weighted residual method introduction - UFL MAE [PDF]

FEM can be applied to many engineering problems that are governed by a differential equation. • Need systematic approa

3 downloads 6 Views 486KB Size

Recommend Stories


Weighted residual methods
If your life's work can be accomplished in your lifetime, you're not thinking big enough. Wes Jacks

UFL-3 Instruction Manual
The only limits you see are the ones you impose on yourself. Dr. Wayne Dyer

Moment based weighted residual method—New numerical tool for a nonlinear multicomponent
There are only two mistakes one can make along the road to truth; not going all the way, and not starting.

Mae Cannon
Pretending to not be afraid is as good as actually not being afraid. David Letterman

IJET Galerkin's Method of Weighted Residual for a Convective Straight Fin with Temperature
We can't help everyone, but everyone can help someone. Ronald Reagan

Fannie Mae
If you feel beautiful, then you are. Even if you don't, you still are. Terri Guillemets

MAE Alumni
Sorrow prepares you for joy. It violently sweeps everything out of your house, so that new joy can find

A Parallel Multidimensional Weighted Histogram Analysis Method
Don’t grieve. Anything you lose comes round in another form. Rumi

10.1 Uncapacitated Facility Location (UFL)
Raise your words, not voice. It is rain that grows flowers, not thunder. Rumi

Carta-a-uma-mae
Don't watch the clock, do what it does. Keep Going. Sam Levenson

Idea Transcript


WEIGHTED RESIDUAL METHOD

1

INTRODUCTION • Direct stiffness method is limited for simple 1D problems • PMPE is limited to potential problems • FEM can be applied to many engineering problems that are governed by a differential equation • Need systematic approaches to generate FE equations – Weighted residual method – Energy method

• Ordinary differential equation (second-order (second order or fourth-order) fourth order) can be solved using the weighted residual method, in particular using Galerkin method

2

EXACT VS. APPROXIMATE SOLUTION • Exact solution – Boundary value problem: differential equation + boundary conditions – Displacements in a uniaxial bar subject to a distributed force p(x) d 2u + p( x ) = 0, 0 ≤ x ≤ 1 dx 2 u(0) = 0 ⎫ ⎪ ⎪ ⎪ Boundary conditions ⎬ du (1) = 1⎪ ⎪ ⎪ dx ⎭ – Essential BC: The solution value at a point is prescribed (displacement or kinematic BC) – Natural BC: The derivative is given at a point (stress BC) – Exact E t solution l ti u(x): ( ) twice t i differential diff ti l function f ti – In general, it is difficult to find the exact solution when the domain and/or boundary conditions are complicated – Sometimes the solution may not exists even if the problem is well defined 3

EXACT VS. APPROXIMATE SOLUTION cont. • Approximate solution – It satisfies the essential BC, but not natural BC – The approximate solution may not satisfy the DE exactly – Residual: d 2u + p( x ) = R ( x ) dx 2 – Want to minimize the residual by y multiplying p y g with a weight g W and integrate over the domain 1

∫0 R( x )W ( x )dx = 0

Weight function

– If it satisfies for any W(x), then R(x) will approaches zero, and the approximate solution will approach the exact solution – Depending on choice of W(x): least square error method, method collocation method, Petrov-Galerkin method, and Galerkin method

4

GALERKIN METHOD • Approximate solution is a linear combination of trial functions N

u( x ) = ∑ ci φi ( x )

Trial function

i =1

– Accuracy depends on the choice of trial functions – The approximate solution must satisfy the essential BC

• Galerkin G l ki method th d – Use N trial functions for weight functions 1

0 ∫0 R( x )φi ( x )ddx = 0,

i =1 1,…, N

1⎛ d 2u

⎞⎟ ⎜⎜ + p ( x ) ⎟⎟φi ( x )dx = 0, i = 1,…, N ∫0 ⎜⎝ dx 2 ⎠ 1 d 2u

1

∫0 dx 2 φi ( x )dx = −∫0 p( x )φi ( x )dx,

i = 1, 1 …, N 5

GALERKIN METHOD cont. • Galerkin method cont cont. – Integration-by-parts: reduce the order of differentiation in u(x)

du φ dx i

1 0

−∫

1 du d dφ φi

0

dx dx

1

dx = −∫ p( x )φi ( x )dx, i = 1,…,N 0

– Apply Appl natural nat ral BC and rearrange 1 dφ i

∫0

du dx = dx d d dx

du

1

du

∫0 p( x )φi ( x )dx + ddx ((1))φi ((1)) − ddx ((0))φi ((0),),

i = 1,,…, N

– Same order of differentiation for both trial function and approx. solution – Substitute S b tit t the th approximate i t solution l ti 1 dφ i

