Wound Care CEU | Online Continuing Education Course [PDF]

Epithelial cells use granulation tissue as a surface to move along as they re-cover the wound. The regrowth (proliferati

4 downloads 42 Views 629KB Size

Recommend Stories


Continuing Education Guide PDF
The best time to plant a tree was 20 years ago. The second best time is now. Chinese Proverb

Microsoft Word 2016 Continuing Education Course
You have survived, EVERY SINGLE bad day so far. Anonymous

Microsoft Excel 2016 Continuing Education Course
When you do things from your soul, you feel a river moving in you, a joy. Rumi

Continuing Education
You can never cross the ocean unless you have the courage to lose sight of the shore. Andrè Gide

the new school continuing education course bulletin
The happiest people don't have the best of everything, they just make the best of everything. Anony

Continuing Education
If your life's work can be accomplished in your lifetime, you're not thinking big enough. Wes Jacks

Continuing Education
The best time to plant a tree was 20 years ago. The second best time is now. Chinese Proverb

Continuing Education
Raise your words, not voice. It is rain that grows flowers, not thunder. Rumi

ONLINE CONTINUING EDUCATION RESOURCES (Category 2B)
No amount of guilt can solve the past, and no amount of anxiety can change the future. Anonymous

continuing education
Don't watch the clock, do what it does. Keep Going. Sam Levenson

Idea Transcript


Wound Care Online Continuing Education Course

Course Price: $45.00

Course Description Wound Care CEU. 8 contact hour continuing education course for nurses and other healthcare practitioners on wound assessment, treatment, and management for patients with acute and chronic wounds in various clinical settings. Bestseller!

Contact Hours: 8

Copyright © 2016 Wild Iris Medical Education, Inc. All Rights Reserved.

BY: Maryam K. Mamou, BSN, RN, CWOCN (authors.php#139); Michael Jay Katz, MD, PhD (authors.php#60)

LEARNING OUTCOME AND OBJECTIVES: Upon completion of this continuing education course, you will demonstrate an understanding of wound assessment and management for patients with acute and chronic wounds in various clinical settings. Specific learning objectives include: Discuss the types of wounds and the wound healing process, including the phases of wound healing. Describe the steps in treating acute wounds. List the complications associated with chronic wounds. Explain what is included in a detailed wound assessment. Summarize the various wound cleansing techniques and dressing options. Recognize the signs and symptoms of wound infection. Identify impediments to wound healing. Summarize wound care for specific types of wounds and special populations. Describe advanced wound care treatment modalities. Review patient and caregiver wound care education.

INTRODUCTION The skin is the largest organ in the human body, comprising approximately 15% of total adult body weight. The skin maintains our internal environment while protecting us from the external environment. It allows us to experience a wide range of stimuli, from pleasure to pain. A break in the continuity of the skin surface is the first step in the formation of a wound and provides a potential portal of entry for infection. A wound can be as simple as a surface abrasion, or it can be an extensive, life-threatening destruction of tissue that reaches down to and includes the internal organs of the body. While the healing process is basically the same for all wounds, there are many extenuating factors that will either expedite or impede healing. Wound care does not belong to any one healthcare profession. Successful outcomes are achieved when an interdisciplinary team approach is used, calling on the expertise of many different clinicians and employing many different treatment modalities—from simple dressings to advanced treatments such as negative-pressure wound therapy and hyperbaric oxygen therapy. Clinicians encounter wounds in every healthcare setting, from the penetrating gunshot wound that is rushed to the ER, to acute and chronic wounds that need to be treated in the acute care hospital setting, outpatient clinics, nursing homes, hospice care, and in-home care. Over 7.5 million people in the United States currently have a chronic wound, and as the population ages with a concurrent increase in chronic health conditions, this number is set to increase (Krasner, 2014). For instance, in the United States diabetes is the number one cause of nontraumatic lower extremity amputations, accounting for approximately 80,000 cases each year, and nearly 85% of all lower extremity amputations in patients with diabetes are preceded by a foot ulcer. Aggressive wound care is a critical part of limb salvage programs (Armstrong & Lavery, 2010). Overall, it is estimated that chronic wound care costs run at around $20 billion annually, and healthcare clinicians are called upon to provide cost-effective, state-of-the-art care to increasingly complex wounds.

ANCIENT WOUND CARE Wound care can be traced back to the earliest civilizations. The ancient Greeks were among the first to highlight the importance of wound cleansing. They washed wounds with clean water, which was frequently boiled first; they used vinegar and wine as cleansing agents. The Egyptians are thought to have been the first people who applied honey to wounds. Their wound dressings, which they referred to as “plasters,” were a composite of honey, grease, and lint. In the first known records of wound care in the Ebers Papyrus, dated 1534 BC, bleeding blood vessels were described as being “burnt with fire” (i.e., cauterized). One of the earliest descriptions of the “four cardinal signs of inflammation”—rubor, tumor, calor, et dolor (redness, swelling, heat, and pain)—came from the Romans. Source: Krasner, 2014; Shah, 2012.

SKIN—THE EXTERNAL BARRIER To properly understand the occurrence, continuation, and healing of wounds, it is necessary to first look at the skin. The skin is comprised of two layers: the epidermis, made up of four to five thin layers stacked on top of each other, and the dermis (often referred to as the “true skin”), a layer of connective tissue directly below the epidermis. Beneath the dermis is the subcutaneous tissue, which separates the skin from the underlying muscles, tendons, joints, and bones. Skin varies in thickness from less than one millimeter in the eyelids to greater than four millimeters on the soles of the feet.

The skin has two layers, the epidermis and the dermis, below which lies subcutaneous tissue. (Source: National Cancer Institute.)

Epidermis The deepest layer of the epidermis is known as the stratum basale or stratum germinativum. It is a layer of dividing, reproducing cells that migrate upward. As they travel, they differentiate and become filled with keratin, a tough, fibrous protein. The mature cells are pushed to the surface, where they die; thus, the outermost layer of the epidermis is made of flat, dead keratinocytes. The stratum basale also contains melanocytes, the cells responsible for producing melanin, the pigment that adds color to the skin and also protects against the damaging effects of ultraviolet light. Shallow wounds to the epidermis usually heal rapidly and without complications. Usual skin thickness is reestablished, and there is no scar formation.

Dermis The layer of skin directly beneath the epidermis is the dermis. A basement membrane separates these two layers. The dermis is mainly connective tissue and is therefore much stronger than the epidermis. The dermis varies in thickness across the surface of the body, but everywhere it is significantly thicker than the overlying epidermis. The dermis is itself made up of two layers: the papillary layer is directly beneath the epidermis, and the reticular layer is below that. The primary function of the papillary dermis is to supply nutrients to the epidermis. The reticular dermis contains fibroblasts cells, which synthesize the connective tissue proteins, collagen, and elastin. These cells are responsible for the strength and elasticity of the skin. The reticular layer of the dermis also contains macrophages, which are essential for wound healing, and mast cells, a key component of our immune system. The tissue of the dermis also contains small blood vessels, lymph vessels, nerves with their endings, and the smooth muscle fibers of hair follicles. Hair, nails, sweat glands, and sebaceous glands are sunken epidermal appendages that lie in deep valleys in the dermis surrounded by a row of germinative epidermal cells.

Subcutaneous Tissue Beneath the dermis is a layer of subcutaneous tissue containing fat. The thickness of the subcutaneous layer varies throughout the body. It is thickest along the anterior thigh and thinnest on the back of the hands. Besides fat cells, subcutaneous tissue contains blood vessels, lymph vessels, and nerves. The subcutaneous layer is held together by a continuous sheet of fibrous membrane that runs parallel to the surface of the skin. This membrane is called the superficial fascia. The subcutaneous tissue provides insulation to the body, and it is also important in pressure redistribution. Individuals with a thin layer of subcutaneous tissue and limited mobility are at high risk for the development of pressure ulcers. Those with excess subcutaneous tissue can have a harder time with wound healing since subcutaneous tissue is not well profused, and this in turn decreases the blood supply to the dermis and epidermis (Tortora & Derrickson, 2012). The subcutaneous tissue is a loosely organized compartment. When skin wounds extend deeper than the dermis, dirt is easily pushed into and spread within the subcutaneous tissue. This increases the risk of infection and requires that deep wounds be cleaned thoroughly. Beneath the subcutaneous tissue layer, structures (such as muscles and organs) are enclosed in their own separate connective tissue sheaths. The generic name for these sheaths is deep fasciae. Deep fasciae generally look off-white in fresh wounds. When treating a wound, tears in the deep fasciae are repaired whenever possible.

DEFINITIONS OF WOUNDS A wound is a break in the continuity of the skin surface that alters the normal functioning of the skin and the underlying structures (Beitz, 2015). Wounds can occur in otherwise healthy human beings at any stage in their lifespan. They can be as simple as a scrape or as a complex as a deep, lifethreatening wound affecting internal organs. Wounds affect millions of individuals, making it imperative to develop standard terminologies to define and classify wounds.

By Depth One way of classifying wounds is according to their depth and the amount of tissue destruction involved. The terms partial thickness and full thickness are used to describe wounds of varying depths. A wound that is limited to the epidermis and the dermis is a partial-thickness wound. A wound that extends beyond the dermal layers is considered a full-thickness wound.

By Time Another way to classify wounds is according to the length of time they have existed.

ACUTE WOUNDS Acute wounds happen suddenly and are normally related to trauma or injury. Such a traumatic wound is also often a mixture of types. Types of acute wounds are described below: Lacerations are tears. When made by a knife-like object, a laceration is a narrow, deep wound with sharp edges. When made by a blunt object, a laceration is a rip with jagged edges. Crushes or contusions are compression wounds. A crush wound bruises and damages the skin and the underlying tissue, although the skin can remain closed in some crush wounds. Punctures are narrow, deep wounds. Typically, punctures have small openings with sharp edges. Puncture wounds have a relatively high risk of infection. Avulsions are wounds in which tissue has been torn out. Sometimes, the avulsed tissue remains partly connected to its normal surroundings. Burns are wounds made by external destructive energy (e.g., heat) or by external chemicals (e.g., acid). First-degree burns are superficial and red. Second-degree wounds include damage to the dermis and produce blisters. Third-degree burns go deeper than the dermis and produce dry, dead tissue.

CHRONIC WOUNDS There are several definitions for a chronic wound. The Wound Healing Society (Cooper & Knighton, 1994) defines a chronic wound as “a wound that fails to progress through a normal, orderly, and timely sequence of repair or … pass[es] through the repair process without restoring anatomic and functional results.” The U.S. National Pressure Ulcer Advisory Panel and the European Pressure Ulcer Advisory Panel, in their 2009 clinical practice guideline Prevention and Treatment of Pressure Ulcers, defines a chronic wound as “a wound that does not proceed through the normal stages of healing but becomes stuck in one phase.” The underlying principle is that a chronic wound fails to progress through the normal sequence of wound healing in a timely manner and becomes stalled in one phase of healing, usually the inflammatory phase (Krasner, 2014). (See also “Phases of Healing” below.) Chronic wounds are also classified by the underlying causative factor or disease process and include pressure ulcers, diabetic ulcers, arterial and venous ulcers, and nonhealing palliative wounds. It is important to remember that all chronic wounds start out as acute wounds. A surgically dehisced wound is an example of an acute wound that develops into a chronic wound.

WOUND HEALING Wounds heal in one of two possible ways: regeneration or scar formation. In regeneration, the tissue that has been destroyed or damaged is replaced by tissue of the same type. This is the preferable way for wounds to heal because it preserves proper functioning of the injured site and its normal appearance. In scar formation healing, the lost tissue is replaced by fibrous scar tissue, which does not have the same properties as the original tissue and is unable to carry out the same functions (Doughty & McNichol, 2015). One of the main factors controlling how a wound heals is the depth of the wound. Shallow wounds that encompass only the epidermis and a portion of the dermis are capable of healing by regeneration because the damaged tissue can reproduce itself. However, with deeper wounds in which multiple tissue layers are involved, including subcutaneous tissue down to muscle, tendons, and bone structure, regeneration is not possible. These structures are unable to reproduce themselves, and the only option for healing is scar tissue formation.

Phases in Wound Healing The body has a sequential mechanism to heal acute wounds through regeneration. A noncomplicated surgical incision, for example, will go through the following healing process: Hemostasis A short inflammatory phase Proliferation Maturation

HEMOSTASIS Hemostasis begins immediately after a wound occurs, and it is initiated by blood coming in contact with the collagen in the tissues. This triggers what is called the clotting cascade. The purpose of hemostasis is to stop bleeding. Activated platelets in the wound bed release platelet-derived growth factors, which control and hasten the healing process. Activated platelets are also involved in creating the fibrin structure that leads to the formation of a fibrin clot, which stops the bleeding. This process of clot formation happens rapidly if there are no bleeding abnormalities. Individuals with an impaired clotting mechanism will experience an impaired healing process (Beitz, 2015). When larger blood vessels are severed in an acute wound, further measures to stop bleeding are usually needed, such as the application of manual pressure, cauterization, or suturing.

INFLAMMATION Once a clot is formed and bleeding ceases, the inflammatory phase begins. The inflammatory phase is a normal and essential part of wound healing that establishes a clean wound bed. The platelet-derived growth factors attract white blood cells to the wound. The first white blood cells on the scene—polymorphonuclear cells, also called neutrophils—are the initial line of defense; their function is to remove bacteria from the wound through enzymatic activity. The various biologically active molecules being released into the wound also hypersensitize the endings of local pain nerves, causing them to react to smaller amounts of chemical and mechanical irritation and thus making the wound site tender. Together, these processes produce local inflammation. The number and activity of the neutrophils decline as the inflammatory process continues, and by the third day of wound healing, macrophages are the predominant white blood cells in the wound. Macrophages are scavengers that continue to debride (or cleanse) the wound biologically by removing dead and dying bits of tissue, dirt, and bacteria. Macrophages, which are derived from tissue monocytes, are an essential component of the initial phases of wound healing. A decreased level of macrophage activity in the wound is associated with prolonged and delayed wound healing. Individuals with uncontrolled diabetes and diabetic wounds are noted to have low macrophage counts and difficulty with wound healing. Macrophages also release growth factors, chemicals that stimulate the growth of fibroblasts, endothelial cells, and epithelial cells, all of which quickly transitions the wound into the proliferative phase of healing

PROLIFERATIVE PHASE The next set of events in wound healing is the regenerative, or proliferative, phase. This phase begins when fibroblasts (the cells responsible for the synthesis of the new connective tissue) are attracted to the wound by growth factors and white blood cells. Fibroblasts are the only cells capable of synthesizing connective tissue, and it is important to note that they can be damaged by certain antiseptics. In acute wounds, collagen fiber production normally begins around the fifth day after injury. Collagen is a structural tissue protein found in various forms throughout the body. Collagen fibers are composed of the protein collagen, which is the most frequently occurring protein in the human body (Tortora & Derrickson, 2012). Collagen provides strength and support to connective tissue, and adequate collagen production is an essential part of tissue repair and wound healing. At the same time, new blood vessels are growing into the wound. Together, the newly forming cells, blood vessels, and loose extracellular matrix are called granulation tissue. Granulation tissue fills the base of an open wound. Healthy granulation tissue contains newly growing blood vessels and should be beefy red with a bumpy, uneven surface resembling velvet.

MATURATION Maturation, sometimes called remodeling, is the last stage of wound healing. This phase can last up to one year after the wound occurrence and is characterized by strengthening, defining, and debulking of the final scar tissue. A wound that heals without complications will achieve 80% of its normal tensile strength. “Tensile strength” refers to the skin’s ability to resist breakdown under tension, and it is a very important factor in maintaining normal skin integrity. It will never regain 100% tensile strength, something for clinicians to keep in mind with caring for patients with a healed wound, especially with healed pressure ulcers. This lack of regular tensile strength makes these areas more prone to further wound development. The above phases of wound healing are usually discussed as separate entities, but in realty, wound healing is an intricate process with overlapping phases.

THE HEALING PROCESS AND CHRONIC WOUNDS A chronic wound will not move through the healing process described above. Research into why this occurs includes the study of the molecular and cellular changes that happen in the conversion of an acute wound into a chronic one. These research findings are the basis for new and innovative therapies that seek to selectively correct the abnormalities that impede wound healing. Whereas acute wounds are found to have high levels of growth factors, these are markedly decreased in chronic wounds. One important discovery is that acute wounds that are subjected to frequent episodes of injury can evolve into chronic wounds. What has been discovered is that chronic wounds stall in the inflammatory phase of wound healing because of the presence of free-flowing (planktonic) bacteria in the wound and the formation of biofilm. Biofilm is a complex community of microorganisms that exist in a symbiotic relationship. Biofilms usually contain several different species of bacteria and fungi; they secrete an extracellular polymeric matrix, which surrounds the biofilm, and firmly attaches it to the surface of the wound. The symbiotic relationship between the bacteria in the biofilm allows their collective strength to create a formidable barrier to attack, and their densely packed matrix does not readily allow penetration by white cells and antibodies. Research has also found that the bacteria found in the center of the biofilm become dormant and produce no metabolic activity; this greatly increases their resistance to antibiotic therapy, since antibiotics attack actively dividing bacteria. This provides the biofilm with a high level of immunity to standard treatment that readily kills planktonic or free-flowing bacteria, and it presents one of the major challenges in chronic wound care—the eradication of biofilm and preventing it from regrouping. (Biofilms will be discussed in further detail later in this course.)

