Tikal?”           52  

Tamberino,  Tony.  An  Exploratory  Study  Correlating  Climate  Change  and  the  Anthropogenic  Manipulation  of  Space  at  Tikal,  Guatemala  

  Two   interdisciplinary   expeditions   from   the   University   of   Cincinnati   collected   field   data   at   Tikal’s   anthropogenic   reservoirs   in   2009   and   2010,   hand-­‐ excavating   a   number   of   trenches   and   pits,   or   “operations”,   and   pulling   environmental   subsurface   cores   from   Temple   (Figures   ?   and  ?)  and  Palace  Reservoirs  (Figures  ?  and   ?).     This   paper   will   discuss   preliminary   analysis   of   the   data   from   these   two   structures.      

 

  Figure  2  -­‐  Field  excavations  within  Palace  Reservoir.  

  Figure   3   -­‐   Field   excavations   within   the   Silting   Tank   at   Temple   Reservoir.   A   single   excavation   is   present   to   the   north  within  the  Main  Tank.  

The   environmental   cores   were   later   processed   within   the   Maya   Archaeology   and   Ohio   Valley   Archaeology   labs   at   the   University  of  Cincinnati  to  create  a  series  of   proxies   for   paleoenvironmental   conditions   present   at   Tikal.   Volume   magnetic   susceptibility  measurements  were  recorded   at   arbitrary   ten   centimeter   intervals   along   the   core   length   for   investigating   their   magnetisability   as   well   as   various   micro-­‐ environmental   conditions   associated   with   precipitation,   erosion,   and   temperature.   These   intervals   were   then   ground   with   a   mortar   and   pestle   to   examine   the   distribution   of   particle   sizes   within   the   sediment   matrix,   indicating   depositional   events   in   the   past.   Samples   for   AMS   radiocarbon   dating   were   also   taken   from   the   sediments   to   provide   a   chronological   framework  for  the  reservoirs.       These   local   proxies   can   then   be   correlated   with   various   regional   paleoclimatic   proxies   within   Central   America.   One   such   proxy   is   recorded   variation   within   the   oxygen   isotope   ratio   (18O/16O)   of   a   sample   which   has   been   empirically   associated   with   variation   in   water   temperatures   and   by   extension,   climatic   change.   Another   available   proxy   is   the   monumental   structure   construction   signature   at   the   Lost   World,   Plaza   of   the   Seven   Temples,   and   the   Central   Reservoir   complexes   at   Tikal.     It   is   suggested   that   drought   could   have   acted   on   monumental   construction   episodes   as   an   inhibiting   agent,   and   a   drier   climate   does   coincide   with  the  accepted  abandonment  of  Tikal  at   the   end   of   the   Terminal   Classic   (C.E.   950).     In   contrast,   stable   wet   conditions   are   interpreted   as   a   facilitating   agent   for   monumental  construction.    Together,  these   proxies   provide   important   insights   into   the   natural   and   anthropogenic   landscape       65  

Tamberino,  Tony.  An  Exploratory  Study  Correlating  Climate  Change  and  the  Anthropogenic  Manipulation  of  Space  at  Tikal,  Guatemala  

associated   with   Maya   water   storage   features   at   Tikal   and   ultimately   a   better   understanding   of   the   human   behavior   associated  with  their  construction,  use,  and   abandonment.     Settlement  of  Tikal   Excavations   conducted   by   the   University  of  Pennsylvania  have  established   ceramic   complexes   associated   with   the   sequence  of  Maya  periods  at  Tikal  (Table  3).   These   ceramic   typologies   have   been   useful   in   reconstructing   the   occupation   history   at   Tikal.     The   first   areas   of   human   settlement   at   Tikal   are   limited   to   three   locations.   The   first   settlement   was   along   the   western   shores  of  the  Bajo  de  Santa  Fe.  The  second   is  at  the  current  location  of  the  Lost  World   Pyramid  Complex  and  adjacent  Plaza  of  the   Seven   Temples   including   the   South   Acropolis.    The  third  is  the  current  locations   of  the  North  and  adjacent  Central  Acropolis.   The  first  indication  of  settlement  was  during   the   Eb   complex   and   has   been   dated   to   about   C.E.   600   by   radiocarbon   dating   (Harrison  1999).      

Middle  Preclassic  to  the  Great  Hiatus     The  Middle  Preclassic  period  at  Tikal   is  associated  with  the  Eb  complex  (800-­‐600   B.C.E.)   and   the   Tzec   complex   (600-­‐350   B.C.E.).    The  Late  Preclassic  period  at  Tikal  is   associated   with   the   Chuen   complex   (350   B.C.E.  –  C.E.  1),  Cauac  complex  (C.E.  1-­‐150),   and   the   Cimi   complex   (C.E.   150-­‐250).     The   period   is   characterized   by   heavy   influence   from  Teotihuacan.   The   Early   Classic   period   at   Tikal   is   associated   with   the   Manik   complex   (C.E.   250-­‐550).  This  period  is  marked  by  the  end   of  heavy  influence  by  Teotihuacan  on  Tikal.     Imagery   of   Tlalok   (the   Teotihuacan   patron   god   of   war   and   rain)   is   found   on   many   monuments   at   Tikal,   and   specifically   Stela   31  shows  the  lord  of  Tikal  meeting  with  two   warriors  of  Teotihuacan  (Figure  1).      

Table  1  -­‐  Tikal  Ceramic  Complexes  

 

Period  

Ceramic  Complex  

Approximate  Date  

Postclassic  

Caban  

C.E.  950-­‐1200?  

Terminal  Classic  

Eznab  

C.E.  850-­‐950  

Late  Classic  

Imix  

C.E.  700-­‐850  

Late  Classic  

Ik  

C.E.  550-­‐700  

Early  Classic  

Manik  

C.E.  250-­‐550  

Late  Preclassic  

Cimi  

C.E.  150-­‐250  

Late  Preclassic  

Cauac  

C.E.  1-­‐150  

Late  Preclassic  

Chuen  

350  B.C.E.  –  C.E.  1  

Middle  Preclassic  

Tzec  

600-­‐350  B.C.E.  

Middle  Preclassic  

Eb  

800-­‐600  B.C.E.  

Figure  4  -­‐  Stela  31,  dated  to  the  Early  Classic  at  Tikal.  