∫0

N

c dx ∑ j j =1

dφ j dx = dx

1

du

du

∫0 p( x )φi ( x )dx + dx (1)φi (1) − dx (0)φi (0),

i = 1,…, N

6

GALERKIN METHOD cont. • Galerkin method cont cont. – Write in matrix form N

∑ Kij c j = Fi ,

[K] {c} = {F}

i = 1,…, N

( N×N )( N×1)

j =1

K ij =

Fi =

1

∫0

( N×1)

d φi d φ j dx dx dx

du

1

du

((1))φi ((1)) − ((0))φi (0) ( ) ∫0 p( x )φi ( x )dx + dx d d dx

– Coefficient matrix is symmetric; Kij = Kji – N equations with N unknown coefficients

7

EXAMPLE1 • Differential equation

Trial functions

2

d u + 1 = 0,0 ≤ x ≤ 1 dx 2 u(0) = 0 ⎪⎫ ⎪ ⎪ ⎬ Boundary conditions du (1) = 1⎪ ⎪ ⎪ dx ⎭

φ1( x ) = x

φ1′( x ) = 1

φ2 ( x ) = x 2

φ2′ ( x ) = 2 x

• Approximate solution (satisfies the essential BC) 2

u( x ) = ∑ ci φi ( x ) = c1x + c2 x 2 i=1

• Coefficient matrix and RHS vector 1

K11 = ∫ ( φ1′ ) dx = 1 2

0

1

K12 = K21 = ∫ ( φ1′φ2′ ) dx = 1 0

1

2 K22 = ∫ ( φ2′ ) dx = 0

4 3

1

du

3

F1 =

∫0 φ1( x )dx + φ1(1) − dx (0)φ1(0) = 2

F2 =

∫0 φ2 ( x )dx + φ2 (1) − dx (0)φ2 (0) = 3

1

du

4

8

EXAMPLE1 cont. • Matrix equation 1 ⎡3 3⎤ ⎥ [K ] = ⎢ 3 ⎢⎣ 3 4 ⎥⎦

{F} =

⎧ ⎪ 2 ⎫ ⎪ {c } = [K ]− 1 {F } = ⎪ ⎨ 1⎪ ⎬ ⎪ ⎪− 2 ⎪ ⎪ ⎩ ⎭

1 ⎪⎧ 9 ⎪⎫ ⎨ ⎬ 6 ⎪⎩⎪ 8 ⎪⎭⎪

• Approximate solution u( x ) = 2 x −

x2 2

– Approximate solution is also the exact solution because the linear combination of the trial functions can represent the exact solution

9

EXAMPLE2 • Differential equation

Trial functions

2

d u + x = 0, 0 ≤ x ≤1 dx 2 u(0) = 0 ⎪⎫ ⎪ ⎪ ⎬ Boundary conditions du (1) = 1⎪ ⎪ ⎪ dx ⎭

φ1( x ) = x

φ1′( x ) = 1

φ2 ( x ) = x 2

φ2′ ( x ) = 2 x

1 ⎧ 16 ⎫

⎪ ⎪ • Coefficient matrix is same, force vector: {F} = 12 ⎨⎪15 ⎬⎪ ⎩⎪

{c } = [K ]− 1 {F } =

⎧⎪ 19 ⎫⎪ ⎪⎨ 12 ⎪⎬ ⎪⎩⎪ − 41 ⎪⎭⎪

u( x ) =

⎭⎪

19 x2 x− 12 4

• Exact solution u( x ) =

3 x3 x− 2 6

– The trial functions cannot express p the exact solution;; thus,, approximate solution is different from the exact one 10

EXAMPLE2 cont. • Approximation is good for u(x), u(x) but not good for du/dx 1.6 1.4

u(x), du/dx u

1.2 1.0 0.8 06 0.6 0.4 0.2 0.0 0

0.2

u-exactt

u-approx.

0.4

x

0.6

d /d ((exact) du/dx t)

0.8

1

d /d ((approx.)) du/dx

11

HIGHER-ORDER DIFFERENTIAL EQUATIONS • Fourth-order Fourth order differential equation d 4w − p( x ) = 0, dx 4

0≤x≤L

– Beam bending under pressure load

• Approximate solution N

w (0) = 0 ⎫⎪ ⎪⎪ ⎬ Essential BC dw (0) = 0 ⎪⎪ ⎪⎭ dx 2 ⎫⎪ d w (L ) = M ⎪⎪ 2 ⎪⎪ dx ⎬ Natural BC ⎪⎪ d 3w L V ( ) = − ⎪ dx 3 ⎭⎪⎪

w ( x ) = ∑ ci φi ( x ) i =1

• Weighted W i ht d residual id l equation ti (G (Galerkin l ki method) th d) L ⎛ d 4w