Scar Tissue Formation Scar tissue formation is one of the two ways of healing wounds, and all full-thickness wounds will form scars. There are noticeable differences between scar tissue and normal skin. There is less elasticity in scar tissue; it has fewer blood vessels, resulting in a decreased blood supply; and it appears lighter in tone than the surrounding skin. Scars are the natural patches produced in a healing wound. In the skin, scars are made of unspecialized fibrous tissue covered by a layer of epidermis (Habif, 2010). In the first few days after an injury, closed skin wounds are being knit weakly together by the forming scar tissue. By about day five, the basic architecture of the wound patch has been established, and from then on, the healing process consists largely of strengthening and remodeling the scar. Scars can take six to nine months to mature. New scars tend to be red and thick for a month or two before gradually becoming less vascular (i.e., paler), less bulky, and flat. It can take as long as five years for a scar to reach its final color.

MINIMIZING SCARS The width of the scar can be minimized by thorough debridement, by careful suturing (avoiding inversion of the skin edges), by removing excess granulation tissue, by good secondary wound care (especially by keeping the wound from becoming infected), and by removing sutures promptly.

PROBLEM SCARS Scars are a natural result of healthy healing, although scars are imperfect replacements for damaged tissue. Normal scars can lead to problems. Even under the best healing conditions, some normal scars may end up interfering with the movement of the skin and the underlying tissue. In addition, some normal scars are unsightly. When the healing situation is not ideal, scars are more likely to become problems. After poor healing, some scars become unnecessarily large or unnecessarily weak. For example: Infections, tissue necrosis, sebaceous skin, and wounds perpendicular to natural lines of minimal skin tension will all lead to scars that are larger than normal. If a wound reopens before it is effectively sealed (called dehiscence), the scar will be wider and usually weaker. If too few capillaries grow into the forming scar tissue, leading to ischemia, the scar will be very weak and may develop into an ulcer. The wound patching process may also go overboard and generate too many new cells or, more commonly, too much collagen in the scar. Such scars will enlarge and bulge from the wound. Scars built of too many cells (mainly fibroblasts) are called desmoids or aggressive fibromatoses. Scars built from too much collagen are either hypertrophic scars or keloids. When excessive scars form tight ridges along the skin and permanently interfere with normal movement, they are called contractures.

Keloids Keloids are benign tumors that grow beyond the bounds of a wound and do not regress. Keloids are caused by the excess deposition of collagen in a healing wound. The tendency to form keloids is genetic, and there are, at present, no preventive measures. Patients with darkly pigmented skin are particularly susceptible (Wolfram et al., 2009). Unlike hypertrophic scars (see below), keloids develop late in the healing process; they can show up months or even years after the injury. Keloids bulge out beyond the edges of the wound, and some keloids can get sizeable. Keloids that do not regress spontaneously are usually found on the upper half of the body

A keloid scar that developed from a skin wound along the edge of the jaw. The tendency to develop keloids is a genetic trait. (Source: Leonard C. Sperling, MD.)

Hypertrophic Scars Hypertrophic scars are caused by excess deposition of collagen fibers in a healing wound. This happens in burns, infected wounds, and wounds healing under tension. In hypertrophic scars, the excessive formation of collagen usually stops within a few weeks. The result is a scar that is thicker than normal and is raised above the plane of the skin; but unlike a keloid, a hypertrophic scar does not expand out beyond the actual wound. Hypertrophic scars, which usually get smaller spontaneously, can occur anywhere on the body. Hypertrophic scars are also produced in wounds that have a long reaction (inflammatory) healing phase and in which re-epithelialization has been delayed, such as in many burn wounds. For burn patients, continuous pressure (constant pressure lasting 6 to 12 months) can help to reshape and flatten hypertrophic scars. Specialized secondary pressure dressings are available for hypertrophic-susceptible and burned areas such as the face and hands.

Contractures All scars go through a process of shrinking or contracting. Enlarged scars, however, sometimes contract excessively, becoming disabling or disfiguring ridges of connective tissue called contractures (Kamolz et al., 2009). When contractures form over joints, the scars can make bending difficult or impossible. Disabling contractures most commonly form across finger joints, along the neck, across the axilla, and across the antecubital fossa. A contracture is a permanent fixture of the skin, and it cannot be repaired by stretching, massaging, or applying ointments, lotions, or creams. The most successful treatment for a contracture is to have it excised surgically. Early consultation with physical and/or occupational therapy can be an important step in the prevention of contractures during the wound healing process.

Types of Wound Closure Wound closure is described as: Primary closure (primary intention) Secondary closure (secondary intention) Tertiary closure (tertiary intention) In primary closure the layers of involved tissue are brought together and the wound edges are approximated and then surgically closed with either sutures or skin staples. Wounds closed by primary intention require only a limited amount of collagen to repair the tissue damage. Secondary wound closure occurs when wounds are left open after surgery. An example of this is an abdominal wound repaired to the level of the fascia with the remaining layers above this left open. These wounds fill in with new granulation tissue over a period of time, followed by wound contraction, and re-epithelialization. How long this takes depends on the overall condition of the patient and is affected by the presence of concomitant conditions such as cardiac disease and diabetes. Secondary wound closures tend to leave a larger scar. Other examples of wounds that heal by secondary intention are dehisced surgical wounds and pressure ulcers. Tertiary intention, or closure, combines primary and secondary intention wound repair. The wound is allowed to fill in with granulation tissue and is then surgically closed. Delayed primary closure is used for highly contaminated wounds that may need repeated debridement or may need to be treated with antibiotics before being closed.

A pressure sore healing by secondary wound closure. Periosteum of bone is visible in the left picture. Healthy granulation tissue covers the wound in the two middle pictures. Healing took several months. (Source: Charlie Goldberg, MD, © Regents of the University of California.)

The main factors determining whether a wound will be closed immediately by primary intention or left open to heal by secondary or tertiary intention is whether there is a high risk of infection and whether the degree of tissue loss is such that the wound edges cannot be easily approximated without putting undue tension on the incision line. The immediate primary closure of a wellcleansed wound protects it from new contamination and allows the most control over the size and appearance of the final scar. Wounds closed with sutures add new foci for infection (i.e., the suture holes), and sutures should not be left in place longer than is necessary. It is recommended that sutures be removed within one to two weeks after their placement. The following are optimal suture removal times for specific anatomic locations: Face: 3–5 days Scalp, chest, fingers, hand, lower extremity: 7–10 days Back, forearm, foot: 10–14 days (Whitney, 2016)

DEHISCED WOUNDS When a wound that has already been closed spontaneously re-opens, this is referred to as a dehisced wound. Incomplete dehiscence occurs when the skin edges separate but the deeper layers of tissue remain together. In complete dehiscence all layers of the wound separate, and this can extend down to and beyond the fascia. Source: Brindle & Creehan, 2015.

WOUND CARE TEAM Successful wound care is holistic in its approach and team based. The collaboration of the various team members enhances and expands the perspectives of the team, provides broad knowledge, and ensures that the patient receives the best possible care. A wound care team draws from the expertise of several disciplines and at a minimum will include a physician with specialized training in wound care, nursing, physical therapy, occupational therapy, dietitian, and case management/discharge planner. Depending on the type, severity, and location of the wound, the team may also include a general surgeon, plastic surgeon, podiatrist, foot and ankle specialist, CWOCN (certified wound ostomy continence nurse), and certified diabetes educator.

Certification Specialized certification in wound care is available for clinicians in different practice areas. The Wound Ostomy and Continence Nursing Certification Board (WOCNCB) offers the CWOCN credential to RNs who have a bachelor’s degree in nursing, have graduated from an accredited wound care program, and pass the required certification exams. If the clinician’s focus is entirely on wound care, there are programs that offer only wound care or wound and ostomy care. There is also an advanced practice certification for nurses who have completed an MSN or other graduate nursing degree. The National Alliance of Wound Care and Ostomy (NAWCO) also provides wound certification to a wide variety of healthcare professionals, including physicians, nurses, physical therapists, and occupational therapists. While certification is not required to work in wound care, it can be regarded as part of continuous professional development and a commitment to a life-long learning process. Certification demonstrates a level of expertise that enhances the professional standing of the clinician. Employers recognize and value the extra qualification, and it boosts the level of confidence patients have in the care they are receiving.

Team Member Functions Each member of the wound care team contributes unique skills and therapeutic interventions that complement each other and provide for a fully comprehensive approach to wound treatment and healing. Among team members, there are both overlapping and unique functions (Bryant & Nix, 2016):

PHYSICIAN Takes on the role of team leader Oversees the treatment plan Consults with the other team members Utilizes the services of other professionals as needed, such as general surgery, podiatrists, and orthotists Performs sharp surgical debridement when clinically indicated Evaluates the appropriate use of new treatments or procedures Applies bioengineered skin products to wounds as needed

PHYSICAL THERAPIST Completes wound assessments, sets goals, makes recommendations for treatment, and provides hands-on wound care Performs specialized wound treatments such as electrical stimulation to the wound bed, pulsed lavage, and sharp debridement Applies compression if necessary Administers negative-pressure wound therapy Assesses strength, sensation, bed mobility, and transfer ability Recommends assistive technology, including wheelchairs and wheelchair cushions Maintains range of motion in joints affected by a wound or in close proximity to a wound; maintains and improves overall strength Performs pressure mapping for patients at high risk for ulcer formation Teaches crutch walking to patients with contact casting (Aviles, 2014)

As with other licensed professions, state regulations define and limit any specialized training and the therapeutic interventions physical therapists are allowed to perform.

OCCUPATIONAL THERAPIST Evaluates the patient’s ability to maintain self-care Recommends a program of therapy to increase the patient’s capacity to perform activities of daily living Provides hands-on wound care and monitors the wound status Conducts conservative sharp debridement of devitalized wound tissue Administers negative-pressure wound therapy Constructs special splints and orthotic devices to protect areas that are healing and to prevent deformity Applies wound closure strips Removes sutures and wound closure strips Provides individualized therapeutic interventions Teaches the appropriate use of adaptive devices for self-care activities such as bathing, dressing, and meal preparation (many individuals with lower extremity wounds will need advice and help with a modified shower or bathing routine) (Amini, 2013)

As with other licensed professions, state regulations define and limit any specialized training and the therapeutic interventions occupational therapists are allowed to perform.

NURSING Performs a comprehensive assessment of the patient using the nursing process Completes a thorough wound assessment and documentation of findings Carries out local wound treatments Monitors the status of the wound Performs conservative sharp debridement of devitalized wound tissue Administers negative-pressure wound therapy Applies compression if needed Removes sutures Collaborates with other team members in the development of the patient treatment plan Helps to ensure that the plan of care is followed, reviewed, and adjusted as needed at regular intervals Advocates for the patient in voicing concerns about their care and having their questions addressed Helps to formulate the discharge plan and follow-up care for the patient As with other licensed professions, state regulations define and limit any specialized training and the therapeutic interventions nurses are allowed to perform.

STEPS IN TREATING ACUTE WOUNDS Depending on the level of injury involved, acute wounds are often medical emergencies. The most frequent causes of acute wounds are trauma related to: Motor vehicle accidents. Injuries to the driver of the vehicle, passengers, and pedestrians may result in wounds that reach from skin level down to the internal organs. Gunshots. These wounds often have extensive tissue damage that is not always evident at the time of injury. It may take several days for the full extent of the injury to become apparent. Agricultural and industrial accidents. Many of these injuries cause amputation or partial amputation of a limb and can result in highly contaminated wounds. Natural disasters. Severe weather conditions such as earthquakes, hurricanes, tornadoes, and freezing conditions can all lead to wounds from flying debris, crush injuries, or frost-bite. Animal bites. These range from a nip from the neighbor’s dog to a penetrating bite from a wild rodent. In all of these cases, infection from saliva is a serious concern.

Stabilization For individuals with acute wounds, the immediate concern is stabilization of the patient due to injuries that may be life threatening. Maintaining a patent airway, ventilation, and adequate circulation are the first considerations, along with controlling blood loss. Wound evaluation and cleaning will be done in conjunction with several other interventions that will be happening simultaneously, such as placement of intravenous lines and cardiac monitoring.

Wound History Once the patient is stable, obtaining a wound history is important (see also “Wound History” under “Assessing Chronic Wounds” later in this course). The most pertinent information is: How did the injury and wound occur? How much time has passed between the injury and treatment? This establishes how long the wound was exposed to possible contaminants; bacterial contamination and infection is a major concern in the treatment of acute traumatic wounds. What is the patient’s immunization status? When did the patient last have a tetanus booster vaccination? (Clostridium tetani is an anaerobic organism capable of causing serious infection in wounds that have been exposed to soil, feces, or saliva or wounds that result from crush injuries or frost bite.) Was there exposure to rabies? Was the wound caused by a bite by a wild animal or a domestic pet that has not been vaccinated against rabies?

Cleaning Trauma wounds need to be thoroughly cleaned of all debris and potentially infectious material removed. Depending on the size and depth of the wound, debridement and wound irrigation may need to be done in the operating room under anesthesia. Whether it is performed in the emergency department or in surgery, the aim of debridement is to establish a clean, healthy wound free of nonviable tissue and foreign particles.

Closing The risk for infection often determines whether an acute trauma wound is 1) closed by primary intention, 2) left open to granulate (grow new healthy tissue in the wound bed) in secondary intention healing, or 3) surgically closed at a later stage (tertiary intention). Primary closure is not the preferred route for trauma wounds; experts recommend leaving the wound open to heal by secondary intention. Primary closure is the best choice, however, for facial wounds and wounds where there is scant tissue loss.

ASSESSING CHRONIC WOUNDS Patient History The process begins with an overall patient history, which serves the dual purpose of clinical evaluation and establishing a therapeutic relationship with the patient. The optimum environment for a patient history is a quiet, comfortable, well-lit room. The overall history will include the following components:

HEALTH HISTORY Patient’s perception of their current state of wellness Diagnosed medical conditions and treatments Past health status Surgeries Injuries, accidents Disabilities and their impact on the patient’s life Current medications (including over-the-counter medications, supplements, and herbal remedies) Allergies (since several wound treatments contain substances that can cause an allergic reaction) Alcohol, tobacco, caffeine, and substance use, both past and present Family health history, including any possible genetic conditions, such as diabetes mellitus, heart disease, or circulatory conditions

SOCIAL HISTORY Employment, full-time or part-time. What amount of sitting, standing, and walking does the patient normally do during work activities? Recreational pursuits Family composition. Who are the patient’s main support system? Is there anyone the patient wants to be involved in providing assistance? Is anyone willing to learn wound care and help with dressing changes at home? Home environment. Does the patient live in a family home, rented accommodation, trailer home, or do they lack permanent accommodation? Health insurance. Does the patient have private insurance? The team social worker or case manager will need to verify what wound care benefits the patient’s insurance policy will cover and if there are any provisions for home care. All out-of-pocket expenses need to be discussed with the patient prior to the start of care. If the patient is on Medicare and/or Medicaid, prior authorization of some treatments may still be necessary. Patient’s education level. This is best obtained by asking the patient about the level of formal education they completed. What is the patient’s preferred choice for learning new material? Remind the patient that they can chose one of several options. Cultural or religious beliefs. Some wound care products contain substances that may not be allowed in certain religions, for example, dressings derived from pork.

PSYCHOLOGICAL HISTORY How does the patient rate their satisfaction with their life at the moment? Pay close attention not only to the words the patient uses but also to body language, facial expressions, eye contact, and general emotional effect (angry, depressed, sense of hopelessness). For example, “This wound is never going away; I’ll take it to the grave with me.” How has the patient coped in the past with illness and loss? Is the patient receiving treatment from a psychiatrist or a psychologist presently or in the past? Has the patient experienced chronic wounds in the past? For patients with diabetes and venous or arterial disease, recurrent wounds are a common phenomenon. How did the patient cope with such wounds? How do they perceive that the current wound is different? As a patient’s age and chronic health conditions (such as diabetes or COPD) take a toll on their stamina, a new wound can have a more debilitating effect on their lives than previous wounds. What are the patient’s beliefs on wound care and healing? Culture and background play an important role in everyone’s life, and many cultures have their own healing practices. At the assessment stage, respectful listening is essential, not dismissing the patient’s beliefs (e.g., “My grandmother always said that you have to leave a wound open to air for it to heal properly”). Current wound care practices can be discussed with the patient during the formulation of the treatment plan (e.g., “Nearly all grandmothers thought that way, since it was the accepted care for that time period”).