These   warriors   were   interpreted   as   possibly   nobles   because   they   are   holding   the   symbols   of   Mexican   nobility,   an   atlatl   thrower  adorned  with  flowers  and  an  arrow   or   spear   (Evans   2008).     The   Temple-­‐Palace   Reservoir  System  could  date  as  early  as  the   Early   Classic,   but   it   was   present   during   the   Late   Classic,   according   to   radiocarbon   dating   of   inflow   sediments   (Lentz   et   al.   2011).       65  

Tamberino,  Tony.  An  Exploratory  Study  Correlating  Climate  Change  and  the  Anthropogenic  Manipulation  of  Space  at  Tikal,  Guatemala  

The   Late   Classic   period   at   Tikal   is   associated   with   the   Ik   complex   (C.E.   550-­‐ 700)   and   the   Imix   complex   (C.E.   700-­‐850).     The   Great   Hiatus   is   a   span   of   time   during   the   Ik   complex   during   which   few   events   were   recorded   on   Tikal   stelae.   The   break   begins   in   C.E.   557   with   the   last   inscription   on  Stela  17  and  doesn’t  end  until  682  when   the  26th  ruler  of  Tikal  is  cited  on  Temple  1,   Lintel   3   (Harrison   1999:203).     During   this   time,   there   were   several   wars   between   Tikal   and   its   neighbors,   most   notably   Caracol.   In   C.E.   556,   Tikal   enacted   an   Axe   War   against   Caracol   (Grube   and   Schele   1994:101).   Later,   Caracol   retaliated   with   a   Star  War,  defeating  Tikal.     A   set   of   earthworks   were   erected   along   the   perimeter   of   Tikal’s   frontier   and   have  been  dated  to  the  time  of  accession  of   the  20th  ruler  of  Tikal,  Wak  Chan  K’awiil  in   C.E.  537  (Haviland  2003:140-­‐141)      

  Figure   5   -­‐   Earthworks   at   Tikal,   projected   over   a   digital   elevation  model  (from  Webster  et  al.  2007).  

   Settlements   along   the   earthworks   are   dominated   by   the   Ik   phase   (associated   with  Great  Hiatus)  (Webster  et  al.  2007:30).    

However,   a   more   conservative   date   of   C.E.   700±150   has   been   assigned   to   the   construction  of  the  earthworks  (Webster  et   al.   2007:41).   The   earthworks   have   previously  been  interpreted  as  fortifications   (Webster  1976a,  b,  1977,  1978,  1980,  1998,   1999,  2000),  but  recent  investigations  have   been   unable   to   effectively   confirm   or   deny   this   (Webster   et   al.   2007:49).   In   response,   the  earthworks   have  been   reinterpreted   as   a   territorial   boundary,   constructed   at   the   end  of  the  Early  Classic  and  the  beginning  of   Late  Classic  (Webster  et  al.  2007:49).   Temple   V   was   built   in   C.E.   600±50   (the   Ik   ceramic   complex)   according   to   the   distribution  of  ceramics  within  the  temple’s   fill.     The   date   is   based   on   the   ceramic   complexes   present,   which   included   one   percent   Classic,   fifty   percent   late   Early   Classic,   and   forty   nine   percent   Late   Classic   ceramics   (Gomez   1999:181).     The   temple   has   been   interpreted   by   the   Guatemalan   Museum   to   be   dedicated   to   the   Maya   rain   god   Chaac   (associated   with   the   Teotihuacano   god,   Tlalok)   due   to   the   presence   of   six   of   the   great   masks   on   the   temple   depicting   the   god   (Gomez   1998:59;   Muñoz,  Cosme,  and  Lorenzo  1998).   After   the   Great   Hiatus,   direct   Teotihuacano   influence   seems   to   stop.   Tikal’s  population  spikes  dramatically  during   the   Late   Classic   and   Terminal   Classic,   and   Tikal   also   wages   a   series   of   successful   campaigns   against   Caracol   and   other   rivals   (Harrison  1999).    There  is  also  an  increase  in   the  rate  of  monumental  construction  during   this  time.    For  example,  Temple  IV  was  built   in   the   Late   Classic   along   with   many   causeways   and   other   groups   of   structures   at   Tikal   (Harrison   1999).     A   suggested   date   of   completion   for   Temple   IV   is   C.E.   741   or   747   (Harrison   1999:157).     This   date   assessment   places   the   completion   of       65  

Tamberino,  Tony.  An  Exploratory  Study  Correlating  Climate  Change  and  the  Anthropogenic  Manipulation  of  Space  at  Tikal,  Guatemala  

Temple  IV  in  the  middle  of  the  Imix  complex   during   the   Late   Classic.   Temple   III,   located   directly   adjacent   to   Temple   Reservoir,   was   completed  in  C.E.  810  (Harrison  1999).   The   Terminal   Classic   period   at   Tikal   is   associated   with   the   Eznab   complex   (C.E.   850-­‐950)  and  the  Postclassic  period  at  Tikal   is   associated   with   the   Caban   complex   (C.E.   950-­‐1200?).    It  is  during  the  Terminal  Classic   that   the   last   stela   is   dated   at   C.E.   869   (Harrison   1999).     The   Terminal   Classic   is   generally  accepted  as  the  period  of  decline   at   Tikal   (Coe   2005;   Evans   2008;   Harrison   1999;  and  Schele  and  Mathews  1999),  with   the  Postclassic  period  characterized  by  only   scarce   occupation   in   some   areas   of   Tikal   (Harrison  1999).      

Palace   Reservoir   is   a   much   more   utilitarian   water   management   structure,   located  adjacent  to  the  palace  residences  of   the   Central   Acropolis   at   Tikal.     Peter   Harrison  believes  that  there  may  have  been   a   kitchen   associated   with   the   Central   Acropolis   palaces,   directly   adjacent   to   the   northeastern  edge  of  Palace  Reservoir  (Coe   2005).     Palace   Reservoir   is   commonly   accepted  to  be  an  important  quarry  site  for   monumental   construction   at   Tikal   (Coe   2005;   Evans   2008;   Harrison   1999;   and   Schele   1999).     The   eastern   and   western   boundaries   of   the   reservoir   appear   to   be   intentionally   dammed,   separating   Palace   Reservoir   from   the   Hidden   Reservoir   and   Temple   Reservoir   structures   respectively.   (Lentz  et  al.  2011).    

Temple  Reservoir   Data     The   highest   reservoir   at   Tikal,   the   Temple  Reservoir  is  located  at  the  head  of  a   reservoir   system,   quarried   out   of   the   bedrock   along   an   existing   arroyo   or   ravine.     Temple   Reservoir   is   divided   into   two   separate   sections:   the   Silting   Tank   and   the   Main.   A   small   channel   was   incised   into   the   northern   wall   of   the   Silting   Tank   to   move   excess   runoff   down   a   six   meter   drop   into   the   Main   Tank.     Recent   excavations   at   the   Silting   Tank,   led   by   Liwy   Grazioso   and   sponsored  by  Dr.  Vernon  Scarborough  from   the   University   of   Cincinnati,   have   exposed   an  ancient  spring,  which  could  indicate  that   the   silting   tank   is   much  older  than  the   rest   of  the  Temple-­‐Palace  system.      