∫0 ⎝⎜⎜⎜ dx 4 − p( x ) ⎠⎟⎟⎟φi ( x )dx = 0,

i = 1,…, N

– In order to make the order of differentiation same, integration-by-parts must be done twice

12

HIGHER-ORDER DE cont. • After integration-by-parts integration by parts twice d 3w φi dx 3

L

0

d 2w d φi − 2 dx dx

d 2φi dx = dx 2 dx 2

L d 2w

∫0

L

+∫

d 2φi dx = dx 2 dx 2

L d 2w

0

0

L

∫0

L

∫0

d 3w p( x )φi ( x )dx − 3 φi dx

L

0

p( x )φi ( x )dx, i = 1,…, N

d 2w d φi + 2 dx dx

L

, i = 1,…, N 0

• Substitute approximate solution L

∫0

d 2φ j d 2φi dx = ∑ c j dx d 2 d dx 2 j =1 N

L

∫0

d 3w p( x )φi ( x )dx − 3 φi d dx

L

0

d 2w d φi + 2 d d dx dx

L

, i = 1,…, N 0

– Do not substitute the approx. solution in the boundary terms

• Matrix form [K] {c} = {F}

N×N N×1

L d 2φ i 2 0

Kij = ∫

N×1

Fi = ∫

L

0

d 2φj

dx

dx 2

dx

d 3w p( x )φi ( x )dx − 3 φi dx

L

0

d 2w dφi + 2 dx dx

L

0

13

EXMAPLE dw (0) = 0 dx d 2w d 3w = (1) 2 (1) = −1 dx 2 dx 3

• Fourth-order Fourth order DE d 4w − 1 = 0, dx 4

w (0) = 0

0≤x≤L

• Two trial functions φ1 = x 2, φ2 = x 3

φ1′′ = 2, 2 φ2′′ = 6x

• Coefficient matrix K11 =

1

∫0 ( φ1′′)

K12 = K 21 = K 22 =

1

2

dx = 4 1

∫0 ( φ1′′φ2′′ ) dx = 6

∫0 ( φ2′′ )

2

⎡4 6 ⎤ ⎥ [K ] = ⎢ ⎢⎣ 6 12 ⎥⎦

dx = 12

14

EXAMPLE cont. • RHS F1 = F2 =

1

∫0

d 3w (0) d 2w (0) 16 ′ ′(0) = (0) M (1) φ + φ − φ 1 1 1 3 dx 3 dx 2

x 2dx + V φ1(1) +

1

∫0

x 3dx + V φ2 (1) +

d 3w (0) d 2w (0) 29 ′ (0) M (1) φ + φ − φ2′ (0) = 2 2 3 2 4 dx dx

• Approximate solution ⎧ 41 ⎪ ⎫ ⎪ {c} = [K ]−1 {F} = ⎪ ⎨ 241 ⎪ ⎬ ⎪⎩ ⎪ − 4 ⎪⎭ ⎪

w(x) =

41 2 1 3 x − x 24 4

• Exact solution w(x) =

1 4 1 3 7 2 x − x + x 24 3 4

15

EXAMPLE cont. 4 3

w'', w''

2 1 0 -1 -2 -3 3 0 w'' (exact)

0.2

0.4 w'' (approx.)

x

0.6 w''' (exact)

0.8

1 w''' (approx.)

16

FINITE ELEMENT APPROXIMATION • Domain Discretization – Weighted residual method is still difficult to obtain the trial functions that satisfy the essential BC – FEM is i to t divide di id th the entire ti d domain i iinto t a sett off simple i l sub-domains bd i (finite element) and share nodes with adjacent elements – Within a finite element, the solution is approximated in a simple polynomial l i l form f u(x)

Approximate solution x Finite elements

Analytical solution

– Wh When more number b off finite fi it elements l t are used, d th the approximated i t d piecewise linear solution may converge to the analytical solution 17

FINITE ELEMENT METHOD cont. • Types of finite elements

1D

2D

3D

• Variational equation is imposed on each element. 1

∫0

dx =

0.1

∫0

dx + ∫

0.2

01 0.1

dx +

+∫

1

0 0.9 9

dx

One element

18

TRIAL SOLUTION – Solution within an element is approximated using simple polynomials polynomials. 1 1

2 2

n

n−1 3

n−1

xi

n

n+1

xi+1 i

– i-th element is composed of two nodes: xi and xi+1. Since two unknowns are involved,, linear polynomial p y can be used: u ( x ) = a0 + a1x,

xi ≤ x ≤ xi +1

– The unknown coefficients, coefficients a0 and a1, will be expressed in terms of nodal solutions u(xi) and u(xi+1).