Wound History The wound history for a chronic wound is similar to that for an acute wound, although there are some differences. Questions may include: How did the wound occur? How long has it been present? There is a direct correlation between the length of time a wound has been open and its ability to heal; wounds of longer duration are less likely to heal. What treatments have been used and how successful have they been? What is the patient’s understanding and perceptions of the wound care they have received so far? What difficulties has the patient encountered in caring for the wound at home? Is there pain associated with the wound? When does it occur? What does the patient do to relieve the pain? Are they taking pain medications, and if so how effective are they? Have the patient describe the pain in their own words and then ask them to put a numerical value to their worst pain level and to the pain they are experiencing at that moment.

Wound Assessment A thorough physical examination of the wound is vital regardless of the etiology of the wound. Every wound assessment is important, but the initial assessment is particularly so. It is the baseline against which all future assessments will be compared, it provides the basis on which the treatment plan will be devised, and it serves as an important indicator in evaluating the outcomes of care. A wound assessment can be done by an RN, an advanced practice nurse, a physical therapist, or a physician with the required knowledge and experience in wound care. Each new assessment will be compared to the previous assessment and to the baseline assessment. It is imperative that changes in the wound, especially any subtle signs of deterioration, are caught and addressed immediately (Bryant & Nix, 2016; Bates-Jensen, 2015). The steps of wound assessment are described below:

LOCATION The clinician accurately describes the anatomical location of the wound, using identifiers such as proximal, distal, medial, lateral, anterior, posterior, right, left. Depending on facility protocols, diagrams can be useful in precisely identifying wound location.

SHAPE The shape of the wound can be useful in identifying the etiology of the wound. For example, chronic wounds on a lower extremity that are round and have what is called a “punched out” appearance are typically caused by problems with arterial circulation to the affected leg, while those that are irregular in shape are associated with venous disease.

SIZE Wounds are measured in centimeters using a disposable plastic or paper ruler. An accurate measurement of wound size on the initial assessment is essential. There are two techniques for measuring wounds, and which one is used depends on the policies of the facility. The first method uses the “face of the clock” and measures the length of the wound from 12 o’clock to 6 o’clock, basically straight up and down. The width of the wound is measured straight across from 3 o’clock to 9 o’clock. The second method of wound measurement uses the longest aspect of the wound (top to bottom) and the widest aspect perpendicular to the length. However, there is debate among clinicians as to which is the most accurate method. What is most important is to employ one method of wound measurement consistently over time, as this will best capture changes in the dimensions of the wound. The results of several studies show an important relationship between the degree of change in wound size at 4 weeks and the percentage of healing achieved at 12 and 20 weeks. The greater the percentage decrease in wound size at 4 weeks, the greater the possibility of complete wound healing.

DEPTH Wound depth is gauged by gently placing a sterile cotton-tipped applicator into the wound bed and marking at the point where it is even with the surface of the skin. It is important to keep in mind that many wounds will have areas of varying depth, and measurements may need to be taken at different locations. The deepest area of the wound is used to classify the actual depth.

UNDERMINING Undermining is an area under intact skin where the tissues have separated and there is a “shelf” present. It is not visible from the outside. The “face of the clock” method is typically used to describe the location of undermining. Starting at the top of the wound (toward the head, or the 12 o’clock location), a sterile cotton-tipped applicator is inserted to the full depth of the undermining and slowly moved in a clock-wise direction to determine how far the undermining extends. Measurements are documented in the following manner: “Undermining to a depth of 5 cm, extending from 12 o’clock to 3 o’clock, deepest at 2 o’clock = 5 cm.” Continue to gently probe along the entire wound edge to determine if there are other areas of undermining. Frequently, undermining will occur at different locations and to different depths and can be interspersed with areas of normal wound edges.

TUNNELING Unlike undermining, tunneling is a narrow channel (tunnel) that can be located anywhere along the wound edges or in the base of the wound. It is measured in the same way as undermining (described above). A newly discovered tunnel in a surgical wound or a trauma wound left open to heal by secondary or tertiary intention needs to be reported to the surgeon and not probed by the clinician until the surgeon has an opportunity to evaluate it.

WOUND BED A gentle cleansing with normal saline and gauze is usually sufficient prior to assessing the wound bed. The type and amount of tissue in the wound needs to be described accurately. If there is more than one type of tissue in the wound, this will be documented in approximate percentages, for example, “the wound base is 50% black necrotic tissue and 50% grayish/green slough.”

TISSUE TYPES Eschar is dead tissue, and it is usually associated with deeper tissue damage. It can be dry or moist, with the color ranging from black, brown, tan, yellow, or gray. It can be adherent to the wound bed like a leathery coat. It presents a medium for bacterial growth and impedes wound healing. In most instances it is debrided (removed) from the wound, however, there are exceptions to this rule (discussed later in this course). Slough is soft, moist, devitalized tissue present on the wound bed. In appearance it is a mucouslike, stringy, fibrin material with a yellowish/green color. It may crisscross the wound bed in a wiry pattern or be found in moist clumps at different locations in the wound bed. Slough is composed of cell debris, fibrin, intact leukocytes, microorganisms, and serous exudate (Bryant & Nix, 2016). The terms eschar and slough are both used to describe different levels of necrosis. Granulation is beefy-red tissue with a “cobblestone” appearance, comprised of small blood vessels and connective tissue. A distinction has to be made between a wound that is actively growing new tissue and one that has plateaued or stalled. The latter is characterized by pink, shiny smooth tissue and is no longer healing.

WOUND EDGES Assessment of the wound edges must not be overlooked. Wound edges should be clear and distinct from the wound bed as well as open and proliferative, which means that they are red, moist, and flexible. Wound edges must be open to facilitate the in-growth of new blood vessels and tissue in the wound bed and for the wound to contract and become smaller. Wound edges that are closed are a common finding in chronic wounds. These wound edges are thickened and rolled under and feel hard to the touch.

DRAINAGE In a dry wound, there is no drainage. A moist wound has sufficient drainage to keep the wound bed moist, which is critical for healing. However, a large volume of malodorous wound drainage is a sign of infection (Bates-Jensen, 2015). The following terms are used to describe wound drainage: Serous: Clear drainage with no blood or pus present Serosanguineous: Watery drainage that is pink to pale red in color Sanguineous: Bright red, blood drainage Purulent: Thick, cloudy drainage that varies in color from tan to dark brown (Krasner, 2014)

WOUND ODOR Odor is present in nearly all wounds. Wound odor can be described as faint, moderate, or strong (Nix, 2014a). Wound odor is usually associated with the amount of drainage in the wound, the presence or absence of necrotic tissue, and infective organisms. Necrotic wounds have a strong malodor, and wounds infected with Pseudomonas have a distinctive sweet, fruity smell (Krasner, 2014).

PERIWOUND SKIN The skin surfaces around the wound should be carefully assessed. Ideally, these areas should be clean, dry, and intact, indicating that they have not been adversely affected by the wound presence. Periwound skin can experience changes that may indicate the current wound treatment is not effective, the absorptive dressing is not preventing leakage of wound drainage onto the intact skin area, or the presence of infection or pressure. The color of the periwound area can be described as: Increased redness/erythema Pale/pallor White/gray Blue/purple The texture of the area can be: Dry/flaky Moist Indurated/hard Excoriated (linear scratch marks) Denuded (loss of epidermis) Boggy/soft to touch Macerated/water logged Periwound skin temperature can be assessed as: Normal (same temperature as skin surfaces not in the immediate wound area) Warm Hot Cool

Pain Assessment Pain assessment is a vital part of all wound care. Management of wound pain is individualized and takes into account patient preferences. When completing the pain assessment, the clinician considers the following elements: Location. Is the pain felt in the wound bed, the surrounding area, or both? Distribution. Is the pain localized or does it spread to other parts of the body? Patient’s description. How does the patient describe the pain in their own words? If they find it difficult to come up with descriptive terms, some terms can be offered, such as “aching,” “sharp,” “dull,” “throbbing,” or “pins and needles.” Intensity. A 0-to-10 scoring method is the most frequently used, in which 0 is no pain and 10 is the worst pain possible. Procedural and resting pain. Does the pain increase or decrease with wound care, and how long does it last after the procedure is completed? Management strategies. What interventions make the pain better or worse? This may include medications, relaxation techniques such as guided imagery, etc. (Bates-Jensen, 2015)

Wound Photography Photography can used to trace the progress of a wound and as an aid to written documentation. It is particularly useful in difficult-to-describe wounds such as those with irregular shapes, rolled wound edges, and involvement of the periwound areas. Some facilities choose to use photos and others don’t. The question arises, how often should photos of the wound be taken? The answer depends on individual facility policies, but at a minimum photos are taken the first time the wound is assessed, once healing has occurred, and when the patient is transferred to another care setting. Some facilities have policies in place that require weekly wound photography, and this again can help to evaluate the effectiveness of the current wound care. Prior patient consent is required for wound photography, and the use and confidentiality of the photos needs to be thoroughly explained to the patient. A written facility policy on wound photography will address: Patient consent (including a form) Frequency of photography Staff authorized to take wound photos Methods of identifying the patient, for example, placing the patient’s initials, medical record number, date, and time on a measuring guide placed proximately to the wound and included in the photo Storage of the photos in the patient’s records and who will have access to them (Nix, 2014b)

Assessment Frequency After the initial assessment, the frequency of subsequent assessments depends on the patient’s overall condition, the status of the wound, and the care setting. For example, a wound that is infected and draining heavily may require daily or twice-daily assessment. As the condition of the wound changes, the frequency of assessments will also change. For example, a wound that is infection-free and with the development of healthy granulation tissue can be assessed once or twice a week.

Developing the Plan of Care for Wound Management The plan of care is a collaborative effort between the patient, physician, nurse, rehab therapists, case manager/discharge planner, and other specialties included on the wound care team. It is developed once all the initial assessments have been completed. The plan of care is based on the goals of therapy: What does the patient want to achieve, and what can the members of the wound care team contribute to help achieve those goals? Problems can arise when there is a discrepancy between what the patient wants and what can be realistically accomplished. Often the patient will express goals in general terms: “I want it all to go away and get back to living normal again.” This sentiment is frequently expressed by patients with chronic conditions who feel physically and emotionally worn down by pain and physical limitations. In these situations it is important to acknowledge what the patient is feeling and to work with them in establishing achievable short-term goals, for example, “Compression stockings will be worn everyday for the next week and will result in a visible decrease in swelling.” Or in the long-term, “Leg circumference will return to normal and wearing compression stockings will become part of the daily routine.” Patients are more apt to adhere to therapies when they can see and feel that gains are being made. This can be difficult and challenging with chronic wounds, where improvement can be slow and complex. However, goals can be broader than the actual wound healing. For instance, the physical therapist and occupational therapist can set goals with the patient to prevent contractures, increase mobility, and increase self-care.

WOUND CLEANSING TECHNIQUES All debris, foreign bodies, and devitalized tissue must be removed from the wound bed in order for the healing process to begin. It is essential to pick the correct cleaning agent and the correct technique for cleaning depending on the characteristics of the wound. The goal of cleansing is to remove as much devitalized tissue as possible without damaging healthy tissue in the wound. Normal saline or water from a standard treated drinking supply can be used to gently clean the surface of the wound. Studies have shown that when either tap water or normal saline is used for cleaning, there is no difference in infection rates or positive healing outcomes in both acute and chronic wounds (Fernandez et al., 2002; Moscati et al., 2007). Commercial wound cleansing products contain chemicals known as surfactants that are capable of breaking down the bonds that attach contaminants to the wound bed, and they provide a higher level of wound cleaning efficiency than saline or tap water. These products should be used at the strength recommended by the manufacturer. Wound irrigation is an effective means of wound cleaning. It decreases the bacterial count in the wound and loosens devitalized tissue and debris while flushing them from the wound. The recommended pressure for wound irrigation is 4 to 15 pounds per square inch as measured using a 19-gauge angiocatheter and a 35-ml syringe. This has been found to adequately clean the wound without harming healthy tissue and embedding debris into the wound base (Bryant & Nix, 2016). Pulsatile lavage is another alternative for wound irrigation. It delivers the cleaning agent to the wound bed from a powered device and is usually used in conjunction with suction. Whirlpool was once a standard method for wound cleansing, and it was the recommended care for chronic wounds with slough and necrotic tissue. Pressurized streams of water were pumped into the whirlpool bath via jets. However, concerns about contamination and cross infection have made whirlpool therapy a less-favored practice in wound care.

Cleansing Agents Cleaning of heavily contaminated wounds will require more than saline or tap water. Antiseptic solutions are usually required to kill bacteria in the wound, however these agents are also capable of destroying healthy wound tissue, so they have to be used judiciously. Antiseptic use should be short term and closely monitored. Dakin’s solution (sodium hypochlorite) half strength 0.25% used for short periods of time (approximately 7 days) has been proven to be effective against most bacteria found in chronic wounds without damaging viable wound tissue; it also decreases wound odor. Quarter-strength acetic acid can be used as wound irrigation or a soak to clean wounds. It has been shown to eradicate Pseudomonas aeruginosa from wounds. Sterile 4" x 4" gauze can be soaked in acetic acid then placed on the wound bed for approximately 15 minutes.

Debridement Debridement is removal of dead tissue from the wound, and it is an important factor in wound bed preparation. When and how to debride is determined based on the type of wound, the patient’s overall status, the presence or absence of infection, and the goals of wound care (i.e., maintenance of the current wound status or progression toward healing). For example, debridement would not be the treatment of choice for intact, dry eschar covering the wound of a terminally ill patient. Unless infection is present, debridement should not be done until the patient’s ability to heal has been thoroughly assessed. Patients with lower extremity wounds, regardless of the etiology, should have their circulatory status evaluated. The bottom line is that wounds will not heal without a good blood supply, and before “de-roofing” (removing) eschar and causing an open wound, the clinician needs to have a realistic expectation that the wound will heal. In hospice patients, however, a wound may be debrided with no expectation the wound will heal. It is debrided to relieve pain and pressure by allowing the wound to drain and to provide improved access to cleanse the wound and decrease odor. Debridement can be divided into two broad categories: selective and nonselective. Selective is the most beneficial to the patient, since it only removes nonviable material from the wound. Nonselective debridement, as the name suggests, removes healthy granulating tissue as well as devitalized tissue from the wound bed. Saline wet-to-dry dressings are the best-known method of nonselective debridement but are no longer regarded as state-of-the-art care; they are painful for the patient and labor intensive, since dressing changes need to be done 3 to 4 times daily. Selective debridement methods are as follows:

SURGICAL DEBRIDEMENT A physician or advanced practice clinician can perform sharp surgical debridement. For large wounds the procedure is normally done in the operating room under anesthesia. Smaller wounds can be debrided at bedside or in an outpatient wound clinic using topical or local anesthesia. The clinician must be aware of the importance of adequate pain management before, during, and after the debridement. The procedure should be fully explained to the patient and consent obtained. Prior to doing the procedure, it is also important to ascertain whether the patient is on anticoagulant therapy and what their most recent INR results are (Krasner, 2014).

REMOVAL OF EXCESS GRANULATION TISSUE Granulation tissue is the loose collection of fibroblasts, inflammatory cells, and new blood vessels that forms in the bed of open wounds during the regrowth (proliferation) phase of healing. Healthy granulation tissue looks beefy red with bumpy, irregular surfaces. Epithelial cells use granulation tissue as a surface to move along as they re-cover the wound. The regrowth (proliferation) phase usually lasts between 4 and 24 days. (When wounds are left open to heal by indirect closure, the regrowth phase is prolonged.) Excess granulation tissue (also called exuberant granulation tissue or hypergranulation) can form in any wound. Sometimes, especially in wounds for which growth factors or other healing stimulants have been used, granulation tissue will overgrow the top of the wound and become a barrier to the growing epithelial cells. For a wound to heal properly, excess granulation tissue should be removed. Debridement can be a painful process; prior to any tissue removal, the patient should be medicated for pain. To clear the wound, the physician, nurse, or physical therapist with specific training will scrape out the granulation tissue down to the bed of the wound, level with the surrounding skin. Then, the wound is irrigated. Excess granulation tissue can also be treated with silver nitrate by a clinician trained in wound care. This will turn the surface of the wound a whitish/gray color and allow the excess granulation tissue to “slough off.” More than one treatment may be necessary. Hypergranulation can be corrected by changing the cause, which can be added growth factors, excessive moisture in the wound, etc. In a clinical setting, the wound is protected with sterile gauze (Habif, 2010) and/or covered with an appropriate dressing per physician orders. The application of foam dressings has also been found by some clinicians to reduce the formation of hypergranulation tissue.

CONSERVATIVE SHARP WOUND DEBRIDEMENT Certified wound care nurses and physical therapists trained to do wound care can perform conservative sharp wound debridement. This is a sterile procedure whereby loosely connected necrotic tissue is removed from the wound using sterile scissors or scalpel and forceps. It is important that clinicians check with their state board to ensure this is an approved intervention for them within their particular state. A facility policy and procedure guidelines must also be in place for conservative sharp wound debridement.