Particle  Size  Analysis     The  environmental  subsurface  probe   cores  taken  from  Palace  Reservoir  (Figure  4)   were  processed  to  assess  the  distribution  of   particle   sizes   within   the   sediment   matrix   present.    

  Palace  Reservoir  

    65  

Tamberino,  Tony.  An  Exploratory  Study  Correlating  Climate  Change  and  the  Anthropogenic  Manipulation  of  Space  at  Tikal,  Guatemala  

Figure  7  -­‐  Relative  Composition   of  Particle  Size  Fractions   at  Palace  Reservoir.  

 

  Figure  6  -­‐  The  locations  of  subsurface  sediments  retrieved   from  the  Palace-­‐Temple  Reservoir  System.  

The   core   samples   were   separated   into  ten  centimeter  intervals  starting  at  the   surface   along   the   core   length.   The   samples   were   weighed   and   then   each   interval   was   ground  and  sieved  through  nested  screens.   The   contents  of   each   screen   were   weighed   to   derive   the   relative   abundance   of   each   defined   particle   size   fraction.     This   procedure   helped   sort   silt   grains   (ranging   from   2   to   75   microns   in   diameter)   from   larger-­‐sized   grains.   During   wetter   climatic   conditions,   larger   sediments   will   be   less   pronounced  in  the  sediment  matrix  because   they   remain   suspended   in   the   run-­‐off   longer   than   silt   grains.     In   drier   climatic   conditions,   the   smaller   grains   will   be   more   pronounced   because   reduced   run-­‐off   will   lead   to   fewer   larger   grains   being   eroded   into  the  streams  feeding  the  reservoir.      The   results   from   this   analysis   for   Temple   Reservoir   support   the   present   interpretation  of  the  Main  and  Silting  Tanks.   The   Silting   Tank   caught   the   majority   of   the   larger  particles  and  released  the  smaller  silt   particles  into  the  Main  Tank.    

Figure  8  -­‐  Relative  Composition   of  Particle  Size  Fractions   within  the  Main  Tank  at  the  Temple  Reservoir.  

Figure  9  -­‐  Relative  Composition  of  Particle  Size  Fractions   within  the  Silting  Tank  at  the  Temple  Reservoir.  

Magnetic  Susceptibility       Magnetic   susceptibility   is   another   proxy,   empirically   associated   with   temperature   and   moisture   variation.     High   levels  of  susceptibility  have  been  connected   to   warm,   wet   conditions,   while   low   levels   are   associated   with   cold,   dry   conditions.   Magnetic  susceptibility  measurements  were   recorded  at  the  same  intervals  for  the  cores   from   Temple   and   Palace   (Figure   4).   The   plotted  magnetic  susceptibility  signature  for   the   reservoirs   indicates   spikes   of   wet   and   troughs   of   dry   periods   (Figures   19,   20,   and   22).  

 

    65  

 

 

Tamberino,  Tony.  An  Exploratory  Study  Correlating  Climate  Change  and  the  Anthropogenic  Manipulation  of  Space  at  Tikal,  Guatemala  

Figure   10   -­‐   Magnetic   Susceptibility   Signature   at   Temple   Reservoir.  

Figure   11   -­‐   Magnetic   Susceptibility   Signature   at   Palace   Reservoir.  

  Ceramic  Sherd  Analysis     Thousands   of   ceramic   sherds   were   collected   during   the   reservoir   excavations.   The   sherds   were   analyzed   to   determine   to   which   ceramic   complex   they   belonged   and   were   then   classified   to   the   appropriate   Maya   period.   The   data   for   this   analysis   came   from   the   Ancient   Maya   Agroforestry   and   Water   Management   Project   at   Tikal,   and   I   performed   an   appropriate   statistical   analysis   of   the   ceramic   sherds   from   Palace   Reservoir,  Temple  Reservoir  Main  Tank,  and   Temple  Reservoir  Silting  Tank.    

 

 

percent   were   Middle   Preclassic,   2.25   percent   were   Early   Classic,   93.41   percent   were   Late   Classic,   and   2.78   percent   could   not   be   associated   chronologically.   These   results   are   congruent   with   those   of   Palace   Reservoir.   Of   the   1,798   sherds   recovered   from   the   Temple   Reservoir   Silting   Tank,   12.17%   were   Late   Preclassic,   11.95   percent   were   Early   Classic,   74.6%   were   Late   Classic,   and   1.28   percent   could   not   be   associated   chronologically.   The   results   are   strikingly   different   from   both   Palace   Reservoir   and   Temple   Reservoir   Main   Tank,   suggesting   different   periods   of   construction   for   the   various  components.       Monumental  Structures  at  Tikal     Geographic  visualization  is  “a  spatial   approach  to  scientific  visualization  whereby   the  cartographic  output  is  designed  to  elicit   a  response  from  the  map  reader  that  results   in   the   formalization   of   new   scientific   hypotheses”   (DeMers   2009:420).     Using   ArcGIS   10,   I   performed   a   geographic   visualization   of   the   past   landscape   at   Tikal,   focusing   on   the   Lost   World   Pyramid   Complex,   The   Plaza   of   the   Seven   Temples,   The   South   Acropolis,   Temple   V,   Temple   III,   and  the  Temple-­‐Palace  Reservoir  System.    

Of   the   9,344   sherds   recovered   from   Palace   Reservoir,   1.5   percent   were   Late   Preclassic,   1.08   percent  were   Classic,   95.93   percent  were  Late  Classic,  0.43  percent  was   Terminal  Classic,  and  1.06  percent  could  not   be   associated   chronologically.   The   majority   of   sherds   were   associated   with   the   Late   Classic.    Of  the  1,153  sherds  recovered  from   the   Temple   Reservoir   Main   Tank,   1.56       65  

Tamberino,  Tony.  An  Exploratory  Study  Correlating  Climate  Change  and  the  Anthropogenic  Manipulation  of  Space  at  Tikal,  Guatemala  

a  series  of  three  structures  aligned  in  a  row   along   a   north   to   south   orientation   and   an   adjacent   raised   platform   facing   the   west   (Figure  11.)      