19

TRIAL SOLUTION cont. – Substitute two nodal values

⎧ u( xi ) = ui = a0 + a1xi ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ u( xi +1) = ui +1 = a0 + a1xi +1 – Express a0 and a1 in terms of ui and ui+1. Then, the solution is approximated by

u( x ) =

xi +1 − x x−x ui + ( i ) i ui +1 (i ) L L Ni ( x )

Ni +1( x )

– Solution for i-th element: u ( x ) = Ni ( x )ui + Ni +1( x )ui +1,

– Ni(x) and Ni+1(x): Shape

xi ≤ x ≤ xi +1

Function or Interpolation Function 20

TRIAL SOLUTION cont. • Observations – Solution u(x) is interpolated using its nodal values ui and ui+1. – Ni(x) = 1 at node xi, and =0 at node xi+1. Ni(x)

Ni+1(x)

xi

xi+1

– The solution is approximated by piecewise linear polynomial and its gradient is constant within an element element. u

ui+2 ui

xi

ui+1 xi+1

du dx

xi

xi+2

xi+1

xi+2

– Stress and strain (derivative) are often averaged at the node. 21

GALERKIN METHOD • Relation between interpolation functions and trial functions – 1D problem with linear interpolation

ND

u( x ) = ∑ ui φi ( x ) i =1

⎧ 0, 0 ≤ x ≤ xi −1 ⎪ ⎪ ⎪ ⎪ ( i −1) x−x ⎪ Ni ( x ) = ( i −1)i −1 , xi −1 < x ≤ xi ⎪ ⎪ L φi ( x ) = ⎪ ⎨ ⎪ xi +1 − x (i ) ⎪ , xi < x ≤ xi +1 ⎪⎪ Ni ( x ) = L( i ) ⎪ ⎪ ⎪ xi +1 < x ≤ xND ⎪ ⎩ 0,

– Difference: the interpolation function does not exist in the entire domain but it exists only in elements connected to the node domain,

• Derivative ⎧⎪ 0, ⎪⎪ ⎪⎪ 1 , ⎪ d φi ( x ) ⎪⎪ L( i −1) =⎨ dx ⎪⎪ 1 ⎪⎪ − ( i ) , ⎪⎪ L ⎪⎪⎩ 0,

0 ≤ x ≤ xi −1

1 φi (x )

( i −1 )

xi −1 < x ≤ xi 1/ L

x i −2

xi < x ≤ xi +1 −1/ L( i ) xi +1 < x ≤ xND

x i −1

xi

x i +1

d φi (x ) dx 22

EXAMPLE • Solve using two equal equal-length length elements u (0) = 0 ⎫ ⎪ ⎪ ⎪ ⎬ Boundary conditions du (1) = 1⎪ ⎪ ⎪ dx ⎭

d 2u + 1 = 0,0 ≤ x ≤ 1 dx 2

• Three nodes at x = 0, 0.5, 1.0; displ at nodes = u1, u2, u3 • Approximate solution u( x ) = u1φ1( x ) + u2φ2 ( x ) + u3φ3 ( x ) ⎧1 − 2 x, 0 ≤ x ≤ 0.5 φ1( x ) = ⎪ ⎨ ⎪ 0.5 < x ≤ 1 ⎪ ⎩ 0, ⎧ 0 ≤ x ≤ 0.5 ⎪ 0, φ3 ( x ) = ⎨ 0.5 < x ≤ 1 ⎪ ⎩⎪ −1 + 2 x,

⎧ 2 x, 0 ≤ x ≤ 0.5 φ2 ( x ) = ⎪⎨ ⎪⎪⎩ 2 − 2 x, 0.5 < x ≤ 1 1

φ_1 φ_2 φ_3

φ 0.5

0 0

0.5

x

1

23

EXAMPLE cont. • Derivatives of interpolation functions 0 ≤ x ≤ 0.5 d φ1( x ) ⎧ ⎪ −2, =⎨ dx ⎪ ⎪⎩ 0, 0.5 < x ≤ 1 ⎧ 0, 0 ≤ x ≤ 0.5 d φ3 ( x ) ⎪ =⎨ dx ⎪ ⎪ ⎩ 2, 0.5 < x ≤ 1

d φ2 ( x ) ⎧⎪ 2, 0 ≤ x ≤ 0.5 =⎨ dx ⎪⎪⎩ −2, 0.5 < x ≤ 1

• Coefficient matrix 0.5 1 d φ1 d φ2 dx ( 2)(2) )( ) dx ((0)( )(−2))dx = −2 = − + ∫0 dx dx ∫0 ∫0.5 05 1 dφ dφ 0.5 1 2 2 =∫ dx = ∫ 4dx + ∫ 4dx = 4 0 dx dx 0 0.5 1