ENZYMATIC DEBRIDEMENT Enzymatic debridement is often used when surgical debridement is not feasible, for example, in patients on anticoagulant therapy and for whom there is a risk of bleeding. Enzymatic debridement selectively removes devitalized tissue and prevents damage to healthy tissue. It is not as fast as surgical debridement but has been shown to work effectively on wounds with heavy bio-burden (Ramundo, 2015). Collagenase (SANTYL) is the only enzymatic debriding agent available in the United States at this time. It is a derivative of clostridium bacteria, and it cleanses the wound bed by dissolving the collagen bonds that secure the necrotic tissue to the wound bed (Ramundo, 2015). Collagenase works from the bottom up, with changes occurring beneath the wound’s surface. Visible changes in the wound may not appear for several days to weeks, depending on the size and depth of the wound. Collagenase is applied in a thin layer to the necrotic tissue in the wound bed every 12 hours and covered with a moist normal saline dressing to prevent the wound from drying out. The manufacturer recommends a nickel-size thickness of the ointment on the wound bed. Collagenase can also be applied to the edges of eschar that has started to separate from the wound bed. This can be successfully done using a swab to gently push the agent under the edges of the eschar to promote further separation. Hard, intact eschar should be “crosshatched” before applying collagenase to allow the agent to make contact with the wound bed (Ramundo, 2015). Crosshatching is a technique that cuts fine lines horizontally and vertically into the surface of the eschar using a sharp blade. It is a procedure that can be done by a physician, nurse practitioner, RN with wound certification, or physical therapist depending on state licensing board regulations and facility policy.

AUTOLYTIC DEBRIDEMENT This is a natural form of debridement that utilizes the body’s own white blood cells to clear necrotic tissue from the wound bed. It is a safe, although slow, form of wound cleaning (Jaszarowski & Murphree, 2015). For autolytic debridement to work, the patient must have a normal white blood cell count and there must be adequate circulation to the wound bed. Autolytic debridement is not recommended for an immunocompromised patient due to their low white blood cell count (Ramundo, 2015). A moisture-retentive dressing (such as hydrocolloid, transparent film, or hydrogel) is applied to the wound bed and left in place for up to 72 hours. During this period the white blood cells, neutrophils, and macrophages in the wound bed cause the necrotic tissue to loosen from the wound bed and become soft and stringy (Ramundo, 2015). Autolytic debridement can cause the wound to become wider and deeper and to have an accumulation of exudate in the wound bed that produces a malodor. This is a normal part of the autolytic process, which the clinician should explain to the patient and caretakers, who often become concerned that the wound is infected.

BIOLOGICAL/BIOSURGICAL DEBRIDEMENT This form of debridement (also referred to as maggot therapy) uses sterile maggots applied to the wound bed. These larvae produce a mixture of enzymes and broad-spectrum antimicrobials. This method is faster than autolytic or applied enzyme debridement, but some level of discomfort can be noted. It is frequently used in wounds where there is infected necrotic tissue but surgical debridement is contraindicated. The medically approved maggots are applied directly to the wound bed, around 5 to 8 maggots per cm2. The wound is then covered with a dressing that will keep the maggots in place. It is essential that the cover dressing allow oxygen to reach the wound bed to prevent the maggots from dying (Jaszarowski & Murphree, 2015). Maggot therapy is contraindicated where blood vessels are exposed, in acute infections, in wounds requiring frequent inspections (maggot therapy usually lasts 1 to 3 days but may last up to 4 to 5 days), in wounds with necrosis of bones or tendons, or in areas with low circulation that impairs healing. A possible serious side effect is bleeding, and the clinician needs to carefully monitor the patient for this, especially those who are on anticoagulant therapy. Since many patients are uncomfortable with even the sterile maggots provided by medical supply companies, this treatment needs to be fully discussed with the patient, and some facilities require a signed patient consent prior to using maggot therapy.

TYPES OF DEBRIDEMENT Name

Mechanism of Action

Advantages

Conservative sharp debridement

Loosely connected necrotic tissue is removed from the wound bed using sterile scissors or scalpel and forceps.

Quick and safe way to remove dead tissue

Enzymatic Collagenase dissolves the collagen bonds Used when surgical debridement is debridement that secure necrotic tissue to the wound not feasible, i.e., a patient on (collagenase) bed. anticoagulant therapy with a risk of bleeding Autolytic debridement

A natural form of debridement, it utilizes the Safe, although slow body’s own white blood cells to clear necrotic tissue from the wound.

Biological/biosurgical debridement (maggot therapy)

Maggot larvae produce a mixture of enzymes and broad-spectrum antimicrobials to remove necrotic tissue from the wound bed.

Faster than autolytic or enzymatic debridement

WOUND DRESSINGS A dressing at its very basic is a covering applied over an open wound to form a barrier between the wound and the external environment. There are multiple forms of dressings available to the wound clinician, and they all serve the following important functions: To protect the wound from infection and trauma To promote a moist wound environment that is conducive to healing To absorb excess drainage from the wound bed To protect the intact skin surfaces surrounding the wound

Choosing the Correct Dressing A wound dressing is only one component of wound healing, but it is an important one. Deciding on the most appropriate dressing for a particular wound is a team effort. The guiding principle is to maintain an environment conducive to moist wound healing. In simple terms, a dry cell is a dead cell and will hinder rather than aid the progression of the wound. Here are some pointers for clinicians to keep in mind when deciding on a wound dressing: Moist does not mean “soupy.” If the wound has too much drainage, then an absorptive dressing will be required. If the wound is dry, then moisture will need to be added. If there is undermining or tunneling, packing will be needed. Periwound areas will need to be protected from damage. Other issues to consider when choosing a wound dressing are the frequency of dressing changes, the availability of supplies, and the time and personnel required to do the dressing change. All of these need to be factored into a realistic and well-laid-out plan of care for the patient.

FREQUENCY OF DRESSING CHANGES When looking at the frequency of dressing changes, one of the first questions to consider is how often the wound needs to be assessed. The answer to this question is highly individualized. Patients with a systemic condition and an infectious wound or a wound at increased risk for infection will require close monitoring. The decision may be made to do daily or twice-daily dressing changes. Most, if not all, of these patients will be in a facility; for those who may be at home, home healthcare nursing and family support will be required. With chronic wounds that are progressing and infection free, once-a-week dressing changes are normally recommended. Many of these patients will be living at home, and some may be in nursing homes or assisted-living facilities. The patient, family members, or facility staff will need instructions on daily monitoring of the dressing and for signs and symptoms that need to be reported immediately to the clinician.

AVAILABILITY OF SUPPLIES Availability of supplies is usually not a problem in an acute-care facility or nursing home. However, for patients in assisted-living facilities and those living at home, the question of who will provide the wound care supplies and how they will be paid for must be addressed. The case manager or social worker on the wound care team will deal with the major concerns surrounding the procurement of supplies. However, all team members need to be aware of the insurance and financial restraints that may limit the options.

TIME AND PERSONNEL REQUIRED Time and personnel are considerations regardless of the care setting. For example, a highly complex, open abdominal wound on an obese patient with diabetes who is in the intensive care unit and requires conscious sedation for sterile dressing changes will require the presence of the anesthesiologist, one to two clinicians skilled in wound care, and other staff members to help with positioning the patient, opening supplies, and maintaining a workable environment. From start to finish, the time commitment for this procedure could take up to three hours. A dressing choice to consider in this situation may be negative-pressure wound therapy—which would require dressing changes only every 48 to 72 hours depending on the wound status—rather than the larger commitment it would take in time and staff to do daily dressings. Time is not only a consideration for the clinician; patient and/or caregiver time commitment must also be considered. Patients who come to an outpatient wound clinic may have to take time off from work, and their caregiver may have to take time off to bring them to the clinic. In many instances, patients and family will state that they can only come once a week, and the wound care team must take this into consideration when developing the treatment plan.

Dressing Types There are thousands of wound care products on the market, and choosing among them can be a daunting task. However, every facility, clinic, and home health agency involved in wound care will carry a wound care formulary. Who decides what products are made available? Ideally this should be a joint decision between all interested parties, such as administration, purchasing department, and wound care clinicians. There are frequent changes in the many different companies’ dressings, names, and types, and so it is important to gather up-to-date information on dressing options before selecting a particular dressing. Some major dressing companies include Hollister, Convatec, Medline, 3M, Healthpoint, Johnson and Johnson, and De Royal. (This is not a complete listing and is not intended as a recommendation of one brand over another.) There are several major types of dressings:

ALGINATES Usually referred to as calcium alginates, these dressings are made from lightweight seaweed. Alginate dressings can absorb up to 20 times their weight in wound exudate, and they are an ideal choice for moderately to highly draining wounds. They are available in flat dressings of various sizes and also as a rope dressing (Jaszarowski & Murphree, 2015).

Forms There are two forms of alginate dressings. One will turn into a gel after it comes in contact with the wound drainage, and the other retains its original shape while it absorbs drainage. The choice of alginate used is usually based on clinician preference.

Advantages Some brands of alginate dressings now have the option of a silver alginate, which along with absorption also provides the antimicrobial action of silver to the wound bed. Alginate dressings can assist in hemostasis, making them a first-line option for bleeding wounds. Since the dressing remains soft and moist, it does not stick to the wound tissue and does not cause pain to the patient on removal.

Frequency of Dressing Changes Alginate dressings can normally stay in the wound for up to 72 hours. However, the frequency of dressing change will be determined by the amount of drainage and the frequency of wound assessment indicated in the patient’s wound care plan.

Clinical Guidelines for Use For deep wounds, a single layer of alginate dressing is applied directly to the wound bed and then covered with layers of fluffed gauze to fill the cavity of the wound. Using layers of alginate dressings to completely fill the wound will not increase the rate of healing and is not cost effective. Alginate rope should not be placed in narrow tunnels, as there is a possibility that small pieces of the dressing could be left behind. Once the alginate dressing in removed from the wound, the wound bed must be cleaned thoroughly to completely remove the dressing residual (Bryant & Nix, 2016).

HYDROCOLLOIDS Hydrocolloid dressings help to prevent secondary infections. They are made from a gelatinous substance and have a self-adhesive surface. They provide for limited absorption of wound drainage and are suitable for shallow, dry wounds.

Forms These are wafer-like, flexible, water-impermeable dressings that conform well to different wound locations. They are available in dressing, paste, and powder forms.

Advantages Hydrocolloids are simple to apply, and because of their conformity, range of sizes, and shapes, they can easily be applied to wounds on most parts of the body. Due to their occlusive nature, they promote a moist wound environment, maintain wound temperature, and protect the wound from contamination (e.g., a coccyx wound in an incontinent patient).

Frequency of Dressing Change The recommended frequency of dressing change is twice weekly. If the wound needs to be assessed more frequently, a different dressing should be considered.

Clinical Guidelines for Use They can be used to protect fragile skin and are often cut in strips to be applied as a “picture frame” along the periwound area to protect it from trauma and drainage and as a surface for attaching a secondary adhesive dressing. Hydrocolloids are not an appropriate dressing for infected wounds. Hydrocolloids produce an odor that is noticeable when the dressing is removed, and the gelatinous material of the inner layer can be mistaken for purulent drainage. The clinician needs to educate the patient, other staff, and family about these findings and that the wound needs to be adequately flushed and cleaned after removing the dressing and then assessed for signs of infection (Jaszarowski & Murphree, 2015).

HYDROGELS These are hydrating dressings (i.e., they donate water to the wound bed) and are suitable for shallow wounds with scant drainage. They can also be used along with other agents such as topical medications and antibacterial substances.

Forms They come in solid gel dressings, impregnated gauze dressings, and amorphous hydrogels composed of gelatin, polysaccharides, and polymers. The liquid gel is applied directly to the wound bed and covered with moistened, fluffed gauze.

Advantages These are a cost effective dressing and are easy to apply. The hydrogel sheet dressing has a cooling effect on the wound, which can help with pain management. These dressings can also be safely used during radiation therapy. They are a recommended dressing for use on donor sites, superficial surgical wounds, and chronic wounds (in which they can be used to promote autolytic debridement).

Frequency of Dressing Change There is flexibility in how often hydrogel dressings can be changed, depending on the characteristics of the wound. Such dressings can be replaced once or twice daily or left in place for up to three days.

Clinical Guidelines for Use The clinician needs to avoid over packing the wound and to instruct caregivers likewise. Over packing causes pressure on the wound bed, can damage newly forming tissue, and impedes wound healing. Hydrogel sheet dressings can cause maceration of the periwound area, and the dressing must be cut to fit within the wound area without overlapping onto intact skin. Applying a liquid barrier film to the periwound area provides an extra layer of protection. When using the liquid gel form of the dressing, the clinician applies at least 1/8-inch thickness along the surface of the complete wound bed and covers this with the fluffed moistened gauze. If the dressing has dried out, it will need to be moistened prior to removal to prevent pain and discomfort and to avoid damaging healthy wound tissue (Bryant & Nix, 2016). The use of this dressing should then be reassessed as to frequency and cover dressings used to prevent it from drying out.

HYDROFIBER The main component in hydrofiber dressings is carboxymethylcellulose, which is responsible for its absorptive ability (Jaszarowski & Murphree, 2015). These dressings are sometimes confused with alginates because of their ability to absorb wound drainage.

Forms They are available in sheet and ribbon dressings and in plain and antimicrobial forms.

Advantages These dressings will not adhere to the wound bed and can be used successfully in moderately to heavily draining wounds.

Frequency of Dressing Change The frequency of dressing changes will depend on the amount of wound drainage. Heavily draining wounds may require daily dressing changes, while in wounds with moderate amounts of drainage, the dressing can be left in place for two to three days.

Clinical Guidelines for Use Hydrofiber dressings cannot be used in dry wounds (Jaszarowski & Murphree, 2015). They also require a secondary dressing to hold them in place (Krasner, 2014). If the dressing becomes overpowered by wound drainage, there will be leakage onto the periwound area.

FOAM Foam dressings are capable of absorbing large amounts of wound drainage while maintaining a moist wound environment. Most foam dressings are made from polyurethane with a matrix of small open cells that absorb drainage from the wound bed (Bryant & Nix 2016).

Forms Foam dressings come in many shapes and sizes, including special shapes that can be used on elbows, heels, and the sacrum. They are available in a plain form and also impregnated with antimicrobial agents (Jaszarowski & Murphree, 2015). Foam dressings can be either adhesive or nonadhesive. They come in various thicknesses, ranging from 7 mm to less than 1 mm.

Advantages Foam dressings are highly versatile and have been shown to decrease wound pain, especially when they are removed from the wound bed. They can be used successfully under compression therapy with venous ulcers and can be used as a secondary dressing to supplement absorption in heavily draining wounds. Although they do not relieve pressure, foam dressings can be used to protect against shear injuries. The traditional foam dressing will usually require a secondary dressing to hold it in place, however, the newer thin foam dressings usually have an adhesive wound surface layer and outer layer of a transparent film that provides a waterproof surface. Many foam dressings also come with an adhesive border (Bryant & Nix, 2016).

Frequency of Dressing Change Depending on the type of wound and the amount of drainage present, foam dressings can be left in place for variable lengths of time, ranging from one day up to a week.

Clinical Guidelines for Use Due to their versatility, foam dressings are widely used in wound care. However, they should not be used on dry wounds or wounds with very little drainage. Manufactures frequently indicate the absorption capacity of foam dressings, and the clinician needs to follow these guidelines when choosing foam dressings for a particular wound. Foam dressings can be cut and shaped to align with body contours. Care also must be taken to apply the correct side of the dressing to the wound bed; this is often indicated on the dressing itself with the instructions “this side up.”

COMPOSITE Composite dressings combine more than one physical property in a single dressing and can serve multiple functions (Bryant & Nix, 2016). They provide adhesion, absorption of wound drainage, and a protective barrier against bacterial infection.

Forms Composite dressings are multilayer dressings, and they conform to anatomical curvature. They come in several different shapes and sizes.

Advantages Composite dressings are easy to apply and remove. The adhesive border around the edge of the dressing secures it to the periwound area, removing the need for a secondary dressing. Composite dressings can be used in conjunction with other topical wound therapies, such as topical medications applied to the wound bed (Kestrel Health Information, 2016).

Frequency of Dressing Change According to the condition of the wound, dressing changes can vary from daily to three times a week.

Clinical Guidelines for Use Since composite dressing comes in several different sizes, the correct size needs to be chosen for the wound. These dressings cannot be cut, as this will compromise the structure of the dressing. The correct size will allow the dressing to extend for one inch onto the intact periwound area.

CONTACT LAYER Contact layers are thin, nonadherent layers that are placed directly onto the wound bed. They have an open-weave or perforated structure that allows drainage to pass through the layer to be absorbed by the dressing placed over it.

Forms Contact layers come in various sizes and types. Many are gauze-based dressings permeated with petrolatum or oil; some are perforated, silicone-impregnated sheets; others are perforated cloth-like sheets.

Advantages Contact layers protect the wound surface from trauma and help maintain a moist wound environment (Jaszarowski & Murphree, 2015). They conform well to the wound surface. They are easy to apply and remove from the wound bed, and they assist in pain-free dressing changes. Contact layers can also be used in conjunction with topical medications applied to the wound.