  Figure   12   –   Monumental   structure   footprints   with   associated   ceramic   complexes.   during   the   Maya   occupation  at  Tikal,  Guatemala.  

 

  The   purpose   of   the   geovisualization   was  to  establish  the  position  and  footprints   of   monumental   structures   (Figure   10)   in   respect   to   identified   ceramic   complexes   at   Tikal  and  also  to  analyze  the  spatial  changes   over   time   (Figure   12).     These   structures   were   selected   because   they   had   been   continuously  occupied  since  the  founding  of   Tikal   and   they   are   located   within   the   drainage   basins   for   the   Temple-­‐Palace   Reservoir  system.    

Figure  14  -­‐  The  E-­‐Group  configuration  within  the  drainage   basin   of   the   Temple-­‐Palace   Reservoir   System   (from   Harrison  1999:55).  

The   Lost   World   Pyramid   was   decommissioned  during  the  Late  Classic;  its   construction  was  achieved  in  a  gradual  way   by   joining   old   structures   and   building   new   ones   (Laporte   and   Fialko   1994).     The   termination   of   the   functionality   of   the   E-­‐ Group   occurs   around  the   same  time   as  the   building   of   the   Temple-­‐Palace   Reservoir   System   and   the   dedication   of   Temple   V   to   the  Maya  rain  god  Chaac.     The  Paleoclimatic  Record  at  Tikal  

  Figure   13-­‐   The   monumental   structure   footprint   of   Tikal   over  time.  

  Additionally,   the   structures   exhibit   an   E-­‐Group   configuration   associated   with   an  observatory  function.  The  group  includes  

A  relevant  paleoclimatic  proxy  is  the   empirical   correlation   of   temperature   variation   with   fluctuations   in   the   oxygen   isotope   ratio   of   18O   to   16O.     Low   values   for   the  ratio  indicate  warmer,  wetter  environments   while   high   values   suggest   colder,   drier   environments.    One  method  for  obtaining  these   values   has   been   through   studies   of   the   aragonite   shells   of   ostracods,   a   freshwater   crustacean   which   absorbs   rainfall   from   the   environment  and  fixes  the  oxygen  with  calcium   carbonate  crystals  within  the  shell.           65  

Tamberino,  Tony.  An  Exploratory  Study  Correlating  Climate  Change  and  the  Anthropogenic  Manipulation  of  Space  at  Tikal,  Guatemala  

 

Several  articles  and  books  have  been   published  utilizing  stable  isotope  proxy  data   in   support   of   climate   change,   and   the   implications   for   the   Maya   lowlands   (Covich   and   Stuiver     1974;   Yapp   1979;   Abell   1985;   Lister   et   al.   1991;   Chivas   et   al.   1993;   Curtis   and  Hodell  1993;  Holmes  et  al.  1995;  Hodell   et  al.  1991,  1995;  Brenner  et  al.  2001,  2002,   2003;   Rosenmeier   et   al.   2002a,   2002b,   2011;  Leyden  et  al.  1996).        

Figure  15  -­‐  Stable  oxygen  isotope  fluctuation  over  time  at   lowland   Maya   sites   in   Mexico   and   Guatemala   (from   Rosenmeier  et  al.  2002).    

Paleoliminological  studies  have  been   utilized  to  identify  climate  variability  on  the   zƵĐĂƚĂŶ WĞŶŝŶƐƵůĂ ƚŚƌŽƵŐŚ ƚŚĞ ɷ18O   values   obtained   on   Pyrgophorus   coronautus   shell   (Curtis   et   al.     ϭϵϵϲͿ͘  dŚĞ ɷ18O   values   of   terrestrial   and   aquatic   gastropod   shells   have   been   successfully   used   as   proxies   of   climatic   variability,   (Covich   and   Stuiver,   1974;   Yapp,   1979;   Abell,   1985;   Lister   et   al.,   1991;  Chivas  et  al.,  1993;  Curtis  and  Hodell,   1993;   Holmes   et   al.,   1995;   Hodell   et   al.,   1991,   1995;   Brenner   et   al.,   2001,   2002,   2003;   Rosenmeier   et   al.,   2002,   2002,   2011;   Leyden   et   al.,   1996)   and   the   utilization   of   ɷ18O   value   variations   as  proxies   for   climate   variability  has  been  routinely  done  in  recent   years   (Covich   and   Stuiver,   1974;   Yapp,   1979;  Abell,  1985;  Lister  et  al.,  1991;  Chivas   et   al.,   1993;   Curtis   and   Hodell,   1993;   Holmes   et   al.,   1995;   Hodell   et   al.,   1991,   1995;  Leyden  et  al.,  1996).    The  compilation   of   isotopic   climate   reconstruction   in   the   Yucatan   with   other   multidisciplinary   evidence   has   yielded   a   model   of   climatic   conditions   during   the   Holocene   (12,000   years  ago  to  the  present.      

  Figure   16   -­‐   Fluctations   in   the   oxygen   isotopic   record   at   Punto   Laguna,   in   the   Maya   lowlands   (from   Hodell   et   al.   1996).  

The   literature   strongly   supports   inferences   of   strong   climatic   and   environmental   changes   throughout   the   Terminal   Classic   and   Postclassic.     Settlement   patterns   and   occupation   layers   at  Maya  sites  reflect  larger  scale  trends  that   correlate   with   the   climatic   and   environmental   changes   indicated   throughout  the  region.           65  

Tamberino,  Tony.  An  Exploratory  Study  Correlating  Climate  Change  and  the  Anthropogenic  Manipulation  of  Space  at  Tikal,  Guatemala  