K12 = K 22

• RHS 0.5

F1 =

∫0

F2 =

∫0

1

1× (1− 2 x )dx + ∫ 1× (0)dx + 0.5

0.5

2 xdx + ∫

1

0.5

(2 − 2 x )dx +

du du du (1)φ1(1) − (0)φ1(0) = 0.25 − (0) dx dx dx

du du (1)φ2 (1) − (0)φ2 (0) = 0.5 dx dx 24

EXAMPLE cont. • Matrix equation ⎡ 2 −2 0 ⎤ ⎧⎪ u1 ⎫⎪ ⎧⎪ F1 ⎫⎪ ⎪⎪ ⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎪ ⎢ −2 4 −2 ⎥ ⎪ ⎨ u2 ⎬ = ⎨ 0.5 ⎬ ⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎢⎣ 0 −2 2 ⎥⎦ ⎩⎪ ⎪ u3 ⎭⎪ ⎪ ⎩⎪ ⎪1.25 ⎭⎪⎪

Consider it as unknown

• Striking the 1st row and striking the 1st column (BC) ⎡ 4 −2 ⎤ ⎧⎪ u2 ⎫⎪ ⎧⎪ 0.5 ⎫⎪ ⎢ ⎥⎨ ⎬ = ⎨ ⎬ ⎢⎣ −2 2 ⎥⎦ ⎪⎩⎪ u3 ⎪⎪⎭ ⎩⎪⎪1.25 ⎭⎪⎪

• Solve for u2 = 0.875, u3 = 1.5 • Approximate solution ⎧1.75 1 75 x, ⎪ u( x ) = ⎨ ⎪ ⎪ ⎩ 0.25 + 1.25 x,

0≤x ≤0 0.5 5 0.5 ≤ x ≤ 1

– Piecewise linear solution

25

EXAMPLE cont. 16 1.6

u(x)

1.2

0.8 u-exact

0.4

u-approx.

0 0

0.2

0.4

x

0.6

0.8

1

2

1.5 du/dx x

• Solution comparison • Approx. solution has about 8% error • Derivative shows a large discrepancy • Approx. A derivative d i ti iis constant as the solution is piecewise linear p

1 du/dx (exact)

0.5

du/dx (approx.)

0 0

0.2

0.4

x

0.6

0.8

1

26

FORMAL PROCEDURE • Galerkin method is still not general enough for computer code • Apply Galerkin method to one element (e) at a time • Introduce a local coordinate ξ=

x = xi (1 − ξ ) + x j ξ

x − xi x−x = (e ) i x j − xi L

• Approximate solution within the element N 1(ξ) N 2 (ξ)

u( x ) = ui N1( x ) + u j N2 ( x )

N1(ξ ) = (1− ξ )

Element e

N2 (ξ ) = ξ

xi

⎛ x−x N1( x ) = ⎜⎜1 − ( e ) i ⎝ L N2 ( x ) =

⎞⎟ ⎠⎟⎟

x − xi L( e )

dN1 dN1 d ξ 1 = = − (e ) dx d ξ dx L dN2 dN2 d ξ 1 = = + (e ) dx d ξ dx L

ξ

xj

L(e )

27

FORMAL PROCEDURE cont. • Interpolation property N1( xi ) = 1, N1( x j ) = 0 N2 ( xi ) = 0,, N2 ( x j ) = 1

u( xi ) = ui u( x j ) = u j

• Derivative of approx. solution du dN1 dN2 + uj = ui dx dx dx ⎧ u1 ⎪⎫ 1 ⎢ dN du ⎢ dN1 dN2 ⎥ ⎪ =⎢ ⎥ ⎨ ⎬ = (e ) ⎢ 1 dx ⎣⎢ dx dx ⎦⎥ ⎪ ⎪ u2 ⎪⎭⎪ L ⎢⎣ d ξ ⎩

⎧ u1 ⎪ ⎫ dN2 ⎥ ⎪ ⎥⎨ ⎬ d ξ ⎦⎥ ⎪ ⎪ u2 ⎪ ⎪ ⎩ ⎭

• Apply Galerkin method in the element level xj

∫x

i

dNi du dx = dx dx

xj

∫x

i

p( x )Ni ( x )dx +

du du ( x j )Ni ( x j ) − ( xi )Ni ( xi ), i = 1,2 dx dx

28

FORMAL PROCEDURE cont. • Change variable from x to ξ ⎢ dN1 ⎢ ⎣⎢ d ξ

1 1 dNi L( e ) ∫0 d ξ +

1 ⎧ u1 ⎫ dN2 ⎥ ⎥ d ξ i⎪⎨ ⎪⎬ = L( e ) ∫ p( x )Ni (ξ )d ξ 0 d ξ ⎦⎥ ⎪⎩⎪ u2 ⎪⎭⎪

du du ( x j )Ni (1) − ( x )N (0), i = 1,2 dx dx i i

– Do not use approximate solution for boundary terms

• Element-level matrix equation ⎧ du ⎫ d ⎪ ⎪ ⎪ − ( xi ) ⎪ ⎪ ⎪ dx (e ) (e ) (e ) ⎪ ⎪ [k ]{u } = { f } + ⎨ ⎬ ⎪ ⎪ du ⎪ + ( x j )⎪ ⎪ ⎪ ⎪ dx ⎪ d ⎩ ⎭