Frequency of Dressing Change Contact layers can be left in place for a week. They do not usually need to be removed with each dressing change.

Clinical Guidelines for Use Contact layers are often used on surface wounds of the extremities (Jaszarowski & Murphree, 2015), but they can be used to line the base of deeper wounds to prevent filler dressings from sticking to the wound bed. Contact layers are not recommended for dry wounds, for areas of tunneling or undermining, or for wounds where the drainage has a thick consistency (Bryant & Nix, 2016).

ANTIMICROBIAL DRESSINGS Antimicrobial dressings cover a wide selection of wound care products, including: Cadexomer iodine dressings Silver dressings Honey dressings Hydrofera Blue dressings These products are effective against a broad spectrum of microorganisms that cause wound infection and biofilm formation (Bryant & Nix, 2016).

Forms Antimicrobial dressings come in several different forms, including sheet dressings, pads, rope, powder, creams, and ointments (Jaszarowski & Murphree, 2015).

Advantages These dressings provide absorption of wound drainage and maintain a moist wound bed. They provide the wound with a constant delivery of antimicrobial agents that eradicate bacteria from the wound. Rope forms of these dressings can be used to wick drainage from areas of tunneling. Honey dressings help to reduce wound odor. Antimicrobial dressings can be used in conjunction with compression for venous ulcers of the lower extremities. They can be easily removed from the wound and decrease discomfort during dressing changes.

Frequency of Dressing Change The frequency of dressing change depends on the properties of each type of dressing and the amount of wound drainage. Silver dressings are usually changed every 72 hours; honey dressings can be left in place for up to seven days.

Clinical Guidelines for Use Guidelines are specific to the type of antimicrobial dressing being used. Cadexomer iodine is a description of a method that releases a constant amount of iodine to the wound, and it can be left undisturbed in the wound bed for 72 hours. It is contraindicated in patients that are allergic to iodine, shellfish, or dyes (Weir & Schultz, 2016). Manuka honey dressings can remain in the wound for up to seven days. However, dressing changes may need to be done more frequently if there is a high volume of wound drainage. Hydrofera Blue dressings are a combination of methylene blue crystal and gentian violet, both with a long history of use in medical care. They are active against several organisms, including methicillin-resistant S. aureus (MRSA) (Weir & Schultz, 2016). This dressing can be used in conjunction with collagenase. It can also be used under compression therapy and left in the wound for up to seven days. Silver has been used for centuries in healthcare, and in recent times it has been found to be a potent agent in wound care. Silver dressings come in foams, alginates, contact layers, powders, and rope dressings. They function in one of two ways: the dressing can donate silver to the wound bed or the silver can remain in the dressing material, which absorbs the wound drainage and destroys the bacteria contained in it (Weir & Schultz, 2016). Silver dressings can be left in place for up to seven days and can be used under compression therapy.

COLLAGEN Collagen dressings help to stabilize the chemical balance in the wound by decreasing the level of proteases in chronic wounds, which destroys the newly forming collagen fibers in the wound bed, the substance of healthy granulation tissue. Collagen dressings are derived from type 1 bovine collagen, avian collagen, or type 3 porcine collagen (Bryant & Nix, 2016).

Forms Collagen comes in flat dressings, gels, pads, particles, and freezer-dried sheets (Bryant & Nix, 2016).

Advantages Collagen dressings are easy to apply and can be used for either partial- or full-thickness wounds. They are absorbent dressings, while at the same time they maintain a moist wound environment. Collagen dressings are comfortable, can be used with topical wound agents, and are easy to apply.

Frequency of Dressing Changes The frequency of dressing changes will depend on the state of the wound—how far along it is in the healing process and the amount of wound drainage. Since these are relatively expensive dressings that usually do not need to be changed on a daily basis, they are typically left in place for 3 to 7 days.

Clinical Guidelines for Use Collagen dressings can be used on a wide range of wounds, including donor sites, surgical wounds, wounds with tunneling and undermining, and chronic wounds. They are not recommended for dry wounds, wounds with necrotic tissue present, or for patients who are sensitive to bovine or pork products (some patients may have a religious objection to the use of such animal products). Collagen products require a secondary dressing, and some may need to be rehydrated before being removed from the wound (Kestrel Health Information, 2016).

TRANSPARENT ADHESIVE DRESSINGS These are thin, plastic dressings with an adhesive surface. They are most frequently used as a cover dressing with, for example, an alginate dressing (Bryant & Nix, 2016). They can also be used to cover IV sties and as a primary dressing for both shallow and dry wounds (Jaszarowski & Murphree, 2015).

Forms Transparent dressings come in a range of shapes and sizes that adapt easily to different anatomical sites.

Advantages Although they are not able to absorb wound drainage, transparent dressings do facilitate moist vapor transfer and atmospheric gas exchange. At the same time, they provide a waterproof covering for the wound and protect against external bacterial infection; for this reason they are a good choice for wounds that are at high risk of stool and urine contamination. They are also a good choice when autolytic wound debridement is required. Since they are unable to absorb drainage, they retain moisture on the wound surface (often referred to as a “greenhouse effect”); this aids in the process of autolytic debridement (Bryant & Nix, 2016; Jaszarowski & Murphree, 2015).

Frequency of Dressing Changes Transparent dressings are usually changed every three days, although they can be left in place for up to seven days (Bryant & Nix, 2016).

Clinical Guidelines for Use Transparent dressings are not recommended for wounds that require frequent monitoring such as infected wounds. These dressings cannot be used as a primary dressing for wounds that have tunneling or undermining. Transparent dressings should provide a one-inch overlap onto the periwound area, and if necessary, a liquid skin barrier is applied onto the periwound area to provide protection from skin stripping when the dressing is removed (Bryant & Nix, 2016).

SUMMARY OF DRESSING TYPES Name (Type)

Use(s)

Advantages

Alginates (absorbent, made from light seaweed)

In moderately to heavily draining wounds

Can stay in the wound for up to 72 hours Flat and rope dressings available Silver impregnated available

Hydrocolloids (occlusive)

For autolytic debridement; to protect periwound area from trauma and drainage

Simple to apply Wide range of sizes and shapes Conformity to wounds on most parts of the body

Hydrogels In shallow wounds with scant drainage (hydrating; donate water to the wound bed)

Cost effective Easy to apply; helps with pain management Can be used on donor sites Promote autolytic debridement

Hydrofiber In moderately to heavily draining (absorbent; made from wounds carboxymethylcellulose)

Will not adhere to wound bed

Foam (absorbent, can be adhesive or nonadhesive)

In moderately to heavily draining wounds; under compression; to protect against shear injuries

Highly versatile; reduce wound pain

Composite (combination)

To provide adhesion, absorption of wound drainage, and protective barrier against bacterial infection

Easy to apply and remove

Available in plain and antimicrobial forms

Available with adhesive borders

Can serve multiple functions Can be used in conjunction with other topical wound therapies, such as topical medications applied to the wound bed

Contact layer (nonadherent layers placed directly onto wound bed)

To allow drainage to pass through to absorptive dressing above

Antimicrobial (cadexomer iodine, silver, honey, hydrofera blue)

Against a broad spectrum of microorganisms that cause wound infection and biofilm formation

Protect the wound from trauma Help maintain a moist wound environment Versatile, can be used with compression therapy Help reduce wound odor Easily removed; decrease discomfort during dressing changes

Collagen (derived from type 1 bovine, avian, or type 3 porcine collagens)

To stabilize the chemical balance in the wound by decreasing the level of proteases, which destroy the newly forming collagen fibers in the wound bed

Easy to apply Help maintain a moist wound environment Can be used with topical wound agents

Changing Dressings In general, changing a dressing daily allows for assessing the condition of the wound and progress of the healing process. However, since wounds require being at body temperature for healing to occur, it is important to be aware that any time spent in changing a dressing, or even cleansing the wound, will cool down the wound, which can then take several hours to come back up to body temperature after being recovered. This may slow the healing process. Therefore, it is important to be organized and prepared prior to beginning the procedure and to choose a dressing that will minimize the need for frequent changes.

WHEN TO CHANGE The first thing that needs to be decided is when the dressing change is going to be done. Most patients have many activities going on during a hospital stay, and the same is true in nursing homes and assisted living. Home health nurses collaborate with patients and families when scheduling visits. In a hospital setting it is not a good idea to show up for a dressing change just as a patient returns from physical therapy and is already tired and ready for a nap. Planning ahead and adopting a patient-centered approach is important.

PAIN MANAGEMENT Once a dressing change time has been decided on, the next issue is pain management. Will the dressing change be painful? Does the patient have pain medication ordered? Clinicians usually request that the physician order a dose of pain medication specifically for dressing changes. The medication needs to be given so that there is adequate time for it to take effect prior to beginning the procedure. Consider topical pain medications such as Lidocaine for point-of-use pain management.

DRESSING CHANGE PROCEDURE Following is an example of the steps a clinician will follow when changing a dressing. Always follow facility protocol. Identify the patient according to facility protocol. Explain how the dressing change will be done and position the patient to expose the wound area. Ensure that all supplies are available on a clean, dry working surface, conveniently positioned close to the patient. If a sterile dressing is being applied, then a sterile work area will have to be created. However, most wound care dressings are done using “clean technique” (see below). Wash hands, then gently remove the old dressing and dispose of it according to facility protocol. Don new gloves and perform a wound assessment (as described earlier in this course). Clean the wound and apply a new dressing per instructions in the wound care plan. Pack narrow tunnels loosely with ribbon gauze or other sterile rope dressing as ordered. The end of the gauze is placed in the wound to ensure that the packing is removed with the next dressing change. The goal of packing is to remove drainage and to allow the tunnel to collapse from the distal end to the wound bed. The dressing material used in the wound bed can be placed in areas of undermining if the depth is such that removal of the dressing material can be adequately done. Cover the wound with a secondary dressing, e.g., a border foam dressing. Assist the patient into a comfortable position. Discard all used supplies per facility protocol.

CLEAN TECHNIQUE “Clean” means free of dirt, marks, or stains. This technique is also referred to as nonsterile technique. The components of clean technique are: Thorough handwashing Preparing a clean field and preserving a clean environment Using clean gloves and sterile instruments Preventing direct contamination of supplies Sources: WOCN & APIC, 2011.

Immobilizing Wounds Near Joints Repeatedly moving a wound by contracting nearby muscles will slow wound healing and increase the size of the eventual scar. Wounds occurring over a joint or in close proximity to one may need to be immobilized. Plastic or aluminum splints can sometimes be added to the outer bandages of a wound. Otherwise, a separate splint may be placed along the joint. At times, a plaster cast may be needed. Also available are joint immobilizers, which can be soft (like a sling) or rigid (like a knee brace). Physical therapists have extensive knowledge of anatomy and correct positioning, and as part of the wound team they can provide interventions that will reduce swelling in the affected area and provide correct immobilization to aid in tissue regeneration without impairing joint function.

WOUND INFECTION Open wounds present an unrestricted environment for organisms to reside and reproduce. Infections always obstruct wound healing, and infection is the most common impediment to wound healing. Bacteria are present on the surface of all open wounds—which is referred to as “colonization”—and this low level of contamination does not need to be treated. However, wounds that have been contaminated with significant numbers of bacteria will most likely result in infection. The degree of infection is dependent on several factors, including the type or types of microorganisms present and how virulent they are. Within hours of an injury, neutrophils and macrophages migrate into the wound and begin removing debris. Large amounts of bacteria, however, cannot be removed within the normal reaction phase. When contamination persists, the influx of white blood cells continues, too. But these neutrophils die after 24 hours, and when they are continuing to infiltrate the wound because of persistent contamination, the dead neutrophils pile up and begin to clog the wound in the form of pus. Pus slows the formation of granulation tissue and the re-epithelialization of the wound, giving bacteria still more time to multiply. Furthermore, many bacteria secrete toxins that add to the tissue damage in the wound when it has become infected.

Types of Infectious Organisms Bacteria come in several different shapes and sizes: round, cylinder, and rods. The most widely known classification of bacteria is as either gram positive or gram negative, determined by a staining technique first developed by the Danish scientist Hans Christian Gram in 1884. Gram staining is still widely used today to quickly distinguish between gram-positive organisms (including species of Enterococcus, Staphyloccus, and Streptocococcus) and gram-negative organism (including Pseudomonas, Escherichia coli, and Klebsiella). Another important classification of bacteria that the clinician needs to be aware of is aerobic versus anaerobic. The basic difference is that aerobic organisms live and thrive in an oxygen-rich environment; anaerobic organisms, on the other hand, do not need oxygen to survive and in some instances will die when exposed to it. Anaerobic organisms are a particular threat in wounds that have areas of deep tunneling. In any wound where there is a likelihood of anaerobic organisms, a cover dressing that is impervious to oxygen should not be used. Free-floating, or planktonic, bacteria are what clinicians are most familiar with, and these organisms are most easily cleared from the wound. In many cases they can be eradicated by the patient’s own immune system or the introduction of antimicrobials into the wound treatment. In more severe cases, antibiotic therapy may be required (Bryant & Nix, 2016). One of the most persistent and difficult-to-treat forms of wound infection is biofilm formation (see above under “The Healing Process and Chronic Wounds”). Biofilm is a group of bacterial organisms existing together in a synergistic community, enveloped in a polymeric matrix that attaches to the wound surface. Biofilm formation will increase the level of wound inflammation and also support the production of anaerobic organisms in the wound. Biofilms can negatively impact the wound healing process without exhibiting the normal symptoms of infection.

Signs and Symptoms of Infection The classic signs of wound infection include: Fever Pus Abscess Abnormal smell Cellulitis Persistent inflammation with an exudate Warmth and redness Delayed healing Continued or increasing pain Edema Weak, crumbly granulation tissue that bleeds easily If any of the above signs of wound infections are present, a wound culture should be obtained to determine the appropriate course of treatment. Infection is usually easily detected in acute wounds, and many of the above symptoms will be recognizable. But in chronic wounds, infection can be difficult to detect, and the presenting symptoms may be subtle. For example, the first indication of infection in a diabetic foot ulcer is oftentimes unexplained elevated blood sugars. The patient may complain that “for no reason” their fasting blood sugar is running over 200 every morning. Increased wound drainage can be another symptom of infection in a chronic wound. If a certain amount of redness has always been present in the periwound area, cellulitis may not be detected. The clinician needs to look closely for changes in the quality of the granulation tissue that appear “liver-like,” which is evidenced by a dark red color and more friable tissue (falls apart easily). It is important to keep in mind that the majority of patients with these signs will not run an elevated temperature, and so a normal temperature reading cannot be taken as a sign that the patient is infection free. In chronic wounds in which bone is exposed or the clinician can probe down to bone, there is a high probability that tissue and bone infection (osteomyelitis) are present.

The redness around this sutured laceration (on the knee) may indicate a normally healing wound still in the inflammatory phase of healing or it may signal the beginning of a wound infection. (Source: Antonio M. de Gordon, MD.)

Diagnosing Infection Wound cultures are most commonly used to confirm the presence of infection. They include: Swab culture Tissue culture Aspiration culture Bone culture It is important to remember that necrotic tissue and slough should not be collected as part of a wound culture.

SWAB CULTURE Swab culture is one of the most frequently used methods to collect wound cultures, but it is not the most reliable. The surface of all chronic wounds is contaminated, and this will be evident in the culture. But this may not give a true picture at what is happening at a deeper level in the wound tissue. The technique used to collect the culture is extremely important. First, the wound bed is thoroughly cleaned with sterile normal saline. Next, using an area approximately 1 cm2, the culture swab is pressed against the wound surface with sufficient pressure to produce wound exudate. The swab is then rotated to capture this exudate.

TISSUE CULTURE Tissue culture, also referred to as a punch biopsy, is considered the gold standard for accurately collecting wound culture. One disadvantage of this procedure is that a punch biopsy can only be done by a physician or nurse practitioner, which limits the settings in which it can be obtained. Punch biopsies are done using sterile technique. Injectable, local anesthesia is administered to numb the area, which is then cleansed with sterile normal saline. Using a 3 mm curette and sterile scissors, the physician removes a tissue sample from the wound bed, which is then placed in a sterile container and transported to the laboratory.

ASPIRATION CULTURE This technique is often used to collect fluid from an abscess. It is also done under sterile technique with local anesthesia. The procedure is performed by a physician or a nurse practitioner using a 10 ml syringe with a 22-gauge needle. The needle is inserted into the tissue adjacent to the wound and fluid is withdrawn. After the needle is removed from the area, the syringe is capped and sent to the lab for analysis.

BONE CULTURE If bone is visible in the wound, the physician may elect to cut away a sample of the bone and send it for culture. Again, this is a sterile technique but it does not require local anesthesia because only bone fragments are being removed. If a bone biopsy is not possible but osteomyelitis is suspected, then an X-ray or MRI of the affected area will be necessary. Although insurance carriers may insist that an X-ray be used for diagnosis, clinicians need to keep in mind that an X-ray is not the most reliable means of confirming the presence of osteomyelitis, and an MRI may still be required.