The  Mesoamerican  Migration  Myth   Tulan  is  a  mythical  place  from  where   the   civilized   people   of   Mesoamerica   migrated.  Though  Tulan  has  some  variations   on   its   spelling   in   the   Maya   literature,   it   appears   throughout   Mesoamerican   mythology   (Schele   and   Mathews   1998:39).   The   story   of   Tulan   is   a   “migration   myth”,   and   the   Aztec   variant   tells   of   a   mountain   where  water  flowed  from  a  hole  on  its  slope   to   the   base,   “the   place   of   reeds”   (Schele   and  Mathews  1998:39).   “The  myth  concerns  the  migrations  of  the  Aztec   to   the   place   where   they   would   establish   their   state  and  capital  city.  Along  the  way,  they  came   to   Coatepec   (Snake   Mountain),   near   Tollan   (Place   of   Cattail   Reeds).   In   one   version   of   the   story,   the   Aztec   built   a   temple   on   top   of   Snake   Mountain   for   their   patron   god   Huitzilopochtli.   Huitzilopochtli  then  built  a  ball  court  at  the  base   of   the   mountain,   and   in   the   center   he   placed   a   hole  called  an  Itzompan,  or  “Skull  Place.”  Under   his  directions,  the  Aztec  partially  dammed  up  the   hole   to   create   what   was   called   the   “Well   of   Water.”  They  cultivated  plants  in  and  around  the   hole,  which  was  filled  with  freshwater  creatures   of  all  sorts.  From  this  well,  sweet  water  formed  a   lake  and  made  the  surrounding  landscape  fertile.   In  one  version  of  the  myth,  a  faction  of   the   migrants,   the   Four-­‐Hundred   Southerners   (Centzon   Huitznahuatl),   decided   they   wanted   to   stay   in   this   fine   new   home   to   create   Mexico,   instead   of   continuing   in   their   migrations.   This   angered   Huitzilopochtli,   who   came   down   from   his  mountain  armed  for  war.  He  surrounded  the   Four-­‐Hundred  Southerners  and  their  older  sister,   a   goddess   named   Coyolxauhcihuatl,   who   is   identified   in   this   version   of   the   myth   as   the   mother   of   Huitzilopochtli.   The   Four-­‐Hundred   were   his   uncles.   In   the   ballcourt,   he   killed   Coyolxauhcihuatl   by   decapitation,   then   destroyed   the   Four-­‐Hundred   and   ate   their   hearts.   He   destroyed   the   dam   in   the   Well   of   Water  and  it  dried  up,  forcing  the  terrified  Aztec   to   resume   their   journey.”   (Schele   and   Mathews   1998:37-­‐38)  

  Figure  17  -­‐  The  Mural  Tepantitla  from  Teotihuacan  (from   Evans  2008).  

 The  highland  Maya  variant,  present   in   the   Popol   Vuh,   calls   it   “Tulan   Zuyua”,   translated   as   “Seven   Caves”   and   “Seven   Canyons”   (Tedlock   1996:151).     However,   the  descriptive  imagery  is  not  as  vivid  as  the   Teotihuacan   and   Aztec   versions.   The   Popol   Vuh  version  does  specifically  state  that  even   that   “the   Mexican   people”   were   at   Tulan   (Tedlock   1996:152).     In   the   Maya   style,   “mountains”   are   depicted   as   living   beings;   the   “snake   mountain”   motif   manifests   as   a   monster  mask  with  snakes  coming  out  of  its   mouth   (Figure   18)   carved   into   the   walls   of   the   pyramids   (Schele   and   Mathews   1998:39).  

Similar   imagery   has   been   discovered   at   Tepantitla,  Teotihuacan  (Figure  17).           65  

Tamberino,  Tony.  An  Exploratory  Study  Correlating  Climate  Change  and  the  Anthropogenic  Manipulation  of  Space  at  Tikal,  Guatemala  

with  Cerro  Gordo.  The  spatial  configuration   of  the  Lost  World  Pyramid  E-­‐Group  at  Tikal   is   very   similar   to   the   Early   Classic   Temple-­‐ Pyramid   of   the   Feathered   Serpent   at   Teotihuacan.    During  the  Early  Classic,  a  ball   court   was   also   built   directly   next   to   an   ancient   seep   spring   at   Temple   Reservoir’s   Silting  Tank.  

  Figure   18   -­‐   Monster   Mask   with  Snakes   (from   Schele   and   Mathews  1984).  

   The   imagery   of   the   Teotihuacano   and   later   the   Aztec   version   is   prevalent   in   the   spatial   orientation   of   monumental   construction   at   Tikal   from   the   Late   Preclassic   to   the   Early   Classic.   At   Tikal,   the   Lost  World  Pyramid  complex,  the  ball  court,   and  the  seep  spring  are  major  components   of   the   migration   myth.     After   the   Great   Hiatus,   the   Lost   World   Pyramid   is   decommissioned.    It  is  also  possible  that  the   seep  spring  and  the  reservoirs  were  built  or   widened  at  this  time  along  with  the  building   of  Temple  V,  indicating  a  shift  to  pure  Maya   imagery.     Discussion   The   spatial   configuration   of   Tikal’s   citadel  in  the  Early  Classic  is  most  similar  to   Mexican  imagery  of  the  Tepantitla  Mural  at   Teotihuacán   and   of   the   city   itself.     At   Teotihuacan,   agricultural   cultivation   was   heavily   dependent   on   spring   waters   from   beneath   Cerro   Gordo,   the   mountain   to   the   north   of   the   city   (Evans   2008:211).   The   great   goddess   and   Tlaloc   were   associated  

The  water  that  flowed  into  or  out  of   the   Temple   Reservoir   Silting   Tank   at   Tikal   may  have  been  sacred  to  the  Maya.    At  the   beginning   of   the   Late   Classic,   the   Plaza   of   the   Seven   Temples   at   Tikal   was   leveled   off   with   rainfall   runoff   channeled   directly   through   a   set   of   three   ball   courts   and   into   the   Temple   Reservoir   Silting   Tank.     In   the   Maya   creation   myth,   shared   by   cultures   of   Mesoamerica,  the  maize  god  was  killed  and   buried  in  the  ball  court  of  Xibalba.    The  god   was   then   reborn   after   his   sons   successfully   defeated   the   Lords   of   Death   (Coe   2005;   Evans   2008;   Harrison   1999;   and   Schele   1999).     The   act   of   channeling   the   water   through   the   ball   courts   at   beginning   in   the   Late   Classic   could   indicate   a   shift   of   iconography  from  Teotihuacan  to  Maya.     The   termination   of   the   functionality   of   the   E-­‐Group   in   the   Late   Classic   and   the   addition   of   Temple   V   with   Chaac   imagery   may   indicate   the   shift   of   Teotihuacan   influence   to   solely   Maya   in   monumental   construction  at  Tikal.  The  E-­‐Group’s  view  of   the   Eastern   horizon   is   obstructed   by   the   South   Acropolis   of   Tikal.     Therefore,   the   South   Acropolis   should   be   completely   excavated   to   evaluate   the   iconographical   importance   to   the   site   of   Tikal   throughout   time.     Temple   Reservoir   and   Palace   Reservoir  were  both  quarried  out  in  the  end   of   the   Early   Classic   or   the   beginning   of   the   Late   Classic.   The   building   of   Temple   V   and   widening   of   the   reservoirs   coincide   with   a   major  drought  in  the  Maya  Lowlands  during       65  