1 ⎧ ⎪ N (ξ ) ⎫⎪ {f (e ) } = L(e ) ∫ p( x )⎨ 1 ⎬ d ξ 0 ⎪ ⎪ N2 (ξ ) ⎪⎭⎪ ⎩

⎡ ⎛ dN ⎞2 ⎢ ⎜ 1 ⎟⎟ 1⎢ ⎜ ⎝ d ξ ⎟⎠ 1 ⎡ k( e ) ⎤ = ⎢ ⎣ ⎦ L( e ) ∫0 ⎢ 2×2 ⎢ dN2 dN1 ⎢ dξ dξ ⎣

dN1 dN2 ⎤⎥ ⎡ 1 −1⎤ dξ dξ ⎥ ⎥ dξ = 1 ⎢ ⎥ (e ) ⎢ 2 ⎥ ⎥ 1 1 − L ⎣ ⎦ ⎛ dN2 ⎞⎟ ⎥ ⎜ ⎜⎝ d ξ ⎟⎟⎠ ⎥⎦ 29

FORMAL PROCEDURE cont. • Need to derive the element element-level level equation for all elements • Consider Elements 1 and 2 (connected at Node 2) ⎧ ⎫ du ⎪ ⎪ (1) ⎪ ⎪ − ( x ) 1 ⎡ k11 k12 ⎤ (1) ⎧ ⎪ ⎪ ⎫ ⎧ ⎫ u1 ⎪ ⎪ f1 ⎪ ⎪ dx ⎪⎬ ⎢ ⎥ ⎨ ⎬ = ⎨ ⎬ + ⎪⎨ ⎢⎣ k21 k22 ⎥⎦ ⎪ ⎪⎪ du ⎪ ⎪ u2 ⎪ ⎪ ⎪ f2 ⎪ ⎪ ⎩ ⎭ ⎪ ⎩ ⎭ ⎪⎪ + ( x2 ) ⎪⎪⎪ ⎩ dx ⎭ ⎧ ⎫ du ⎪ ⎪ (2) ⎪ ⎪ − ( x ) 2 ⎡ k11 k12 ⎤ (2) ⎧ ⎪ ⎪ ⎫ ⎧ ⎫ u2 ⎪ ⎪ f2 ⎪ ⎪ dx ⎪⎬ ⎢ ⎥ ⎨ ⎬ = ⎨ ⎬ + ⎪⎨ ⎢⎣ k21 k22 ⎦⎥ ⎩ ⎪ ⎪ ⎪ ⎪ ⎪ u f du ⎪ 3⎭ ⎪ ⎩ ⎪ 3⎭ ⎪ ⎪⎪ + ( x ) ⎪⎪⎪ ⎪ dx 3 ⎭ ⎪ ⎩

• Assembly ⎡ k (1) ⎢ 11 ⎢ k (1) ⎢ 21 ⎢ ⎢ ⎣ 0

(1) k12 (1) (2) k22 + k11 (2) k21

Vanished ⎧ ⎫ du ⎪ ⎪ (1) ⎪⎪⎫ ⎪⎪ − dx ( x1 ) ⎪⎪ unknown term 0 ⎤⎥ ⎪ ⎧ u1 ⎪⎫ ⎧⎪⎪ f1 ⎪⎪ ⎪ ⎪⎪ ⎪⎪ (1) ⎪ ⎪⎪⎪ (2) ⎥ ⎪ (2) ⎪ k12 u f f 0 = + + ⎨2 ⎨ ⎬⎪ 2⎬ ⎥⎨ 2 ⎬ ⎪ ⎪⎪ ⎪⎪ ⎪ ⎪ ⎪⎪⎪ (2) ⎥ ⎪ d u3 ⎪⎭ ⎪ f (2) ⎪⎪ ⎪⎪ du ⎥⎪ k22 ⎩ 3 ⎪⎭ ⎪⎪ ( x3 ) ⎪⎪ ⎦ ⎩⎪ ⎪⎩ dx ⎪⎭ 30

FORMAL PROCEDURE cont. • Assembly of NE elements (ND = NE + 1) ⎡ (1) ⎢ k11 ⎢ ⎢ k ((1)) ⎢ 21 ⎢ ⎢ 0 ⎢ ⎢ ⎢ ⎢ ⎢⎣ 0