Treating Infection Prompt recognition of wound infection and early intervention can help prevent microorganisms from spreading to deeper tissues and possibly bone, with the risk of systemic infection. Topical antibiotics are not as widely used in wound care as they once were due to the increase in bacteriaresistant organisms and the possibility of hypersensitivity reactions (Weir & Schultz, 2016). For critically colonized wounds, antimicrobial dressings are the first choice of treatment. Where systemic infection is present, the assistance of an infectious disease physician may be called on. Infections need to be addressed promptly to prevent adverse consequences, such as the risk of limb amputation for a diabetic patient. Once culture results are available, appropriate antibiotic therapy will be ordered. Mild infections are usually treated with oral antibiotics. However, more severe infections such as osteomyelitis will require intravenous antibiotics, and surgical removal of the infected bone may be done in conjunction with antibiotic therapy (Armstrong & Lavery, 2010). The frequency of dressing changes may need to be increased during periods of infections to carefully monitor the wound and to deal with an increase in wound drainage that usually accompanies wound infection. Some wounds that have been sutured closed over extensive subcutaneous tissue dissection and debridement can develop a temporary inflammatory reaction in which they become red and edematous although they are not infected. If a clinician suspects this problem, the physician is contacted and may order that one or two stitches or staples be removed to lessen the tension, gently expressing or aspirating any fluids, followed by packing the area with sterile salinemoistened gauze and then covering with the appropriate dressing. In this case, the wound is cleansed daily and dressings packed/applied per physician instructions. This type of inflammatory reaction will decrease within 48 hours.

Preventing Infection Preventing infection, environmental contamination, and cross infection are the responsibility of all clinicians involved in wound care. Any break in the skin surface provides a portal of entry for bacteria and other microorganisms into the body, and clinicians need to be cognizant of this when they are doing dressing changes regardless of the location: facility, clinic, or home based. In the home setting, the clinician is also responsible for educating caregivers about the means of preventing infection. Patients with acute and chronic wounds are at particular risk for healthcare-associated infections, which remains a major threat to patient safety. The Centers for Disease Control and Prevention (CDC, 2016) estimate that 1 out of every 25 hospitalized patients develop a healthcare-associated infection. The key to elimination of healthcare-associated infections is full adherence to recommendations across the continuum of care. Preventing the spread of infectious organisms includes the following actions:

HAND HYGIENE Since most infections occur with direct patient contact, proper hand hygiene (handwashing or using alcohol-based rubs) remains the single most effective way to prevent infection to and from patients. Wash hands or use an alcohol-based product immediately after gloves are removed, between patient contacts, and when otherwise indicated. Wash hands between tasks and procedures on the same patient to prevent crosscontamination of different body sites. Avoid unnecessary touching of surfaces near the patient to prevent contaminating clean hands and to prevent transmission of pathogens from contaminated hands to surfaces. Do not wear artificial fingernails or extenders.

STANDARD PRECAUTIONS Standard Precautions are used with every patient. The degree of Standard Precautions implemented will be determined by the complexity of care. For interactions such as changing a dry dressing covering an intact surgical wound, only gloves may be needed. During other interactions (e.g., wound cleansing, irrigation, and wound debridement), use of gloves, gown, face shield, or mask and goggles may be needed, and these should be readily available (CDC, 2007).

BARRIERS AND PPE Personal protective equipment (PPE) is specialized clothing and/or equipment worn by a healthcare worker for protection against a hazard. PPE provides barriers to the transmission of infectious organisms, thereby protecting both the healthcare professional and the patient. Types of PPE include: Gloves, both sterile and nonsterile Gowns of varying permeability Face shield Goggles Mask Head coverings Booties Clinicians should follow these rules when using PPE: Know how to use the equipment. Always wear PPE in exposure situations. Remove and replace PPE that is torn, punctured, or has lost its ability to function. Remove clothing that becomes contaminated with blood or other potentially infectious material (OPIM) as soon as possible. Remove PPE before leaving the work area. Handle contaminated laundry as little as possible. Place contaminated PPE in appropriately labeled bags or containers until disposed of, decontaminated, or laundered. Know where these bags or containers are located in the work area. (Ness & McDonald, 2014)

Documentation Clinicians are familiar with the maxim “If it’s not documented, it hasn’t been done,” and this holds true for wound care. Clear, concise, and accurate documentation is an essential part of wound care in all settings. It needs to be done with each wound contact. Documentation allows all those involved in the patient care to know the wound status and provides for good communication among all clinicians. It is also of paramount importance for reimbursement and in the case of litigation. Documentation of the care given includes the following components: Date and time Interventions performed Wound characteristics, including the amount and type of drainage Wound odor Patient’s pain level during and after the treatment Interventions to relieve pain and the effectiveness of the interventions Patient’s level of anxiety before, during, and after treatment Patient’s reported level of comfort with applied dressings Supplies used Name and credentials of the clinician providing the care Only approved abbreviations should be used and objective findings accurately described.

IMPEDIMENTS TO WOUND HEALING Unfortunately, not all wounds heal in a timely or predictable manner. There are multiple factors that negatively impact wound healing. Some of these are related to the patient’s overall health status, and others are environmental. One of the most serious impediments to wound healing is infection (discussed above). Other impediments to wound healing are discussed below.

Re-Injury Re-injury can slow or stop wound healing. Pushes and pulls that would have no effect on healthy parts of the body can reopen a healing wound even when it is protected by a well-made dressing. Similarly, if there is significant skin tension surrounding the wound (e.g., over a bent knee), the healing wound will not be able to seal tightly.

Ischemia/Hypoxia Oxygen is required in all phases of wound healing, from inflammation to re-epithelialization, and any condition that results in decreased oxygen supply (hypoxia) to the wound bed will impede wound progress. Ischemia of a wound can arise from too much physical tension across the wound, ineffective oxygenation of the blood (anemia, lung problems, smoking), or reduced circulation (atherosclerosis, heart failure, kidney failure, vasoconstriction, too much pressure on the wound). Differences in the available blood supplies account, in part, for the fact that facial wounds tend to heal better than foot wounds. The importance of local circulation to wound healing is reflected in the healthcare maxim “wounds that don’t bleed don’t heal.” Circulation brings oxygen, which aids healing. A wound that continues to bleed, however, is not proceeding to the next step in healing. A crumbling (friable) wound bed is not healing and may indicate infection.

Local Skin Tension Skin and its underlying tissues are normally under tension. Most skin in the body is being stretched, at least slightly, by the adjacent skin and the underlying structures, but the actual tension at any one location varies along the surface of the body. Movement changes skin tension: bending a joint stretches the overlying skin, while contracting a muscle tends to reduce tension in the overlying skin. Skin creases and skin wrinkles are indications of lines of least tension; on the face, the lines of facial expression are also lines of least tension. As a rule, the lines of least skin tension are perpendicular to the long axis of underlying muscles. Skin tension is negligible along skin creases, moderate over relaxed joints and muscles, and high over bent joints (knees and elbows) and the skull. During a cutting, ripping, or puncturing injury, the tension from the adjacent intact skin pulls the free edges of the wound apart. In places where the wounded skin is under greater tension, the wound gapes more widely and heals more slowly, and the resulting scar is relatively large. Obesity increases tension on the abdomen and difficulty due to movement of the panniculus (overhanging folds of subcutaneous fat that may weigh several pounds), particularly when the panniculus moves to the sides and away from center line. Thus, obesity delays wound healing due to mechanical forces.

Lines of least skin tension on the body. The drawing also indicates the areas of the body where skin wounds have the highest risk of infection. (Source: Scott Moses, MD.)

Patient Factors DISEASES Certain diseases are noted for causing poor wound healing. The most common of the problem diseases is diabetes mellitus. Scars formed by diabetics have less collagen, and the collagen that is laid down is more brittle than normal. Diabetes also damages blood vessels and makes the skin more prone to ischemia. The reduced circulation is especially notable in the feet, and foot wounds are notorious for not healing well in diabetic patients (see image latter in this course under “Diabetic Foot Ulcers”). To make matters worse, diabetes leads to peripheral neuropathy. Diabetic patients lose sensation in their fingers and toes, so diabetic injuries tend to go unnoticed in the extremities. Finally, diabetics have a weakened inflammatory response, and they are more susceptible than other people to developing tissue infections.

MALNUTRITION Malnourished people begin to break down their proteins as a source of energy, and this slows healing. Specific vitamin deficiencies also lead to poor wound healing. Vitamin A deficiency impedes the transformation of monocytes into macrophages, which can slow or halt healing. Vitamin C deficiency leads to weak collagen, which is the basis of scurvy. Vitamin K deficiency impairs blood clotting (Posthauer et al., 2010).

SMOKING Patients who smoke have poor wound healing in addition to suffering a number of other skin problems (wrinkling, premature skin aging, higher risks of squamous cell carcinoma, psoriasis, and hair loss [Cao et al., 2011]). Smoking causes vascular constriction, which decreases circulation and leads to chronic wounds.

DEHYDRATION Patients who are dehydrated may have impaired kidney functions and reduced blood volume, leading to decreased blood pressure and perfusion, which can slow wound healing.

Healthcare Impediments Medical care of wounds is an attempt to overcome obstacles to natural healing. In the course of managing a wound, clinicians reduce the amount of contamination, minimize the area that must be filled by new tissue, keep the granulation tissue moist, and protect the healing area. However, efforts at facilitating wound healing sometimes introduce new impediments.

PROBLEMATIC DRUGS, SOLUTIONS, AND OINTMENTS Chemotherapy drugs normally affect wound healing during the treatment period and immediately afterwards. However, since they are an essential part of cancer treatment for many patients, it is important that the wound care team work closely with the patient’s oncologist to develop a safe therapeutic plan for wound care. Steroids have a negative impact on wound healing when they are taken in doses greater than 30 mg per day. Glucocorticoids (e.g. Prednisone) limit the proliferation of fibroblasts and the production of collagen, thus making scars relatively weak. Using vitamin A applied topically to the wound bed has been shown to help counteract the local effects of steroids on wound healing while not interfering with their systemic therapeutic value. The antiseptic solutions 10% povidone-iodine, 3% hydrogen peroxide, and 0.5% chlorhexidine can slow wound healing by destroying healthy cells as well as infected ones. Antiseptics should always be used judiciously in wound care and for a limited period of time, usually 7 to 10 days. Creams and ointments can also be impediments to wound healing. Silver sulfadiazine, used in infected wounds, needs to be thoroughly cleaned from the wound bed during dressing changes. Although early studies showed statistically faster healing rates when Neosporin ointment was used, bacitracin is more commonly used as an antibiotic ointment due to sensitivities to Neosporin. Moisturizing creams such as Eucerin and topical steroids such as triamcinolone should not be used in open wounds.

X-RAYS Ionizing radiation damages actively dividing cells. In wounds, the regrowing epithelium, newly growing blood vessels, and fibroblasts that form new connective tissue are likely to be damaged by a large dose of ionizing radiation. Normal X-ray imaging is usually not a problem. Cancer therapies, however, give relatively high doses of ionizing radiation, and in areas of the body exposed to radiation therapy, wounds heal poorly and infections are more common.

SPECIFIC TYPES OF CHRONIC WOUNDS Chronic wounds are slow and can be difficult to heal. They are often caused by underlying disease processes such as vascular insufficiency and chronic inflammation. Addressing the underlying cause, such as pressure relief and pressure redistribution in pressure ulcer treatment, is a must if progress is to be made in healing chronic wounds (Doughty & McNichol, 2015). Chronic wounds can have a detrimental effect on quality of life and be a major source of anxiety, pain, and depression for patients. Chronic wounds range from wounds caused by venous and arterial insufficiency, pressure ulcers, diabetic foot ulcers, atypical wounds where the underlying cause can be difficult to pinpoint, and end-of-life wounds. About 7.5 million people in the United States were reported in 2014 to have one or more chronic wounds. With an aging population and the increasing number of those diagnosed with diabetes, this number is likely to rise significantly over subsequent years. It is estimated that chronic wound care costs the healthcare system in the United States around $20 billion yearly (Krasner, 2014). There is a clear need for skilled clinicians who can provide state-of-the-art care for patients with chronic wounds.

Pressure Ulcers (The following content is in part adapted from the Wild Iris Medical Education course “Pressure Ulcer Assessment and Treatment.”)

A pressure ulcer is defined as localized injury to the skin and/or underlying tissue, occurring over a boney prominence, resulting from pressure or pressure in combination with shear (NPUAP/EPUAP/PPPIA, 2014). Approximately 95% of pressure ulcers occur on the lower body, with the coccyx area being the most common site, followed by the heels and lower extremities. Pressure ulcers can and do occur across the lifespan. They are a recurrent problem in the pediatric population, patients who are immune compromised, the elderly, spinal cord injury patients, and others with limited mobility at all ages (Bryant & Nix, 2016). Pressure ulcers affect over three million individuals each year, and the emotional and physical consequences are tremendous. Pressure ulcers are a source of intense pain. They can lead to sepsis, delay recovery, prolong hospitalization, and result in death. They also present a major burden to the healthcare system and the U.S. economy; in 2014 the cost was calculated at $10 billion (NPUAP/EPUAP/PPPIA, 2014).

CAUSES Unrelieved pressure is the most common cause of pressure ulcer development. There are several elements that determine when pressure has reached a stage to cause damage: Intensity of the pressure Duration of pressure The capacity of the skin and tissues to withstand pressure Research to-date shows that higher pressure levels will cause skin breakdown and tissue damage in a shorter period of time (minutes to hours) depending on the circumstances. However, so far no exact level of pressure has been identified as the “cut-off point” for ischemia and ulcer formation, and it is regarded as being dependent on other factors such as the overall physical condition and age of the patient and concomitant conditions. Studies indicate that duration of pressure and tissue injury is depended on several matters such as the level of pressure applied and the strategies used to relieve pressure. Even moderately low levels of pressure can lead to blood vessel compression and tissue death.

RISK ASSESSMENT The best-known and most widely used tool for pressure ulcer assessment is the Braden Scale. It looks at six areas of risk for pressure ulcer development: Sensory status Mobility Activity level Exposure to moisture Nutritional status Degree of friction and shear present Each of these six areas is scored from 1 (highest risk) to 4 (least risk). The lower the score on the Braden Scale, the greater the likelihood of pressure ulcer formation. For example, a patient with a score of 9 or less would be considered at high risk for a pressure ulcer, whereas someone with a score of 18 would be considered not at risk. Risk factors related to pressure ulcer development include: Immobility Age Comorbidities Smoking History of a previous pressure ulcer Obesity Edema Surgical procedures that last three hours or more Length of time on a stretcher Medications Nutrition status Long illness Patient noncompliance with pressure relief interventions Elevated body temperature Psychological factors

STAGING Wound care clinicians must accurately stage pressure ulcers to ensure appropriate interventions, monitor progression or regression of the ulcer, and utilize a uniform language and set of terms that are understood by all those involved in the patient care regardless of the setting. Pressure ulcer staging is a skill that takes time to learn, and novice clinicians will benefit from mentoring by experienced practitioners in wound care. Two basic principles apply to staging pressure ulcers: 1. A wound bed that is covered with necrotic tissue cannot be staged until enough of the wound bed has been exposed to determine the extent of the damage. 2. Pressure ulcers are not “down staged,” (i.e., a stage IV pressure ulcer that has improved is not then described as a stage III pressure ulcer; it is described as a healing stage IV pressure ulcer).

Stage I A stage I pressure ulcer is defined as intact skin with nonblanchable redness of a localized area, usually over a bony prominence. Darkly pigmented skin may not have visible blanching; its color may differ from the surrounding area. The area may be painful, firm, soft, warmer, or cooler as compared to adjacent tissue.

Stage I pressure ulcer. (Sources: [illustration] © NPUAP, used with permission; [photo] © Wound, Ostomy and Continence Nurses Society (WOCN), used with permission.)

Stage II A stage II pressure ulcer refers to partial-thickness loss of dermis presenting as a shallow open ulcer with a red-pink wound bed, without slough. It may also present as an intact or open/ruptured serum-filled blister or as a shiny or dry shallow ulcer without slough or bruising. This stage should not be used to describe skin tears, tape burns, perineal dermatitis (incontinent-associated dermatitis), maceration, or excoriation.

Stage II pressure ulcer. (Sources: [illustration] © NPUAP, used with permission; [photo] © WOCN, used with permission.)

Stage III A stage III pressure ulcer includes full-thickness tissue loss, meaning the damage extends completely through the dermis to the subcutaneous layer. Subcutaneous fat may be visible, but bone, tendon, or muscle is not exposed. Slough and/or eschar may be present but do not obscure the depth of tissue loss. The depth of a stage III pressure ulcer varies by anatomic location. The bridge of the nose, ear, occiput, and malleolus do not have subcutaneous tissue, and stage III ulcers here will be shallow. In contrast, areas of significant fat deposits can develop extremely deep stage III pressure ulcers.

Stage III pressure ulcer. (Sources: [illustration] © NPUAP, used with permission; [photo] © WOCN, used with permission.)