Tamberino,  Tony.  An  Exploratory  Study  Correlating  Climate  Change  and  the  Anthropogenic  Manipulation  of  Space  at  Tikal,  Guatemala  

the,   and   a   series   of   wars   with   Caracol   building  them  could  have  been  a  gesture  to   please  Chaac,  the  god  of  rain  and  war.   Stressed   by   drought   in   the   Ik   complex   (during   the   Great   Hiatus),   the   Maya   of   Tikal   were   forced   to   modify   the   natural  landscape  to  artificially  retain  more   water,  which  manifested  in  the  construction   of   reservoirs.   The   modification   seems   to   have   been   effective.     However,   during   the   Terminal   Classic,   with   a   much   greater   population   and   with   the   severity   of   the   drought   intensified,   the   Maya   at   Tikal   may   have   relied   more   and   more   on   the   reservoirs   until   rainfall   was   unable   to   recharge  the  reservoirs  enough  to  meet  the   demands.     So   the   lower   classes,   less   invested   in   the   constructed   landscape,   began   to   move  elsewhere.   The   labor  force,   the  foundation  of  the  social  pyramid  at  Tikal   began   to   fall   apart   to   the   point   that   the   elites   of   Tikal   could   no   longer   sustain   themselves   and   were   forced   to   follow   the   labor  to  the  water  sources.    

  Figure   19   -­‐   Comparison   of   monumental   construction   episodes  with  regional  paleoenvironmental  conditions.  

Conclusion  

   

  As   the   stress   of   the   drought   increased,   the   sociological   frame   work   of   Tikal   snapped.     Those   unable   to   adapt   to   the   changing   environment,   like   the   elites   had,   migrated   away   from   Tikal.   With   a  

reduced   labor   force   and   the   inability   to   sustain   agriculture,   the   elites   of   Tikal   were   forced  to  move  to  more  habitation-­‐friendly   areas.    As  the  ceremonial  importance  of  the   site   of   Tikal   decreased   due   to   increased   climatic   instability,   further   monumental   investments   were   made   elsewhere   (Figure   19).        

References   Abell,  P.  I.   1985   Oxygen   isotope   ratios   in   modern   African   gastropod   shells:   A   data   base   for   paleoclimatology.   Chem.   Geol.   Isot.   G.   Sect.  58:183–193.   Brenner,   M.,   D.A.   Hodell,   J.H.   Curtis,   M.F.   Rosenmeier,   F.S.   Anselmetti,  and  D.  Ariztegui     2003   Paleolimnological  approaches  for  inferring  past  climate   change   in   the   Maya   region:   recent   advances   and   methodological   limitations.   In   The   Lowland   Maya   Area:   Three   Millennia   at   the   Human-­‐Wildland   Interface.   A.   Gómez-­‐Pompa,   M.F.   Allen,  S.L.  Fedick,   and   J.J.   Jiménez-­‐Osornio,   eds.   Haworth   Press:  45-­‐75.   Brenner,   M.,   M.F.   Rosenmeier,   D.A.   Hodell,   J.H.   Curtis,   F.S.   Anselmetti,  and  D.  Ariztegui     2002   Limnology   and   Paleolimnology   of   Petén,   Guatemala.   Revista   de   Universidad   del   Valle   de   Guatemala   12:   2-­‐9.   (In   Spanish).   Brenner,  M.,  M.F.  Rosenmeier,  D.A.  Hodell,  and  J.H.  Curtis     2002   Paleoclimatology  of  the  Maya  region:  a  synthesis  of  the   knowledge  based  on  paleolimnological  records.  In  Proceedings   of   the   11th   Annual   International   Congress   of   Mayan   Investigators.   W.J.   Folan,   ed.   13-­‐16   November   2001,   Campeche,  Mexico:  249-­‐261.  (In  Spanish).   Brenner,  M.,  M.F.  Rosenmeier,  D.A.  Hodell,  and  J.H.  Curtis     2002   Paleolimnology   of   the   Maya   Lowlands:   long-­‐term   perspectives   on   climate,   environment,   and   humans.   Ancient   Mesoamerica  13:  141-­‐157.   Brenner,   M.,   D.A.   Hodell,   J.H.   Curtis,   M.F.   Rosenmeier,   M.W.   Binford,  and  M.B.  Abbott     2001   Abrupt  climate  change  and  Pre-­‐Columbian  collapse.  In   V.  Markgraf  (ed.)  Interhemispheric  Climate  Linkages.  San  Diego:   Academic  Press:  87-­‐103.   Chivas,  A.  R.,  De  Deckker,  P.,  Cail,  J.  A.,  Chapman,  A.,  Kiss,  E.,  and   Shelley,  J.  M.  G.     1993   Coupled   stable-­‐isotopic   and   trace-­‐element   measurements   of   lacustrine   carbonates   as   paleoclimatic   indicators.  In  ‘‘Climate  Change  in  Continental  Isotopic  Records’’   (P.  K.  Swart,  K.  C.  Lohmann,  J.  McKenzie,  and  S.  Savin,  Eds.),  pp.   113–121.  American  Geophysical  Union,  Washington,  D.C.   Coe,  M.  D.   2005   The  Maya.    7th  ed.  New  York:  Thames  and  Hudson.   Covich,  A.,  and  Stuiver,  M.     1974   Changes   in   oxygen   18   as   a   measure   of   long-­‐term   fluctuations   in   tropical   lake   levels   and   molluscan   populations.   Limnol.  Oceanogr.  19:682–691.   Curtis,  J.  H.,  and  Hodell,  D.  A.     1993   An  isotopic  and  trace  element  study  of  ostracods  from   Lake   Miragoane,   Haiti:   A   10,500   year   record   of   paleosalinity  

    65  

Tamberino,  Tony.  An  Exploratory  Study  Correlating  Climate  Change  and  the  Anthropogenic  Manipulation  of  Space  at  Tikal,  Guatemala  