(1) k12

0

(1) ( ) (2) ( ) k22 + k11

((2)) k12

(2) k221

(2) (2) + k11 k22

0

0



( NE ) k21

( ND×ND )

⎤ ⎧ du ⎫ ⎪ − ( x1 ) ⎪⎪ ⎪ ⎧⎪ f (1) ⎫ ⎪⎪ ⎪ 0 ⎥⎧ ⎫ 1 ⎪ ⎪ u ⎪ ⎪ dx ⎥⎪ 1 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ f ((1)) + f ((2)) ⎪⎪ ⎪ ⎪ 0 ⎥⎥ ⎪ 0 u2 ⎪ ⎪ 2 2 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎥ ⎪ ⎪ = ⎪ (2) ⎪ (3) ⎪+ ⎪ 0 ⎬ 0 ⎥ ⎨ u3 ⎬ ⎨ f3 + f3 ⎬ ⎨ ⎪ ⎪ ⎪ ⎪ ⎥⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎥⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎥⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ( NE ) ( NE ) ⎥ ⎪ du u ⎪ N⎭ ⎪ ⎪ ⎪ ⎪ f k22 ⎥ ⎩ ⎪ N ⎪ ⎪ + ( xN ) ⎪⎪ ⎩ ⎭ ⎪ dx ⎪ ( ND×1) ⎩ ⎭ ⎦ ( ND×1) ( ND×1)

[K ]{q} = {F}

• Coefficient matrix [K] is singular; it will become non-singular after applying boundary conditions

31

EXAMPLE • Use three equal equal-length length elements d 2u + x = 0, dx 2

0 ≤ x ≤1

u(0) = 0, u(1) = 0

• All elements have the same coefficient matrix 1 ⎡ 1 −1⎤ ⎡ 3 −3 ⎤ ⎡ k(e ) ⎤ = 1 2 3) ⎣ ⎦ 2×2 L( e ) ⎢⎢ −1 1 ⎥⎥ = ⎢⎢ −3 3 ⎥⎥ , (e = 1,2,3) ⎣ ⎦ ⎣ ⎦

• Change variable of p(x) = x to p(ξ): • RHS

p(ξ ) = xi (1 − ξ ) + x j ξ

1 1 ⎧⎪ N (ξ ) ⎫ ⎧ ⎪ ⎪1 − ξ ⎫ ⎪ {f (e ) } = L(e ) ∫ p( x ) ⎨ 1 ⎬ d ξ = L( e ) ∫ [ xi ( 1 − ξ ) + x j ξ ]⎨ ⎬dξ 0 0 ⎪⎪⎩ N2 (ξ ) ⎪ ⎪⎩ ⎪ ξ ⎪⎭ ⎪ ⎪⎭ ⎧ xi ⎫ xj ⎪ ⎪ ⎪ + ⎪ ⎪ 3 6⎪ ⎪ (e = 1,2,3) , , ) = L(e ) ⎨⎪ ⎬, ⎪⎪ xi ⎪ xj ⎪ ⎪⎪ + ⎪⎪ 3⎭ ⎩6 32

EXAMPLE cont. • RHS cont cont.

⎪⎪⎧ f1(1) ⎪⎪⎫ ⎫ 1 ⎪⎧ 1 ⎪ ⎨ (1) ⎬ = ⎨ ⎬, ⎪ ⎪ ⎪ f2 ⎪⎭ ⎪ 54 ⎪⎩⎪ 2 ⎪⎭ ⎩

• Assembly ⎡ 3 −3 ⎢ ⎢ −3 3 + 3 ⎢ ⎢ 0 −3 ⎢ ⎢⎣ 0 0

0 −3 3+3 −3

⎧ ⎪ f2(2) ⎪⎫ ⎪ ⎧4⎪ ⎫ 1⎪ ⎪ ⎨ (2) ⎬ = ⎨ ⎬, ⎪ 5 ⎪⎭ ⎪ ⎪⎪⎩ f3 ⎪⎪⎭ 54 ⎪⎩

⎪⎧ f3(3) ⎪⎪⎫ ⎧7⎪ ⎫ 1⎪ ⎪ ⎨ (3) ⎬ = ⎨ ⎬ ⎪ 8 ⎪⎭ ⎪ ⎪⎪⎩ f4 ⎪⎪⎭ 54 ⎪⎩

⎧⎪ 1 du ⎫⎪ ⎪⎪ − (0) ⎪⎪ ⎪⎪ 54 dx ⎪⎪ 0 ⎤ ⎪⎧ u1 ⎪⎫ ⎪ 2 ⎪ 4 ⎪ ⎥ ⎪⎪ ⎪⎪ ⎪ 0 ⎥ ⎪⎪ u2 ⎪⎪ ⎪⎪⎪ 54 + 54 ⎪⎪⎪ ⎥⎨ ⎬ = ⎨ ⎬ ⎪⎪ −3 ⎥ ⎪⎪ u3 ⎪⎪ ⎪⎪ 7 5 ⎥⎪ ⎪ ⎪ + ⎪ 3 ⎥⎦ ⎩⎪⎪ u4 ⎭⎪⎪ ⎪⎪ 54 54 ⎪⎪ ⎪⎪ 8 du ⎪⎪⎪ ⎪⎪ (1) + ⎩⎪ 54 dx ⎪⎭⎪