Stage IV A stage IV pressure ulcer involves full-thickness tissue loss with exposed bone, tendon, or muscle. Slough or eschar may be present on some parts of the wound bed. It often includes undermining and tunneling. The depth of a stage IV pressure ulcer varies by anatomic location. The bridge of the nose, ear, occiput, and malleolus do not have subcutaneous tissue, and stage IV ulcers here will be shallow. Stage IV ulcers can extend into muscle and/or supporting structures such as fascia, tendons, or joint capsules, making osteomyelitis possible. Exposed bone or tendon is visible or directly palpable.

Stage IV pressure ulcer. (Sources: [illustration] © NPUAP, used with permission; [photo] © Association for the Advancement of Wound Care (AAWC), used with permission.)

Suspected Deep Tissue Injury (sDTI) The NPUAP (National Pressure Ulcer Advisory Panel) has also described two additional categories of pressure ulcer: suspected deep tissue injury and unstageable (NPUAP/EPUAP, 2009). Deep tissue injury may be indicated by a purple or maroon localized area of discolored intact skin or a blood-filled blister due to damage to the underlying soft tissue from pressure and/or shear. Suspected deep tissue injury usually develops over a boney prominence and can sometimes be confused as a stage I or stage II pressure ulcer. If in doubt, the wound care clinician should obtain a second opinion from another team member. Around 70% of sDTIs occur in the sacral area and the heels.

Suspected deep tissue injury. (Sources: [illustration] © NPUAP, used with permission; [photos] © AAWC, used with permission.)

Unstageable When the extent of the tissue damage cannot be determined because the ulcer is covered with either slough or eschar, a pressure ulcer is considered unstageable. Once the slough or eschar is sufficiently removed to reveal the base of the wound, an ulcer with full-thickness skin and tissue loss will be staged as either a III or IV, since slough and/or eschar do not form on stage I or II pressure ulcers. Stable eschar (dry, adherent, intact without erythema or fluctuance) on the heels serves as the body’s natural or biological cover and should not be removed.

Unstageable pressure ulcer. (Source: [illustration] © NPUAP, used with permission; [photo] © AAWC, used with permission.)

UPDATES TO PRESSURE ULCER TERMINOLOGY In April 2016 the National Pressure Ulcer Advisory Panel announced several updates in pressure ulcer terminology. These changes include: The term pressure injury will replace pressure ulcer. In naming the stages of pressure ulcers, Arabic numerals will be used in place of Roman numerals. The term suspected will no longer be included in the deep tissue injury description. There are still issues that have to be resolved before widespread use of the new terminology is possible, such as incorporating the new terminology into the existing coding system for reimbursement. This is an important, evolving area in pressure ulcer care, and the NPUAP have indicated that more information “will be forthcoming.” Source: NPUAP, 2016.

PREVENTION Prevention includes putting in place protocols for identifying patients at risk for pressure ulcer development. This includes using a risk assessment tool (e.g., the Braden score, described above), training staff in the use of the assessment tool, and deciding how often assessments will be done. The latter will vary according to the practice setting and regulatory guidelines. A pressure ulcer prevention protocol includes the following: Regular skin assessment Routine skin care Interventions for patients with limited mobility Nutrition assessment Appropriate support surface while the patient is in bed and up in a chair Routine repositioning Moisture control Measures to decrease exposure to friction and shear

TREATMENT Treatment is dependent on the stage of the pressure ulcer, the patient’s goals for treatment, and the patient’s capacity for healing. Treatment options for pressure ulcer prevention and care include: A facility-wide program for pressure ulcer prevention, which includes skincare education for all levels of staff Risk assessment and regular screening Routine repositioning, usually every two hours, with skin assessment Support surfaces Heel and elbow protectors Nutritional management and hydration Ulcer assessment and staging Individualized program of wound care Debridement of devitalized tissue Dressing selection to maintain moist wound therapy and encourage cellular proliferation Maintaining muscle strength and mobility (Bryant &Nix, 2016)

(For a full discussion of pressure ulcer treatment, see the separate Wild Iris Medical Education course on that topic.)

Diabetic Foot Ulcers In the United States diabetes is the number one cause of nontraumatic amputation of lower extremities, and diabetic foot ulcers precede approximately 85% of these amputations (Armstrong & Lavery, 2010).

A chronic nonhealing ulcer on the foot of a patient with diabetes. (Source: Frank DiMauro, MD, University of North Carolina.)

RISK FACTORS There are several risk factors for diabetic foot ulcers. Uncontrolled blood sugars is one of the main underlying causes. Other contributory factors include neuropathy (a condition that results in sensory loss to the foot), also described as a “loss of protective sensation,” or LOPS. This loss of protective sensation leaves the patient vulnerable to injury, for example, the patient with diabetes who steps on a nail and feels nothing. If care is not taken to monitor feet and to wear proper footwear, problems with the feet may occur in patients with diabetes. If peripheral neuropathy develops, even the smallest unnoticed foot wound may become a diabetic ulcer. Foot deformities related to changes in the structure of the foot due to diabetes are also a leading cause of ulceration. Charcot foot, a destructive process that leads to multiple fractures of the small bones in the foot and joint deformity, is another key factor in the development of diabetic foot ulcers.

ASSESSMENT Diabetic foot ulcers must be thoroughly assessed. They are a prime example of the expression “the tip of the iceberg.” A surface wound may be only a few centimeters in diameter, but the amount of tissue destruction beneath the surface is usually extensive. Diabetic/neuropathic ulcers are usually found on the plantar (sole) aspect of the foot, under the heel, over the metatarsal heads, or on the toes. Margins of these wounds are even, and the wound bed can be deep. There may be granular tissue present unless the patient has peripheral vascular disease (PVD). Exudate (drainage) from the wound is low to moderate. A characteristic callous surrounding the wound bed may be present and indicates that the patient has not off-loaded but has continued to walk on the foot. The foot may be warm but with diminished or absent feeling. There may be atrophy of subcutaneous fat.

INFECTION RISK IN DIABETIC ULCERS Diabetic foot ulcers are prone to infection, including osteomyelitis, and this is one of the leading reasons for lower extremity amputations in patients with diabetes. A diabetic ulcer may not exhibit the classical signs of infection, and the most important signs to look for are: Increased wound drainage Unexplained increase in blood sugar levels (patient reports of fasting blood sugars of 200 and greater) Increased wound odor Increase in wound size and depth Patient complaints of lethargy and “not feeling good”

TREATMENT Once a diabetic foot ulcer is present, aggressive treatment is required. The “gold standard” in the treatment of diabetic foot ulcers is off-loading. This refers to relieving pressure from the area of ulceration and evenly distributing it across the surface of the foot. This even distribution of pressure is extremely important to prevent a further area of ulceration. Off-loading can be achieved by several means: total contact casting, soft casting, off-loading shoes, removal cast walkers, and therapeutic insoles. The physical therapist on the wound care team will be instrumental in ensuring that the patient can safely ambulate when off-loading. The patient who has total contact casting applied will require instruction in walking with crutches or another appropriate assistive device. Dry skin is common in diabetics. Dry skin can crack open, allowing bacteria to enter. Applying lotions to the feet is good for treating dryness, but lotions should never be applied between the toes because moisture between toes can lead to skin breakdown and/or fungal infections. Small pieces of cotton wool or lambs’ wool can be placed between the toes to keep them dry and should be changed at least daily. Daily foot inspection is important, especially between toes. Wound treatment will include: Debridement of necrotic tissue Wound bed preparation (cleaning and irrigation) Dressing to maintain a moist wound environment Advanced therapies such as: Bioengineered skin substitutes Hyperbaric oxygen therapy Electrical stimulation Negative-pressure wound therapy Growth factors

PATIENT ADHERENCE Patients with diabetes are often unconcerned about wound care. A small hole in the sole of their foot that they cannot feel may not register as something with potentially serious consequences to them, and clinicians need to understand that time and sensitivity is required in building a therapeutic relationship with many patients with diabetes.

Venous Ulcers Approximately 40% to 70% of lower extremity wounds are diagnosed as venous ulcers, also known as venous insufficiency ulcers and stasis ulcers (Krasner, 2014). They are the result of chronic venous disease. These ulcers arise from pooling of blood in the veins as a result of venous insufficiency, in which blood leaks backwards in the veins, stagnating in the lower extremities. The most commonly held theory for the cause of this problem is damage to the valves of the lower extremity veins. Ulcerations occur spontaneously or from minor trauma.

RISK FACTORS Venous ulcers occur in patients with chronic venous disease. With the increase in the population of older adults, there has been a concurrent increase in the rate of venous ulcers, however, venous disease and venous ulceration can occur in much younger adults, even those in their twenties. Close to 2.5 million people present with venous ulcers each year, with a loss in work days, productivity, impaired quality of life, and direct costs of over $3 billion to the healthcare system (Johnson et al., 2015). Risk factors for venous ulcers include: Venous hypertension Obesity History of DVT (deep vein thrombosis) Decreased activity Pregnancy Heart failure

WOUND ASSESSMENT Lower extremity wounds have several different etiologies, and making a differential diagnosis is important. To put in place the appropriate treatment plan, the wound must be correctly identified. The location of the wound is an important element in accurately diagnosing the underlying cause. The usual location of a venous ulcer is from the ankle up to the knee in what is often described as the “gaiter area.” The patient may present with one or several ulcers. Venous ulcers are normally shallow, and drainage amounts can vary from moderate to high. The wound bed is typically ruddy red with irregular wound edges. Islands of eschar may be present, but black necrotic tissue is seldom seen except if infection or trauma are present. The skin surrounding the wound may be scaling and weeping (but can be thin and dry). If left untreated, venous ulcers will grow larger. In patients with advanced venous stasis, firm edema may be present and will resist compression. A common indicator of venous disease is the presence of hemosiderin staining, which is a brownish discoloration of the skin surfaces of the affected extremity. The discoloration is in the gaiter area of the leg (between the ankle and calf) and is permanent. It is something the clinician should look for during the wound assessment. The pain associated with venous ulcers is frequently described as dull, heavy, continuously aching, and being relieved by elevation. The pain is usually worse at the end of the day, especially for individuals who spend several hours on their feet but have little opportunity for ambulation.

COMPRESSION TREATMENT The “gold standard” of wound care treatment for venous ulcers is compression. It is virtually impossible to heal a venous ulcer until the swelling is reduced. Along with compression, leg elevation plays a big part in reducing edema. Healing time can take up to several months, and recurrence is a major problem. Compression consists of wrapping the leg in a particular fashion (depending on the product used) so that compression is greatest at the ankle and least at the calf. Unna boots are one of the most widely known and widely used forms of compression, and they work well for patients who are ambulatory. However, multilayer compression wraps provide more consistent compression to patients who are chair bound or have limited mobility. However, many patients have mixed venous and arterial disease, and before compression therapy is applied, the wound care team must be aware of the patient’s circulation status. Compression is contraindicated in the presence of arterial disease. Depending on the severity of the arterial disease, modified and low levels of compression may be used. A general consideration is that any compression is better than none, but patients with severe arterial disease cannot tolerate any compression. One of the most common measurements of arterial circulation is the Ankle Brachial Index (ABI). Therapeutic levels of compression can be used in patients with an ABI of 0.8 to 1.0. An ABI measurement of 1.1 or greater is usually an indication of noncompressible arteries and is common in patients with diabetes. This should not be taken as a normal reading, and these patients will require further diagnostic studies to evaluate circulation. Compression therapy is also contraindicated in patients with uncompensated heart failure, coexisting venous thrombosis in the affected leg, and severe peripheral vascular disease. If the wound is heavily infected, compression will not be used until infection is resolved.

DRESSINGS The dressing used under compression will depend on the status of the wound. A contact layer next to the wound bed, covered with a high absorbent dressing, is a good choice for a wound with copious drainage. If the wound bed is red and granulated, it is important to maintain a moist but not wet environment. If bacterial levels are high, silver products, topical antiseptics, cadexomer iodine, or antimicrobial dressings may be used. Skin replacements are also used successfully on venous ulcers. If the exudate is minimal, foam type dressings may be used; but if the exudate is heavy, absorptive dressings (such as alginate or other specialty absorptive dressings) may be used. The frequency of dressing and compression wrap changes will depend on the amount of drainage. Compression can be left in place for up to a week; however, if the wound is draining large amounts, the dressings will have to be changed more frequently, two to three times a week. Since the periwound area may already be dry, fragile, and crusted, it is important to protect it from further damage. Gentle cleansing technique is important, along with the application of a skin sealant. These come in either individualized skin wipes or as spray on. Most brands have both alcohol and nonalcohol preparations. Nonalcohol barriers are recommended for denuded skin to prevent a burning sensation and discomfort (Bryant & Nix, 2016).

Arterial Ulcers Arterial ulcers, are known as ischemic ulcers, are caused by a severe lack of blood flow to the tissues (Doughty, 2015). The affected arteries become blocked or narrowed, which reduces blood flow to the extremities first, especially the lower extremities. Arterial ulcers are the result of trauma to the skin in areas of ischemia (oxygen and nutrient deprivation) and decreased circulation. The “gold standard” of care for these ulcers is revascularization. Without interventions to reestablish an adequate blood supply, arterial ulcers will not heal.

RISK FACTORS Arterial ulcers result from lower extremity arterial disease (LEAD) and occur less frequently than venous ulcers; however, they are a common occurrence in older adults. It is estimated that around 30% of individuals over the age of 65 have LEAD (Doughty, 2015). Additional predisposing factors are diabetes and advanced age.

WOUND ASSESSMENT Arterial ulcers are found on the forefoot and toes, locations that are furthest away from the heart. Infection is often present in these wounds but may not be detected in the presence of significant ischemia. The clinician must be watchful for mild redness around the wound. Wounds characteristic of arterial ulcers have even margins with a “punched out” look. The wound bed is pale and deep. Tissue around the wound is blanched or purpuric (having some purplish mottling). Exudates from these wounds are minimal, if any. Toenails on the affected foot are usually thickened, and there is loss of hair to the thin, shiny skin on the ankle and foot. Part of the assessment for patients with arterial ulcers includes palpation of the pedal pulses—the dorsalis pedis pulse (located on the dorsum of the foot) and the posterior tibial pulse (located on the medial aspect of the leg, behind the ankle). Temperature to the lower extremities will be decreased, and toe/pedal pulses will be diminished or absent. However, the presence of these pulses does not rule out arterial disease and should not preclude other testing. Ankle Brachial Index (see also “Compression Treatment” above) is an indirect measurement of blood flow to the extremity and is recommended as part of a routine assessment for all patients suspected of having LEAD. Toe pressure should be performed in patients in whom an ABI reading cannot be obtained or where the accuracy of the reading is suspect (i.e., ABI reading >1.3). Duplex ultrasounds are used to identify the location of an arterial blockage and are a noninvasive test frequently used to diagnosis LEAD. Intermittent claudication is a classic sign of arterial disease and is reported as calf pain that occurs each time the patient walks a set distance, for example, the patient whose legs are “always hurting after walking to the mailbox and back to the house.” Resting pain and leg pain at night that wakes the patient up from sleep are signs of advanced LEAD. Peripheral artery disease (PAD) patients may hang a foot off the edge of the bed or will sit up with legs down to stop postural pain. The lower extremities will pale on elevation but display dependent rubor (redness) when down. At the last stage of PAD, pain is severe, as is the arterial blockage. Cellulitis (infection of the connective tissue of the skin) may develop. As the tissue dies, necrosis begins at the tip of the toes. Gangrene then develops. A distinct line between gangrenous and healthy tissue, as a result of the inflammation caused by irritation from the dead tissue, is an important diagnostic feature of dry gangrene. Gangrene is dark brown to black, with tissue forming a hard mass. If untreated, the gangrenous portions eventually will separate and the toe will be lost. If unstable (wet) gangrene is present, it will progress, causing extreme pain and destroying more tissue.

TREATMENT The debridement of stable, noninfected necrotic tissue should not be undertaken until the perfusion status of the limb is clinically determined. Wound care follows the universal goal of maintaining a moist healing environment, management of wound drainage, and protection of periwound skin surfaces. Due to the high degree of infection in ischemic wounds and the difficulty in ascertaining whether the wound is infected or not, hydrocolloid dressings are not recommended for ischemic wounds. Dressings that allow for visualization of the wound are recommended. Since walking and exercise causes pain, many patients with LEAD may restrict mobility and will also need education and therapy to preserve their functioning level. The wound care physical therapist can help develop an individualized exercise program that is practical to the patient’s needs and circumstances. Exercise benefits circulation to the lower extremities, and studies show that regular exercise helps to decrease the severity of intermittent claudication.