and   paleotemperature   change   in   the   Caribbean.   In   Climate   Change   in   Continental   Isotopic   Records.   P.   K.   Swart,   K.   C.   Lohmann,   J.   McKenzie,   and   S.   Savin,   eds.   Pp.   135–152.   American  Geophysical  Union,  Washington,  D.C.   Curtis,  J.  H.,  Hodell,  D.  A.,  Brenner,  M.     1996   Climate   Variability   on   the   Yucatan   Peninsula   (Mexico)   during   the   Past   3500   Years,   and   Implications   for   the   Maya   Cultural  Evolution,  Quaternary  Res.  46:  37-­‐47.   DeMers,  M.  N.     2009   Fundamentals  of  Geographic  Information  Systems.  4th   ed.  San  Franscico:  John  Wiley  and    Sons.   Dunning,  N.,  Rue,  D.  J.,  Beach,  T.,  Covich,  A.,  Traverse,  A.     1998   Human-­‐Environment   Interactions   in   a   Tropical   Watershed:  The  Paleoecology  of  Laguna  Tamarindito,  El  Petén,   Guatemala.  J.  Field  Archaeol.  145:139-­‐151.   Evans,  S.  T.   2008   Ancient   Mexico   &   Central   America:   Archaeology   and   Culture  History.  2nd  ed.  London:  Thames  &  Hudson.   Gallopin,  G.  G.     1990   Water   Storage   Technology   at   Tikal,   Guatemala.     Unpublished   M.A.   thesis,   Department   of   Anthropology,   University  of  Cincinnati,  Cincinnati.   Gómez,  O.  and  C.  V.  Lorenzo     1997   El   Templo   V   de  Tikal:   Su   excavación.   In   X   Simposio   de   Investigaciones  Arqueológicas  en  Guatemala,  1996.  J.P.  Laporte   and   H.   Escobedo,   eds.   Pp.315-­‐331.   Museo   Nacional   de   Arqueología  y  Etnología,  Guatemala   Gómez,  O.   1998   Nuevas   excavaciones   en   el   Templo   V,   Tikal.   In   XI   Simposio   de   Investigaciones   Arqueológicas   en   Guatemala,   1997.   J.P.   Laporte   and   H.   Escobedo,   eds.   Pp.   54-­‐70.   Museo   Nacional  de  Arqueología  y  Etnología,  Guatemala.   1999   Excavaciones   en   el   interior   del   Templo   V,   Tikal.   In   XII   Simposio   de   Investigaciones   Arqueológicas   en   Guatemala,   1998.  J.P.  Laporte  and  H.L.  Escobedo,  eds.  Pp.174-­‐182.  Museo   Nacional  de  Arqueología  y  Etnología,  Guatemala.    2006   El  Proyecto  Plaza  de  los  Siete  Templos  de  Tikal:  Nuevas   intervenciones.   In   XIX   Simposio   de   Investigaciones   Arqueológicas  en  Guatemala,  2005.  J.P.  Laporte,  B.  Arroyo,  and   H.   Mejía,   eds.   Pp.768-­‐789.   Museo   Nacional   de   Arqueología   y   Etnología,  Guatemala   2007   Proyecto   Plaza   de   los   Siete   Templos   de   Tikal:   Los   edificios  del  sur  de   la  plaza.  In  XX  Simposio  de  Investigaciones   Arqueológicas  en  Guatemala,  2006.  J.P.  Laporte,  B.  Arroyo,  and   H.   Mejía,   eds.   Pp.   492-­‐518.   Museo   Nacional   de   Arqueología   y   Etnología,  Guatemala.     2008   El   Proyecto   Plaza   de   los   Siete   Templos   de   Tikal:   Excavación  de   los  Templos  al  este  de  la  Plaza.  In  XXI  Simposio   de   Investigaciones   Arqueológicas   en   Guatemala,   2007.   J.P.   Laporte,   B.   Arroyo,   and   H.   Mejía,   eds.   Pp.544-­‐555.   Museo   Nacional  de  Arqueología  y  Etnología,  Guatemala.   2009   Proyecto   Plaza   de   los   Siete   Templos   de   Tikal:   Excavación  de  los  tres  Juegos  de  Pelota  localizados  al  Norte  de   la   plaza.   In   XXII   Simposio   de   Investigaciones   Arqueológicas   en   Guatemala,   2008.   J.P.   Laporte,   B.   Arroyo,   and   H.   Mejía,   eds.   Pp.1406-­‐1422.   Museo   Nacional   de   Arqueología   y   Etnología,   Guatemala.   Harrison,  P.  D.   1999   The   Lords   of   Tikal:   Rulers   of   an   Ancient   Maya   City.   London:  Thames  and  Hudson.   Hodell,   D.   A.,   Curtis,   J.   H.,   Jones,   G.   A.,   Higuera-­‐Gundy,   A.,   Brenner,  M.,  Binford,  M.  W.,  and  Dorsey,  K.  T.     1991   Reconstruction   of   Caribbean   climate   change   over   the   past  10,500  years.  Nature  352:790–793.   Hodell,  D.  A.,  Curtis,  J.  H.,  and  Brenner,  M.    