Element 1 Element 2 Element 3

• Apply boundary conditions

– Deleting 1st and 4th rows and columns ⎡ 6 −3 ⎤ ⎧ ⎪ u ⎫ 1 ⎧⎪ 1 ⎫ ⎢ ⎥⎨ 2 ⎪ ⎬= ⎨ ⎪ ⎬ ⎢⎣ −3 6 ⎥⎦ ⎩⎪ ⎪ u3 ⎭⎪ ⎪ 9 ⎪⎩⎪ 2 ⎪⎭⎪

u2 =

4 81

u3 =

5 81

33

EXAMPLE cont. • Approximate solution 1 3 1 2 ≤x≤ 3 3

0≤x≤

2 ≤ x ≤1 3

0.08

u-approx. u-exact u e act

0.06 u(x)

⎧⎪ 4 ⎪⎪ x, ⎪⎪ 27 ⎪⎪ 4 1⎛ 1⎞ u( x ) = ⎪⎨ + ⎜⎜ x − ⎟⎟⎟, 3⎠ ⎪⎪ 81 27 ⎝ ⎪⎪ 5 5⎛ 2⎞ ⎪⎪⎪ − ⎜⎜ x − ⎟⎟, 3⎠ ⎪⎩ 81 27 ⎝

0.04

0.02

0

• Exact solution u( x ) =

0

0.2

0.4

x

0.6

0.8

1

1 x (1 − x 2 ) 6

– Three element solutions are poor – Need more elements

34

CONVERGENCE • Weighted residual of 2m 2m-th th order DE has highest derivatives of order m • With exact arithmetic, the following is sufficient for convergence to true solution (φ) as mesh is refined: – Complete polynomials of at least order m inside element – Continuity C ti it across element l tb boundaries d i up tto d derivatives i ti of order m-1 – Element must be capable of representing exactly uniform φ and uniform derivatives up to order m-1. • Beam: 4-th order DE (m = 2) – – – –

Complete polynomials: v(x) = a0 + a1x + a2x2 + a3x3 Continuity on v(x) and dv(x)/dx across element boundaries Uniform v(x) ( ) = a0 Beam elements will converge Uniform derivative dv(x)/dx = a1 upon refinement 35

RIGID BODY MOTION • Rigid Ri id b body d motion ti ffor CST can llead d tto non zero strains! t i !

• Rigid body motion

⎧u⎫ ⎡a1 ⎨ ⎬=⎢ ⎩v⎭ ⎣a4

cosθ −1 sinθ

⎧1 ⎫ −sinθ ⎤⎪ ⎪ ⎨x⎬ cosθ −1⎦⎥⎪ ⎪ ⎩y⎭

∂u

• The normal strain ε x = ∂x = cosθ −1 ≠ 0 36

CONVERGENCE RATE Quadratic curve u=a+bx+cx2 modeled by linear FE ufe=a+(b+ch)x a (b ch)x

• Maximal error at mid-point D

uA + uC ch2 h2 '' eD = uD − uB = − uB = = u 2 4 8

• Maximal gradient error is maximal at ends

eA' =

uC − u A h − b = hc = u '' 2 h

• Error in function converges faster than in derivative! 37

QUADRATIC ELEMENT FOR CUBIC SOLUTION

• Exact solution

u = a + bx + cx 2 + dx 3 • Finite element approximation

1 3 ⎞ ⎛ ⎞ ⎛ u = a + ⎜ b − dh 2 ⎟ x + ⎜ c + dh ⎟ x 2 2 2 ⎠ ⎝ ⎠ ⎝ • Maximal errors 3dh3 h3 eD = − =− u' ' ' 64 128

and

dh2 h2 e =− = − u' ' ' 2 12 ' A

38

CONVERGENCE RATE • Useful to know convergence rate – Estimate how much to refine – Detect modeling crimes – Extrapolate

• Most studies just do series of refinements if anything

39

Smile Life

When life gives you a hundred reasons to cry, show life that you have a thousand reasons to smile

Get in touch

© Copyright 2015 - 2024 PDFFOX.COM - All rights reserved.