Atypical Lower Extremity Wounds Although venous and arterial ulcers are the most frequently occurring lower extremity wounds, there are other causes of lower extremity wounds—what are often referred to as “atypical” wounds. These are not always easy to diagnosis, and many times they are initially mistaken for venous or arterial ulcers. Some of the more frequently encountered atypical wounds are: Vasculitis Pyoderma gangrenosum Minor burns

VASCULITIS This condition results in inflammation of blood vessels; it can affect small, medium, and large vessels. Vasculitis is an autoimmune process and is found more often in older adults. It is usually a recurrent condition and many times happens along with systemic lupus or rheumatoid arthritis. Reports indicate that approximately 10% of individuals with rheumatoid arthritis develop leg ulceration (Pieper, 2015). When small blood vessels are involved, it manifests in pinpoint areas of bleeding beneath the skin; the clinician will observe clusters of tiny red to purple spots on the skin, most often occurring on the patient’s legs. However, lesions and wounds associated with vasculitis can occur on any part of the body. If larger blood vessels are involved, the end result will be ulceration and necrosis. On the lower extremities, some of the most common sites for these ulcers are the lateral malleolus, which makes them hard to distinguish from venous ulcers. A complete assessment will include a biopsy of the lesion, usually from more than one location, for histological evaluation, blood work for ANA (antinuclear antibodies) and rheumatoid factor, and a urinalysis to determine if there is renal involvement. Histologic identification of vasculitis is crucial due to its resemblance to other clinical conditions. Biopsy findings will include endothelial cell swelling and fibrinoid necrosis of the blood vessel walls (Pieper, 2015). Treatment consists of managing the underlying disease process, whether this is lupus or rheumatoid arthritis. In these instances, the wound care team will be working closely with the patient’s rheumatologist and other healthcare professionals involved in treating the systemic disease process. Local wound treatment will involve removing necrotic tissue (autolytic debridement is often used in these cases), maintenance of a moist wound environment, drainage management, and protection from injury. Infection is an issue with these wounds, and the clinician will monitor the wound carefully for any signs of infection, however subtle, and ensure that prompt treatment is instigated.

PYODERMA GANGRENOSUM Pyoderma gangrenosum is a chronic inflammatory skin condition (Doughty, 2015). It is frequently associated with inflammatory diseases such as rheumatoid arthritis and inflammatory bowel disease. The initial wound presentation is a pustule that progresses to ulceration. These wounds are extremely painful and can occur anywhere on the body, but they are frequently found on the lower extremities. One of the characteristic signs of pyoderma ulcers is a purplish halo surrounding the wound. The wound bed may present with soft necrotic tissue, purulent drainage, and deep dermal destruction. Although the wound may start off small, it grows rapidly in size and may occur in a cluster of wounds. Many times the diagnosis is based on exclusion of other wound types, the clinical presentation of the wound, and the patient history. Approximately half of patients with pyoderma have a concomitant inflammatory condition. One of the hallmark signs of pyoderma gangrenosum is pathergy, a state in which minor trauma will cause marked deterioration in the wound. Clinicians must use gentle, nontraumatic measures when caring for these wounds. Sharp debridement is not indicated, since this may trigger the process of pathergy. Autolytic debridement is usually the best process to employ, and antimicrobial dressings are useful in controlling bacterial counts. The wound cannot be treated in isolation, and the systemic condition underlying the process has to be addressed. Corticosteroids are the mainstay treatment and are usually started in high dosages of 100 mg to 200 mg of Prednisone daily. The wound care team will work closely with the medical team managing the systemic disease so that a holistic approach to care is implemented.

OTHER TYPES OF WOUND CARE Other types of wound care that clinicians may provide include: Simple surgical wound care Complex surgical wound care Pediatric wound care Bariatric wound care Spinal cord injuries and wound care End-of-life wound care Healthcare professionals work in multiple clinical settings, and the ability to provide adequate wound care to diverse patient populations is an essential part of the services provided.

Simple Surgical Wound Care Noncomplicated surgical wounds progress to healing in a timely manner. These wounds normally have a sterile, nonadherent dressing applied in surgery, and this dressing will be left in place for the first 48 hours after the procedure. However, if the dressing becomes soiled from drainage or is loosened or removed for any reason, the clinician will need to re-dress the wound with a sterile dressing using a sterile technique. It is imperative that the clinician check the patient’s orders; often the surgeon will decide to do the first dressing change or request that the clinician inform the surgeon when the dressing change is going to be done so that the surgeon can be present to assess the healing status of the wound. Normally after around 72 hours the process of epithelial resurfacing is complete and a dressing is no longer required. At that point, the patient is free to shower. If epithelialization is not completed, a sterile dressing is reapplied and the condition of the wound carefully monitored.

Complex Surgical Wound Care An open abdominal wound is one example of a complex surgical wound. Such a wound cannot be closed at the time of surgery for a variety of reasons, such as abdominal compartment syndrome, bowel edema as a consequence of peritonitis, and wound infection. In other instances, the wound is closed at the time of surgery but later dehisces. The operating surgeon will drive the management of these wounds, but the expertise of the wound care team is called upon to help with treatment options while the wound remains open. In the majority of cases, when surgeons ask wound care clinicians to assist with wound care, the surgeons are open to—and expect—recommendations based on the clinicians’ expertise and experience in dealing with wounds. For the clinician, the first step in assessing complex surgical wounds is a thorough knowledge of the surgical procedure that was performed, the reason necessitating surgery, complications that prevented immediate wound closure, comorbid diseases, and the surgeon’s plan for the wound. Most of this information can be obtained from the patient’s chart, but it is a good policy to meet with the surgeon and discuss any questions and recommendations. During the physical wound assessment of an open abdominal wound, the clinician identifies abdominal structures, areas of exposed mesh (if present), sutures, and viable and nonviable tissue. Careful assessment must be made for the presence of enteric fistulas. The wound care clinician must know whether or not new anastomosis were created during surgery because a high percentage of fistulas develop due to leaks at anastomosis sites. The majority of open abdominal wounds are candidates for negative-pressure wound therapy, but it may not be the first treatment option due to the state of the wound or surgeon preference. Dressing choices include a contact layer that will not adhere to the wound bed. Depending on the size of the wound, the contact layer can be covered with alginate dressings or saline-moistened gauze. Since these wounds normally require daily or twice-daily dressing changes, applying a “wound manager” over the wound may be of benefit. A wound manager is a large pouch with a hydrocolloid border that secures it to the intact periwound area. The pouch is transparent, which allows visualization of the wound, with a center flap that can be opened and resealed to provide easy access for wound care. Another type of complex wound the clinician may be asked to assist with is an open chest wound, for example, after a failed coronary artery bypass graft. The wound care team will work closely with the surgeon in monitoring the progress of the wound. The guiding principles for care include stabilizing the open margins of the wound, protecting the myocardium, and promoting granulation tissue.

Pediatric Wound Care In neonates, infants, and older children, differences in skin composition and texture are taken into consideration when caring for wounds. Premature infants have a thinner stratum corneum layer, which decreases the barrier function of the skin and increases the likelihood of injury. For these infants, skin maturation is delayed. Full-term infants have a thinner dermis than adults, giving the skin a very soft texture. In both premature and full-term infants, skin tears pose a particularly high risk. In many instances, a wound in an infant or child is a complication of another diagnosis or a surgical procedure. Thus, the clinician needs to keep in mind that the child and parents may be dealing with several evolving healthcare issues at the same time. Wound care may need to be continued post discharge, and the bulk of that care may fall on the parents. The clinician will work along with the family to develop a plan of care that is clear and practical. One of the major concerns that parents have is the appearance of the healed wound and the risk of scar formation. In early childhood, wounds that move through the inflammatory phase without delay heal with minimal scarring. Choosing the “best” wound cleanser and dressing for the pediatric population can be challenging. The safety and efficacy of wound care products have often been tested only in adult populations and not in pediatric populations. Products that include alcohol, dyes, or fragrances should be avoided. However, the same basic principles of wound care needed in adults are relevant to neonate and pediatric populations: to provide a moist wound environment free of devitalized tissue and contaminants. Dressings that incorporate a soft silicone adhesive are a good choice for neonates and infants with fragile skin, and hydrogels work well to maintain a moist wound environment (King & Stellar, 2014).

Bariatric Wound Care The prevalence of obesity among both adults and children is on the increase worldwide, and clinicians working in wound care will continue to see an increase in the numbers of obese patients. Obese individuals are more susceptible to chronic health conditions such as diabetes, heart disease, and stroke, to mention a few. An obese patient can develop a wound without being aware of it. It may be difficult for them to bathe, clean, and dry adequately in areas where there are excessive skin folds, for example, the back of the neck, under breasts, armpits, beneath a large abdominal pannus, and inner thighs. A lack of proper hygiene along with a build up of moisture makes these areas vulnerable to moistureassociated skin damage. Obese patients admitted to hospitals are at especially high risk for developing pressure ulcers; moisture, friction, and shear injuries are highly problematic for this group. A complete assessment is needed to identify existing wounds and areas of high risk. Skin care education for patients who are obese should touch on the following points: A complete daily bath is not necessary, but areas under skin folds need to be cleaned on a daily basis. Soaps and body washes should be free from skin irritants. Gentle cleaning is important: no scrubbing and pat dry. Disposable wipes that are pH balanced and do not require rinsing can be used. Placing folded cotton material between skin folds can maintain dryness and decrease irritation. Using a cool hairdryer on weeping areas can help to promote dryness. Selecting the correct equipment, such as a bariatric bed or extra-large wheelchair, to meet the needs of patients who are obese is an essential part of providing safe care for such patients. These needs must be addressed across the continuum of care and in the home setting. PTs and OTs are the experts in this area and are involved in deciding on appropriate bariatric equipment. This may include a home evaluation as well working closely with the social worker or case manager to determine funding options for recommended equipment. Wounds under an abdominal pannus require good care. Adhesive foam dressings are a good choice. The use of a pannus sling will reduce pressure and promote patient comfort. Choosing the correct sling for each patient is a step that requires the input of several team members, including PT and OT. Slings are available that can be used with either an overhead or a floor lift (Morello, 2015). Regardless of the etiology of the wound, obese patients face unique problems with healing. These include diminished circulation to the wound bed (increased adipose tissue decreases blood flow to the skin), difficulty performing self-care, inability of caregivers to provide adequate assistance due to the patient’s size, and the potential for immobility and decline in function.

Patients with Spinal Cord Injuries Studies show that pressure ulcers are the most widely occurring complication of spinal cord injury and one of the most devastating. Eighty-five percent of individuals with spinal cord injury will develop a pressure ulcer at some point in their lives, and many of them will go on to develop repeated ulceration. Decreased mobility and muscle atrophy are the leading causes of pressure ulcer development in this population. There is also a problem with diminished blood flow to the areas of the body below the level of injury, which results in lessened oxygen supply to tissues. These factors combine to delay healing when ulcers do occur. Preventive care focuses not only on pressure relief but also on psychological and social elements. A spinal cord injury is a sudden, overwhelming, life-changing event and usually happens in an age group where the concept of skin checks and pressure relief are uncommon. To sustain wellness there needs to be a daily, lifetime commitment to lifestyle adaptations. It is a daunting task and requires consistent, empathetic care from clinicians as they assist patients to become knowledgeable proponents of their own care. Learning correct transfer technique is one of the first steps in preventing skin tears, bruising, and wound development in these patients. If self-transfers are achievable, the clinician works with the patient on a technique that avoids sliding and bumping against parts of the wheelchair or landing surface and ensures the patient lands softly on the surface they are transferring to. Physical therapy works with the patient on developing these skills and emphasizes the importance of using them with every transfer. Weight shifts, skin checks, spasticity management, and a well-balanced diet that will assist in maintaining a normal weight for the individual are other important factors of care. Excessive weight gain can be problematic for those with spinal cord injuries due to a lack of activity and exercise.

Geriatric Patients Skin changes with aging, and these changes are classified as intrinsic and extrinsic. Intrinsic changes are the physiologic alternations that occur as part of the process of aging, and include: Reduction in the number of fibroblasts and decrease in the functioning ability of the remaining fibroblasts, resulting in delayed collagen synthesis and prolonged wound healing Decrease in the number of macrophages in the inflammatory phase of wound healing Fewer melanocytes to protect the skin from ultraviolet radiation Decrease in Langerhans cells, leading to comprised immunity Decreased adhesion between the epidermis and the dermis Fewer vitamin D receptors and a reduction in the production of vitamin D Thinning of the adipose layer Reduced blood flow to the skin, resulting in delayed wound healing Extrinsic factors are related to the environment and how it interacts with aging skin. The most important of these are: Ultraviolet light from the sun, which can penetrate further into the dermis of aging skin Cigarette smoke, which is highly damaging to aging skin Hydration status (Older individuals, especially those in residential care, are vulnerable to dehydration due to a combination of factors that include decreased mobility, cognitive changes, and the need for outside assistance.) Nutrition (All elderly patients are carefully screened for nutritional deficits. A lack of interest in food and taking multiple medications [polypharmacy] can lead to a decrease in appetite. Malnourished older individuals are at greater risk for pressure ulcer development and prolonged wound healing.) Older persons are at particular risk for skin tears, and clinicians must use gentle “handling” when working with older individuals. Even small bumps can lead to an extensive skin tear in an older patient. Gently approximating the skin edges and securing them with steri-strips allows a clean skin tear to heal. Covering the area with self-adhesive foam dressing adds extra protection. Wrapping (not tightly) with a gauze bandage or applying a cotton circular bandage also adds a layer of protection. Wounds in the older population will heal as long as the causative factors are eliminated, the principles of moist wound healing are employed, and comorbid conditions are adequately managed. Older adults are at increased risk for chronic wounds due to the presence of other conditions such as diabetes and decreased circulation (Reddy, 2008).

End-of-Life Wound Care In end-of-life wound care, the aim is usually one of wound maintenance not wound healing. The primary goals are pain management, containment of drainage, odor relief, and maintaining the patient’s quality of life and dignity. Pain control and incontinence management are also critical. The wound care team coordinates all treatments around pain management and ensures that patients who require analgesics receive them about 30 minutes before repositioning or dressing changes. The types of wounds that occur at the end of life vary and commonly include: Pressure ulcers Malignant-related fungating wounds Moisture-associated skin damage (see above under “Bariatric Wound Care”)

PRESSURE ULCERS Several factors combine to make patients in hospice care more vulnerable to pressure ulcers, including poor physical condition, decreased food and fluid intake, an inability to feel pressure or pain, immobility, and compromised immunity. Positioning to avoid pain can also contribute to pressure ulcer formation; many patients who are terminally ill are unable to lie supine due to pain levels. Repositioning, even with assistance, may cause extreme pain and lead to impaired perfusion of already fragile skin surfaces. Choosing the correct support surface to relieve pressure and decrease pain is paramount in providing comfort for these patients.

KENNEDY TERMINAL ULCERS Kennedy terminal ulcers were named after Karen Lou Kennedy, a nurse practitioner credited with creating one of the first skin-care teams in a long-term care facility in the United States. Although Kennedy terminal ulcers first came to attention in 1989 in this country, they were actually described over 100 hundred years ago by French neurologist Dr. Jean-Martin Charcot, who referred to them as acute bed sores. These ulcers can develop within a few hours and rapidly deteriorate and are indicative of impending death. They can be distressing for families and nursing staff alike. Families may perceive them as a lack of care for their loved one, and staff may at first be surprised that skin that was normal a few hours ago now has a large area of purple/black discoloration. It is helpful to explain to everyone involved that as the end of life approaches, the body begins to shut down, hypoperfusion of the skin leaves it vulnerable to the development of terminal ulcers, and the continued lack of sufficient perfusion causes these ulcers to quickly increase in size. Apart from their sudden onset, other distinctive features of Kennedy terminal ulcers are: Location over the sacro-coccygeal region Pear, horseshoe, or butterfly shape Irregular ulcer margins Continued worsening and progression to necrotic tissue even with the most appropriate care The principles of care for Kennedy terminal ulcers include drainage management and comfort care. Debridement is not an appropriate intervention.

(See also “Pressure Ulcers” earlier in this course.)

FUNGATING WOUNDS The National Cancer Institute describes a fungating wound as “a type of lesion that is marked by ulceration and necrosis and that usually has a bad smell” (Bauer, 2015). Malignant fungating wounds are distressful for patients and their families and caregivers. Studies indicate that 62% of fungating wounds occur on the breast, with head and neck cancers being responsible for another 24% (Bergstrom, 2011). These wounds are caused by malignant cells spreading to the overlying skin surface, which results in the occurrence of large wounds. For patients, the most distressing symptom of these wounds is odor, and many patients report that this greatly compromises their quality of life. Due to shame and embarrassment, they isolate themselves from social interaction, leading to feelings of hopelessness and depression. Wound odor can be reduced by decreasing the amount of necrotic tissue and bacteria in the wound. Bacteria load can be decreased by irrigating the wound with tap water or by taking a shower and allowing water to flow across the wound bed. The application of topical crushed metronidazole has proven to be successful in controlling odor. Charcoal dressings and honey dressings have also been shown to reduce odor and decrease pain at dressing changes. Due to large volumes of wound drainage, highly absorbent secondary dressings will also be required.

Minor Burns Major burn wounds are treated in specialized burn units and are beyond the scope of this course. Smaller burns, classified as “minor burns,” are those that typically comprise

Smile Life

When life gives you a hundred reasons to cry, show life that you have a thousand reasons to smile

Get in touch

© Copyright 2015 - 2024 PDFFOX.COM - All rights reserved.