1995   Possible  role  of  climate  in  the  collapse  of  Classic  Maya   civilization.  Nature  375:391–394.   Holmes,  J.  A.,  Street  Perrott,  F.  A.,  Ivanovich,  M.,  and  Perrott,  R.  A.     1995   A   late   Quaternary   palaeolimnological   record   from   Jamaica   based   on   trace-­‐element   chemistry   of   ostracod   shells.   Chem.  Geol.  124:143–160.   Laporte,  J.  P.  and  V.  Fialko     1994   Mundo   Perdido,   Tikal:   Los   enunciados   actuales.   In   VII   Simposio  de  Investigaciones  Arqueológicas  en  Guatemala,  1993   (editado   por   J.P.   Laporte   y   H.   Escobedo),   pp.335-­‐348.   Museo   Nacional  de  Arqueología  y  Etnología,  Guatemala.   Laporte,  J.  P.   1997   Exploración   y   restauración   en   la   Gran   Pirámide   de   Mundo   Perdido,   Tikal   (Estructura   5C-­‐54).   In   X   Simposio   de   Investigaciones  Arqueológicas  en  Guatemala,  1996.  J.P.  Laporte   and   H.   Escobedo,   eds.   Pp.332-­‐359.   Museo   Nacional   de   Arqueología  y  Etnología,  Guatemala.   1998   Exploración   y   restauración   en   el   Templo   del   Talud-­‐ Tablero,   Mundo   Perdido,   Tikal   (Estructura   5C-­‐49).   In   XI   Simposio   de   Investigaciones   Arqueológicas   en   Guatemala,   1997.   J.P.   Laporte   and   H.   Escobedo,   eds.   Pp.22-­‐40.   Museo   Nacional  de  Arqueología  y  Etnología,  Guatemala.   1999   Exploración   y   restauración   en   el   Conjunto   de   Palacios   de  Mundo  Perdido,  Tikal  (Estructura  5C-­‐45/47).  In  XII  Simposio   de   Investigaciones   Arqueológicas   en   Guatemala,   1998.   J.P.   Laporte   and   H.L.   Escobedo,   eds.   Pp.183-­‐214.   Museo   Nacional   de  Arqueología  y  Etnología,  Guatemala.   2001   Trabajos   no   divulgados   del   Proyecto   Nacional   Tikal,   Parte  2:  Hallazgos  en  las  exploraciones  de  la  Zona  Norte.  In  XIV   Simposio   de   Investigaciones   Arqueológicas   en   Guatemala,   2000.   J.P.   Lapote,   A.C.   Suasnávar,   and   B.   Arroyo,   eds.   Pp.221-­‐ 258.  Museo  Nacional  de  Arqueología  y  Etnología,  Guatemala.   2002   Exploración   y   restauración   en   el   Templo   de   Las   Calaveras,   Mundo   Perdido,   Tikal   (Estructura   5D-­‐87).   In   XV   Simposio   de   Investigaciones   Arqueológicas   en   Guatemala,   2001.   J.P.   Laporte,   H.   Escobedo,   and   B.   Arroyo,   eds.   Pp.207-­‐ 227.  Museo  Nacional  de  Arqueología  y  Etnología,  Guatemala.   2003   Exploración  y  restauración  en  los  espacios  abiertos  de   Mundo   Perdido,   Tikal   (Las   Plazas   Este,   Oeste,   Norte   y   Sur).   In   XVI   Simposio   de   Investigaciones   Arqueológicas   en   Guatemala,   2002.   J.P.   Laporte,   B.   Arroyo,   H.   Escobedo,   and   H.     Mejía.   Pp.335-­‐348.   Museo   Nacional   de   Arqueología   y   Etnología,   Guatemala.   2004   Exploración   y   restauración   de   les   estructuras   de   la   Plaza   Sur   de   Mundo   Perdido,   Tikal   (Grupo   6D-­‐II).   In   XVII   Simposio   de   Investigaciones   Arqueológicas   en   Guatemala,   2003.   J.P.   Laporte,   B.   Arroyo,   H.   Escobedo,   and   H.   Mejía,   eds.   Pp.614-­‐634.   Museo   Nacional   de   Arqueología   y   Etnología,   Guatemala.   2005   Exploración   y   restauración   en   la   Plataforma   Este   de   Mundo   Perdido,   Tikal   (Estructuras   5D-­‐83   a   5D-­‐89).   In   XVIII   Simposio   de   Investigaciones   Arqueológicas   en   Guatemala,   2004.   J.P.   Laporte,   B.   Arroyo,   and   H.   Mejía,   eds.   Pp.147-­‐193.   Museo  Nacional  de  Arqueología  y  Etnología,  Guatemala.   2006   Trabajos   no   divulgados   del   Proyecto   Nacional   Tikal,   Parte  4:  Rescate  en  El  Zotz,  San  José,  Petén.  In  XIX  Simposio  de   Investigaciones  Arqueológicas  en  Guatemala,  2005.  J.P.  Laporte   and   H.L.   Escobedo,   eds.   Pp.   949-­‐971.   Museo   Nacional   de   Arqueología  y  Etnología,  Guatemala.   2009    El   embrujo   del   tecolote   y   otras   historietas:   Algunas   consideraciones   sobre   los   silbatos   del   Clásico   en   Tikal.   In   XXII   Simposio   de   Investigaciones   Arqueológicas   en   Guatemala,   2008.  J.P.  Laporte,  B.  Arroyo,  and  H.  Mejía,  eds.  Pp.  1021-­‐1050.   Museo  Nacional  de  Arqueología  y  Etnología,  Guatemala.   Lentz,  David  L.,  Brian  Hockaday  

    65  

Tamberino,  Tony.  An  Exploratory  Study  Correlating  Climate  Change  and  the  Anthropogenic  Manipulation  of  Space  at  Tikal,  Guatemala  

2009   Tikal   timbers   and   temples:   ancient   Maya   agroforestry   and  the  end  of  time.  J.  Archaeol.  Sci.  36:1342-­‐1353.   Leyden,  B.  W.,  Brenner,  M.,  Whitmore,  T.  J.,  Curtis,  J.  H.,  Piperno,   D.  R.,  and  Dahlin,  B.  H.   1996   A  record  of  long-­‐  and  short-­‐term  climate  variation  from   northwest   Yucatan:   Cenote   San   Jose   Chulchaca.   In   The   Managed  Mosaic:  Ancient  Maya  Agriculture  and  Resource  Use.   S.L.  Fedick,  ed.  Salt  Lake  City:  University  of  Utah  Press.   Lister,  G.  S.,  Kelts,  K.,  Zao,  C.  K.,  Yu,  J.,  and  Niessen,  F.     1991   Lake   Qinghai,   China:   Closed-­‐basin   lake   levels   and   the   oxygen   isotope   record   for   ostracoda   since   the   latest   Pleistocene.  Palaeogeogr.  Palaeocl.  84:141-­‐162.   Muñoz  Cosme,  G.  y  C.  V.  Lorenzo     1998   Identificación   del   Templo   V   de   Tikal   en   la   descripción   del   coronel   Modesto   Méndez   de   1848.   In   XI   Simposio   de   Investigaciones  Arqueológicas  en  Guatemala,  1997.  J.P.  Laporte   and   H.L.   Escobedo,   eds.   Pp.10-­‐21.   Museo   Nacional   de   Arqueología  y  Etnología,  Guatemala.   Rosenmeier,   M.F.,   D.A.   Hodell,   M.   Brenner,   J.H.   Curtis,   and   T.P.   Guilderson     2002   A  4000-­‐year  lacustrine  record  of  environmental  change   in  the  southern  Maya  lowlands,  Petén,  Guatemala.  Quaternary   Res.  57:183-­‐190.   Rosenmeier,  M.F.,  D.A.  Hodell,  M.  Brenner,  J.H.  Curtis,  J.B.  Martin,   F.S.  Anselmetti,  D.  Ariztegui,  and  T.P.  Guilderson   2002   Influence   of   vegetation   change   on   watershed   hydrology:   implications   for   paleoclimatic   interpretation   of   lacustrine  ɷ18O  records.  J  Paleolimnol.  27:117-­‐131.   Schele,  L.  and  P.  Mathews   1999   The   Code   of   the   Kings:  The   Language   of   Seven   Sacred   Maya  Temples  and  Tombs.  New  York:  Simon  &  Schuster.   Yapp  C.  J.   1979   Oxygen   and   carbon   isotope   measurements   of   land   snail  shell  carbonate.  Geochim.  Cosmochim.  Ac.  43:629-­‐635.    

    65  

Smile Life

When life gives you a hundred reasons to cry, show life that you have a thousand reasons to smile

Get in touch

© Copyright 2015 - 2024 PDFFOX.COM - All rights reserved.